Reactive Ni–Al-Based Materials: Strength and Combustion Behavior
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hastings, D.L.; Dreizin, E.L. Reactive Structural Materials: Preparation and Characterization. Adv. Eng. Mater. 2017, 20, 1700631. [Google Scholar] [CrossRef]
- He, W.; Liu, P.-J.; He, G.-Q.; Gozin, M.; Yan, Q.-L. Highly Reactive Metastable Intermixed Composites (MICs): Preparation and Characterization. Adv. Mater. 2018, 30, 1706293. [Google Scholar] [CrossRef]
- Ren, H.; Liu, X.; Ning, J. Impact-initiated behavior and reaction mechanism of W/Zr composites with SHPB setup. AIP Adv. 2016, 6, 115205. [Google Scholar] [CrossRef]
- Sun, M.; Li, C.; Zhang, X.; Hu, X.; Hu, X.; Liu, Y. Reactivity and Penetration Performance Ni–Al and Cu–Ni–Al Mixtures as Shaped Charge Liner Materials. Materials 2018, 11, 2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.; Hu, Q.W.; Wang, B.; Zhou, B.B.; Chen, P.W.; Liu, R. Fabrication and characterization of the Ni–Al energetic structural material with high energy density and mechanical properties. J. Alloys Compd. 2020, 832, 154894. [Google Scholar] [CrossRef]
- Gibbins, J.D.; Stover, A.K.; Krywopusk, N.M.; Woll, K.; Weihs, T.P. Properties of reactive Al:Ni compacts fabricated by radial forging of elemental and alloy powders. Combust. Flame 2015, 162, 4408–4416. [Google Scholar] [CrossRef] [Green Version]
- Chiu, P.-H.; Olney, K.L.; Benson, D.J.; Braithwaite, C.; Collins, A.; Nesterenko, V.F. Dynamic fragmentation of Al–W granular rings with different mesostructures. J. Appl. Phys. 2017, 121, 045901. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Li, J.; Zhang, J.; Liu, X.; Mao, Z.; Weng, Z.; Wang, H.; Tao, J. Microstructure Evolution and Compressive Properties of Multilayered Al/Ni Energetic Structural Materials under Different Strain Rates. J. Mater. Eng. Perform. 2020, 29, 506–514. [Google Scholar] [CrossRef]
- Renk, O.; Tkadletz, M.; Kostoglou, N.; Gunduz, I.E.; Fezzaa, K.; Sun, T.; Stark, A.; Doumanidis, C.C.; Eckert, J.; Pippan, R.; et al. Synthesis of bulk reactive Ni–Al composites using high pressure torsion. J. Alloys Compd. 2021, 857, 157503. [Google Scholar] [CrossRef]
- Baras, F.; Turlo, V.; Politano, O.; Vadchenko, S.G.; Rogachev, A.S.; Mukasyan, A.S. SHS in Ni/Al nanofoils: A review of experiments and molecular dynamics simulations. Adv. Eng. Mater. 2018, 20, 1800091. [Google Scholar] [CrossRef]
- Zhao, H.; Ning, X.; Tan, C.; Yu, X.; Nie, Z.; Sun, X.; Cui, Y.; Yang, Z.; Wang, F.; Cai, H. Influence of Al12Mg17 Additive on Performance of Cold-Sprayed Ni–Al Reactive Material. J. Therm. Spray Technol. 2019, 28, 780–793. [Google Scholar] [CrossRef]
- Yang, Z.; Ning, X.; Yu, X.; Tan, C.; Zhao, H.; Zhang, T.; Li, L.; Nie, Z.; Liu, Y. Energy Release Characteristics of Ni–Al–CuO Ternary Energetic Structural Material Processed by Cold Spraying. J. Therm. Spray Technol. 2020, 29, 1070–1081. [Google Scholar] [CrossRef]
- Miyake, S.; Izumi, T.; Yamamoto, R. Effect of the Particle Size of Al/Ni Multilayer Powder on the Exothermic Characterization. Materials 2020, 13, 4394. [Google Scholar] [CrossRef]
- Zhao, H.; Tan, C.; Yu, X.; Ning, X.; Nie, Z.; Cai, H.; Wang, F.; Cui, Y. Enhanced reactivity of Ni–Al reactive material formed by cold spraying combined with cold-pack rolling. J. Alloys Compd. 2018, 741, 883–894. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Fang, X.; Li, Y.; Mao, Y.; Yang, L.; Yin, Q.; Wu, S.; Yao, M.; Song, J. Investigation on shock-induced reaction characteristics of an Al/Ni composite processed via accumulative roll-bonding. Mater. Des. 2017, 116, 591–598. [Google Scholar] [CrossRef]
- Adamenko, N.A.; Kazurov, A.V.; Agafonova, G.V.; Savin, D.V. Structure Formation in Nickel-Polytetrafluorethylene Composite Materials upon Explosive Pressing of Powders. Inorg. Mater. Appl. Res. 2020, 11, 982–990. [Google Scholar] [CrossRef]
