Control of the Non-Metallic Inclusions near Solidification Front by Pulsed Magnetic Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Heat Treatment
2.2. Measurement and Calculation
3. Results
3.1. The Effect of PMF on Microstructure
3.2. Theoretical Consideration for the Critical Velocity
3.3. Experimental Value of Critical Velocity
3.4. Comparison of Theoretical and Experimental Values of Critical Velocity
4. Conclusions
- (1)
- Applying PMF during solidification can change the motion of inclusions and promote inclusion to be engulfed by the solidification front.
- (2)
- Due to the improvement of the engulfment probability within PMF, a uniform inclusion distribution was obtained.
- (3)
- A large amount of fine, acicular and cross-interlocked intra-granular ferrites was observed with the application of PMF.
- (4)
- When dmin ≈ 2.68 μm, the theoretical is consistent with the experimental value. The experimental result of the critical velocity was validated by the prediction of the model.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hadji, L. Effect of shrinkage flow on particle engulfment. Scr. Mater. 2007, 56, 57–60. [Google Scholar] [CrossRef]
- Liu, Y.; Han, Q. Interaction between nucleant particles and a solid-liquid interface in Al-4.5Cu alloy. Acta Mater. 2021, 213, 116955–116963. [Google Scholar] [CrossRef]
- Friedrich, J.; Reimann, C.; Jauss, T.; Cröll, A.; Sorgenfrei, T.; Tao, Y.; Derby, J.J.; Friedrich, J.; Reimann, C.; Jauss, T.; et al. Engulfment and pushing of Si3N4 and SiC particles during directional solidification of silicon under microgravity conditions. J. Cryst. Growth 2017, 475, 33–38. [Google Scholar] [CrossRef]
- Chen, S.Y.; Yue, X.D.; Jin, G.C.; Li, Q.C.; Chang, G.W. Comparison of Grain Size in Plain Carbon Hot-Rolled Sheets Manufactured by CSP and Conventional Rolling Processing. J. Iron Steel Res. Int. 2012, 19, 17–22. [Google Scholar] [CrossRef]
- Panwar, N.; Chauhan, A. Fabrication methods of particulate reinforced Aluminium metal matrix composite-A review. Mater. Today Proc. 2018, 5, 5933–5939. [Google Scholar] [CrossRef]
- Chen, X.H.; Yan, H. Solid–liquid interface dynamics during solidification of Al 7075–Al2O3np based metal matrix composites. Mater. Des. 2016, 94, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Fadavi Boostani, A.; Tahamtan, S.; Jiang, Z.Y.; Wei, D.; Yazdani, S.; Azari Khosroshahi, R.; Taherzadeh Mousavian, R.; Xub, J.; Zhang, X.; Gong, D. Enhanced tensile properties of aluminium matrix composite reinforced with graphene encapsulated SiC nanoparticles. Composites 2015, 68, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Li, X.B.; Min, Y.; Yu, Z.; Liu, C.J.; Jiang, M.F. Effect of Mg addition on nucleation of intra-granular acicular ferrite in Al-killed low carbon steel. J. Iron Steel Res. Int. 2016, 23, 415–421. [Google Scholar] [CrossRef]
- Fattahi, M.; Nabhani, N.; Hosseini, M.; Arabian, N.; Rahimi, E. Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metals. Micron 2013, 45, 107–114. [Google Scholar] [CrossRef]
- Hu, J.; Du, L.X.; Wang, J.J. Effect of V on intragranular ferrite nucleation of high Ti bearing steel. Scr. Mater. 2013, 68, 953–956. [Google Scholar] [CrossRef]
- Yokomizo, T.; Enomoto, M.; Umezawa, O.; Spanos, G.; Rosenberg, R.O. Three-dimensional distribution, morphology, and nucleation site of intragranular ferrite formed in association with inclusions. Mater. Sci. Eng. 2003, A344, 261–267. [Google Scholar] [CrossRef]
- Oikawa, K.; Ohtani, H.; Ishida, K.; Nishizawa, T. The Control of the Morphology of MnS Inclusions in Steel during Solidif ication. ISIJ Int. 1995, 35, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wilxon, J.A.; Crowther, D.N.; Mitchell, P.S.; Craven, A.J.; Baker, T.N. The Effects of Vanadium, Niobium, Titanium and Zirconium on the Microstructure and Mechanical Properties of Thin Slab Cast Steels. ISIJ Int. 2004, 44, 1093–1102. [Google Scholar] [CrossRef]
- Sarma, D.S.; Karasev, A.V.; JÖnsson, P.G. On the Role of Non-metallic Inclusions in the Nucleation of Acicular Ferrite in Steels. ISIJ Int. 2009, 49, 1063–1074. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Lee, H.G.; Oh, K.S. Evolution of Size, Composition, and Morphology of Primary and Secondary Inclusions in Si/Mn and Si/Mn/Ti Deoxidized Steels. ISIJ Int. 2002, 42, 1404–1411. [Google Scholar] [CrossRef]
