Nanostructured Coatings (Ti,Zr)N as a Barrier to Hydrogen Diffusion into Ti0.16Pd (wt.%) Alloy
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zwicker, U. Titan and Titanlegiarungen; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Tomashev, N.D. Titanium and Its Corrosion-Resistant Alloys; Metallurgiya: Moscow, Soviet Union, 1985. (In Russian) [Google Scholar]
- Fokin, M.N.; Ruskol, Y.S.; Mosolov, A.V. Titanium and Its Alloys in Chemical Industry; Khimiya: Leningrad, Soviet Union, 1978. (In Russian) [Google Scholar]
- Nakagawa, M.; Matsua, S.; Udoh, K. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solution. Dent. Mater. J. 2001, 20, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Matono, Y.; Matsuya, S.; Udoh, K. The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environments. Biomaterials 2005, 26, 2239–2246. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.B.; Hu, H.X.; Zheng, Y.G.; Ke, W.; Qiao, Y.X. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid. Corros. Sci. 2016, 103, 50–65. [Google Scholar] [CrossRef]
- Grishkov, V.; Kopylov, V.; Lotkov, A.; Latushkina, S.; Baturin, A.; Girsova, N.; Timkin, V.; Zhapova, D. Effect of warm equal channel angular pressing on the structure and mechanical properties of Ti0.16Pd0.14Fe (wt.%) alloy. Rev. Adv. Mater. Sci. 2019, 58, 22–31. [Google Scholar] [CrossRef]
- Liu, B.; Zhow, Q.; Qu, R.-F.; Chang, W.-T. Effect of microstructure on corrosion resistance of CP-Ti and Ti-0.2Pd. Chin. J. Nonferrous Met. 2015, 25, 959–966. [Google Scholar]
- Rodrigues, D.C.; Urban, R.M.; Jacobs, J.J.; Gilbert, J.L. In vivo severe corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip-implants. J. Biomed Mater. Res. B Appl. Biomater. 2009, 88, 206–219. [Google Scholar] [CrossRef]
- Ervin Tal-Gutelmacher and Dan Eliezer. Hydrogen-assisted degradation of titanium based alloys. Mater. Trans. 2004, 45, 1594–1600. [Google Scholar] [CrossRef]
- Yokoyama, K.; Ichikawa, T.; Murakami, H.; Miyamoto, Y.; Asaoka, K. Fracture mechanisms of retrieved titanium screw thread in dental implant. Biomaterials 2002, 23, 2459–2465. [Google Scholar] [CrossRef]
- Greene, C.A.; Henry, A.J.; Brossia, C.S.; Ahn, T.V. Evaluation of the passible susceptibility of titanium Grade 7 to hydrogen embrittlement in geologic repository environment. Mat. Res. Soc. Symp. Proc. 2001, 663, 1–9. [Google Scholar]
- Murzinova, M.A.; Salishchev, G.A. Effect of decrease of hydride-induced embrittlement in nanocrystalline titanium. Adv. Eng. Mater. 2010, 12, 765–768. [Google Scholar] [CrossRef]
- Kolobov, Y.R.; Torganchuk, V.I.; Fokin, V.N.; Tarasov, B.P. Structural features of the hydride phase formation in nanostructured titanium. IOP Conf. Ser. Mater. Sci. Eng. 2015, 81, 012053. [Google Scholar] [CrossRef]
- Tamura, M.; Noma, M.; Yamashita, M. Characteristic change of hydrogen permeation in stainless steel plate by BN coating. Surf. Coat. Technol. 2014, 260, 148–154. [Google Scholar] [CrossRef]
- Yilbas, B.S.; Coban, A.; Kahraman, R.; Khaled, M.M. Hydrogen embrittlement of Ti-6Al-4V alloy with surface modification dy TiN coating. Int. J. Hydrogen Energy 1998, 23, 483–489. [Google Scholar] [CrossRef]
- Shan, C.; Wu, A.; Li, Y.; Zhao, Z.; Chen, Q.; Huang, Q.; Shi, S. The behavior of diffusion and permeation of tritium through 316L stainless steel with coating of TiC and TiC+TiN. J. Nucl. Mater. 1992, 191, 221–225. [Google Scholar] [CrossRef]
- Van Hove, R.P.; Sierevelt, I.N.; Van Royen, B.J.; Nolte, P.A. Titanium-nitride coating of orthopaedic implants: A review of literature. Biomed. Tes. Int. 2015, 2015, 485975. [Google Scholar] [CrossRef] [PubMed]
- Obrosov, A.; Sutygina, A.; Volinsky, A.; Manakhov, A.; Weiβ, S.; Kashkarov, E. Effect of Hydrogen exposure on mechanical and tribological behavior of CrxN coating depsited at different pressures on IN718. Materials 2017, 10, 563. [Google Scholar] [CrossRef] [PubMed]
- Em, V.T. Structure and Phase Transformations of Interstitial Alloys of Transition Metals of the IV-V Groups. Ph.D. Thesis, Sciences of the Nuclear Physics Institute of the Uzbek SSR AS, Tashkent, Soviet Union, 1988. (In Russian). [Google Scholar]