- Ma, Z.T.; Janke, D. Characteristics of Oxide Precipitation Solidification of Deoxidized Steel. ISIJ Int. 1998, 38, 46–52. [Google Scholar] [CrossRef]
- Shao, Q.; Wang, G.; Wang, H.D.; Xing, Z.G.; Fang, C.Y.; Cao, Q.L. Improvement in uniformity of alloy steel by pulsed magnetic field treatment. Mater. Sci. Eng. 2021, A799, 140–143. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, P.H.; Zhou, Q.; Zhan, W.; Jin, F. Effects of pulsed magnetic field on microstructure, mechanical properties and bio-corrosion behavior of Mg-7Zn alloy. Mater. Lett. 2017, 193, 224–227. [Google Scholar] [CrossRef]
- Chen, H.; Jie, J.C.; Fu, Y.; Ma, H.J.; Li, T.J. Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation. Trans. Nonferrous Met. Soc. China 2014, 24, 1295–1300. [Google Scholar] [CrossRef]
- Zhang, L.; Li, W.; Yao, J.P.; Qiu, H. Effects of pulsed magnetic field on microstructures and morphology of the primary phase in semisolid A356 Al slurry. Mater. Lett. 2012, 66, 190–192. [Google Scholar] [CrossRef]
- Zhang, M.N.; Zhang, Q.J. Mini high temperature device with micro area strong magnetic field for microscopic observation. CN203437628U, 19 February 2014. [Google Scholar]
- Cui, Z.M. The Oxide Metallurgy Behaviour in Medium Carbon Steel and the Effect of Pulsed Magnetic Field. Ph.D. Thesis, University of Science and Technology Beijing, Bejing, China, 2017. [Google Scholar]
- Li, Y.J.; Tao, W.Z.; Yang, Y.S. Grain refinement of Al–Cu alloy in low voltage pulsed magnetic field. J. Mater. Process. Technol. 2012, 212, 903–909. [Google Scholar] [CrossRef]
- Uhlmann, D.R.; Chalmers, B.; Jackson, K.A. Interaction Between Particles and a Solid Liquid Interface. J. Appl. Phys. 1964, 35, 2986–2993. [Google Scholar] [CrossRef]
- Garvin, J.W.; Yang, Y.; Udaykumar, H.S. Multiscale modeling of particle–solidification front dynamics, Part I: Methodology. Int. J. Heat Mass Transf. 2007, 50, 2952–2968. [Google Scholar] [CrossRef]
- Garvin, J.W.; Udaykumar, H.S. Particle–solidification front dynamics using a fully coupled approach, Part I: Methodology. J. Cryst. Growth 2003, 252, 451–466. [Google Scholar] [CrossRef]
- Garvin, J.W.; Udaykumar, H.S. Effect of a premelted film on the dynamics of particle–solidification front interactions. J. Cryst. Growth 2006, 290, 602–614. [Google Scholar] [CrossRef]
- Rempel, A.W.; Worster, M.G. The interaction between a particle and an advancing solidi cation front. J. Cryst. Growth 1999, 205, 427–440. [Google Scholar] [CrossRef] [Green Version]
- Potschke, J.; Rogge, V. On the behaviour of foreign particles at an advancing solid-liquid interface. J. Cryst. Growth 1989, 94, 726–738. [Google Scholar] [CrossRef]
- Casses, P.; Azouni, M.A. Critical velocity of a freezing front interacting with spherical-particles. Int. Commun. Heat Mass Transf. 1995, 22, 605–615. [Google Scholar] [CrossRef]
- Tao, Y.T.; Yeckel, A.; Derby, J.J. Analysis of particle engulfment during the growth of crystalline silicon. J. Cryst. Growth 2016, 452, 1–5. [Google Scholar] [CrossRef]
- Azouni, M.A.; Casses, P. Thermophysical properties effects on segregation during solidification. Adv. Colloid Interface Sci. 1998, 75, 83–106. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | V | Cr | Al | Ti | N |
---|---|---|---|---|---|---|---|---|---|
0.470 | 0.270 | 0.750 | ≤0.015 | ≤0.020 | 0.080 | 0.200 | 0.020 | 0.012 | 0.010 |
Application of PMF | Average Circumference (μm) | Radius (μm) |
---|---|---|
No PMF | 20.34 | 3.24 |
PMF | 34.57 | 5.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Z.; Yan, C.; Li, Y.; Wang, X.; Zhu, L.; Zhang, Q. Control of the Non-Metallic Inclusions near Solidification Front by Pulsed Magnetic Field. Metals 2022, 12, 2008. https://doi.org/10.3390/met12122008
Cui Z, Yan C, Li Y, Wang X, Zhu L, Zhang Q. Control of the Non-Metallic Inclusions near Solidification Front by Pulsed Magnetic Field. Metals. 2022; 12(12):2008. https://doi.org/10.3390/met12122008
Chicago/Turabian StyleCui, Zhimin, Chunliang Yan, Yuanliang Li, Xingjuan Wang, Liguang Zhu, and Qingjun Zhang. 2022. "Control of the Non-Metallic Inclusions near Solidification Front by Pulsed Magnetic Field" Metals 12, no. 12: 2008. https://doi.org/10.3390/met12122008
APA StyleCui, Z., Yan, C., Li, Y., Wang, X., Zhu, L., & Zhang, Q. (2022). Control of the Non-Metallic Inclusions near Solidification Front by Pulsed Magnetic Field. Metals, 12(12), 2008. https://doi.org/10.3390/met12122008