- Tamura, M. Hydrogen permeation characteristics of TiN coated stainless steel. J. Mater. Sci. Eng. A 2015, 5, 204–208. [Google Scholar] [CrossRef][Green Version]
- Tamura, M.; Eguchi, T. Nanostructured thin films for hydrogen-permeation barrier. J. Vac. Sci. Technol. A 2015, 33, 041503-1–041503-6. [Google Scholar] [CrossRef]
- Wang, D.-Y.; Chang, C.-L.; Hsu, C.-H.; Lin, H.-N. Sinthesis of (Ti,Zr)N hard coatings by unbalanced magnetron sputtering. Surf. Coat. Technol. 2000, 130, 64–68. [Google Scholar] [CrossRef]
- Uglov, V.V.; Anishchik, A.M.; Khodasevich, V.V.; Prikhodko, Z.L.; Zlotski, S.V.; Abadias, G.; Dub, S.N. Structural characterization and mechanical properties of Ti-Zr-N coatings depsited by vacuum arc. Surf. Coat. Technol. 2004, 180–181, 519–525. [Google Scholar] [CrossRef]
- Ramana, J.V.; Kumar, S.; David, C.; Raju, V.S. Structure, Composition and microhardness of (Ti,Zr)N and (Ti,Al)N coatings prepared by DS magnetron sputtering. Mater. Lett. 2004, 58, 2553–2558. [Google Scholar] [CrossRef]
- Lin, Y.-W.; Huang, J.-H.; Yu, G.-P. Microstructure and corrosion resistance of nanocrystalline TiZrN films jn AISI 304 stainless substrate. J. Vac. Sci. Technol. A 2010, 28, 774–778. [Google Scholar] [CrossRef]
- Latushkina, S.D.; Lotkov, A.I.; Kopylov, V.I.; Posylkina, O.I.; Shkrobot, V.A. Formation of protective vacuum-plasma TiZrN coating on titanium alloys after equal channel angular pressing. In Proceedings of the 13th International Conference Interraction of Radiation with Solids, Minsk, Belarus, 30 September–3 October 2019. [Google Scholar]
- Knotek, O.; Barimani, A. On spinodal decomposition in magnetron-sputtered (Ti,Zr) nitride and carbide thin films. Thin Solid Films 1989, 174, 51–56. [Google Scholar] [CrossRef]
- Tornton, J.A. High rate thick film growth. Ann. Res. Mater. Sci. 1977, 7, 239–260. [Google Scholar] [CrossRef]
- Boone, D.H.; Strangman, T.E.; Wilson, L.W. Some effects of structure and composition on properties of electron beam vapor deposited coatings for gas turbine superalloys. J. Vac. Sci. Technol. 1974, 11, 641–646. [Google Scholar] [CrossRef]
Specimens | Substrate Structure | Cathode Arc Currents, A | Deposition Time, min | Mode | |
---|---|---|---|---|---|
Ti | Zr | ||||
TZ1SMC | SMC | 50 | 50 | 90 | Immobile specimens perpendicular to the beam |
TZ2M | microcrystalline | 80 | 80 | 75 | Rotation of tables with specimens |
TZ2SMC | SMC | ||||
TZ3M | microcrystalline | 60 | 100 | 75 | Rotation of tables with specimens |
TZ3SMC | SMC | ||||
TNM | microcrystalline | 60 | - | 75 | Rotation of tables with specimens |
TNSMC | SMC |
Specimens | Ti, at.% | Zr, at.% | N, at.% | Zr/Ti | a, Å |
---|---|---|---|---|---|
TZ1SMC | 23.3 | 31.2 | 45.6 | 1.34 | 4.496 |
TZ2M | 21.2 | 27.2 | 51.5 | 1.28 | 4.479 |
TZ2SMC | |||||
TZ3M | 4.7 | 47.7 | 47.7 | 10.15 (~ZrN) | 4.575 |
TZ3SMC | |||||
TNM | 50.2 | - | 49.8 | 0.00 (TiN) | 4.245 |
TNSMC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotkov, A.; Latushkina, S.; Kopylov, V.; Grishkov, V.; Baturin, A.; Girsova, N.; Zhapova, D.; Timkin, V. Nanostructured Coatings (Ti,Zr)N as a Barrier to Hydrogen Diffusion into Ti0.16Pd (wt.%) Alloy. Metals 2021, 11, 1332. https://doi.org/10.3390/met11091332
Lotkov A, Latushkina S, Kopylov V, Grishkov V, Baturin A, Girsova N, Zhapova D, Timkin V. Nanostructured Coatings (Ti,Zr)N as a Barrier to Hydrogen Diffusion into Ti0.16Pd (wt.%) Alloy. Metals. 2021; 11(9):1332. https://doi.org/10.3390/met11091332
Chicago/Turabian StyleLotkov, Aleksandr, Svetlana Latushkina, Vladimir Kopylov, Victor Grishkov, Anatoly Baturin, Natalia Girsova, Dorzhima Zhapova, and Victor Timkin. 2021. "Nanostructured Coatings (Ti,Zr)N as a Barrier to Hydrogen Diffusion into Ti0.16Pd (wt.%) Alloy" Metals 11, no. 9: 1332. https://doi.org/10.3390/met11091332
APA StyleLotkov, A., Latushkina, S., Kopylov, V., Grishkov, V., Baturin, A., Girsova, N., Zhapova, D., & Timkin, V. (2021). Nanostructured Coatings (Ti,Zr)N as a Barrier to Hydrogen Diffusion into Ti0.16Pd (wt.%) Alloy. Metals, 11(9), 1332. https://doi.org/10.3390/met11091332