- Lin, C.; Han, Y.; Guo, C.; Chang, Y.; Han, X.; Lan, L.; Jiang, F. Synthesis and mechanical properties of novel Ti–(SiCf/Al3Ti) ceramic-fiber-reinforced metal-intermetallic-laminated (CFR-MIL) composites. J. Alloys Compd. 2017, 722, 427–437. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M. Fiber-reinforced geopolymer composites: A review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Abdallah, S.; Fan, M.; Rees, D.W.A. Bonding Mechanisms and Strength of Steel Fiber–Reinforced Cementitious Composites: Overview. J. Mater. Civ. Eng. 2018, 30, 04018001. [Google Scholar] [CrossRef]
- Tang, E.; Li, S.; Chen, C.; Han, Y. Dynamic compressive behavior of fiber reinforced Al/PTFE active materials. J. Mater. Res. Technol. 2020, 9, 8391–8400. [Google Scholar] [CrossRef]
- Xiao, J.; Nie, Z.; Wang, Z.; Du, Y.; Tang, E. Energy release behavior of Al/PTFE reactive materials powder in a closed chamber. J. Appl. Phys. 2020, 127, 165106. [Google Scholar] [CrossRef]
- Chen, C.; Gao, R.; Guo, K.; He, L.; Chang, M.; Han, Y.; Tang, E. Thermoelectric behavior of Al/PTFE reactive materials induced by temperature gradient. Int. Commun. Heat Mass Transfer. 2021, 123, 105203. [Google Scholar] [CrossRef]
- Tolkachev, V.F.; Ivanova, O.V.; Zelepugin, S.A. Initiation and development of exothermic reactions during solid-phase synthesis under explosive loading. Therm. Sci. 2019, 23, 505–511. [Google Scholar] [CrossRef]
- Zelepugin, S.A.; Ivanova, O.V.; Yunoshev, A.S.; Zelepugin, A.S. Problems of Solid-Phase Synthesis in Cylindrical Ampoules under Explosive Loading. IOP Conf. Series: Mater. Sci. Eng. 2016, 127, 012057. [Google Scholar] [CrossRef]
- Ge, C.; Dong, Y.X.; Maimaitituersun, W.; Ren, Y.M.; Feng, S.S. Experimental study on impact-induced initiation thresholds of Polytetrafluoroethylene/Aluminum composite. Propellants Explos. Pyrotech. 2017, 42, 514–522. [Google Scholar] [CrossRef]
- Chen, C.; Tang, E.; Zhu, W.; Han, Y.; Gao, Q. Modified model of Al/PTFE projectile impact reaction energy release considering energy loss. Exp. Therm Fluid Sci. 2020, 116, 110132. [Google Scholar] [CrossRef]
- Jiang, C.; Cai, S.; Mao, L.; Wang, Z. Effect of Porosity on Dynamic Mechanical Properties and Impact Response Characteristics of High Aluminum Content PTFE/Al Energetic Materials. Materials 2020, 13, 140. [Google Scholar] [CrossRef] [Green Version]
- Ge, C.; Yu, Q.; Zhang, H.; Qu, Z.; Wang, H.; Zheng, Y. On dynamic response and fracture-induced initiation characteristics of aluminum particle filled PTFE reactive material using hat-shaped specimens. Mater. Des. 2020, 188, 108472. [Google Scholar] [CrossRef]
- Ren, H.; Li, W.; Ning, J. Effect of temperature on the impact ignition behavior of the aluminum/polytetrafluoroethylene reactive material under multiple pulse loading. Mater. Des. 2020, 189, 108522. [Google Scholar] [CrossRef]
- Feng, B.; Fang, X.; Li, Y.C.; Wang, H.X.; Mao, Y.M.; Wu, S.Z. An Initiation Phenomenon of Al–PTFE under Quasi-Static Compression. Chem. Phys. Lett. 2015, 637, 38–41. [Google Scholar] [CrossRef]
- Ge, C.; Dong, Y.; Maimaitituersun, W. Microscale Simulation on Mechanical Properties of Al/PTFE Composite Based on Real Microstructures. Materials 2016, 9, 590. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.-X.; Fang, X.; Gao, Z.-R.; Wang, H.-X.; Huang, J.-Y.; Wu, S.-Z.; Li, Y.-C. Investigation on Mechanical Properties and Reaction Characteristics of Al–PTFE Composites with Different Al Particle Size. Adv. Mater. Sci. Eng. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.F.; Geng, B.Q.; Guo, H.G.; Zheng, Y.F.; Yu, Q.B.; Ge, C. The effect of sintering and cooling process on geometry distortion and mechanical properties transition of PTFE/Al reactive materials. Def. Technol. 2020, 16, 720–730. [Google Scholar] [CrossRef]
- Tang, E.; Luo, H.; Han, Y.; Chen, C.; Chang, M.; Guo, K.; He, L. Experimental study on burning of two Al/PTFE samples. Appl. Therm. Eng. 2020, 180, 115857. [Google Scholar] [CrossRef]
- Tang, E.; He, Z.; Chen, C.; Han, Y. Characterization of dynamic compressive strength and impact release energy of Al/PTFE energetic materials reinforced by aluminum honeycomb skeleton. Compos. Struct. 2020, 241, 112063. [Google Scholar] [CrossRef]
- He, Z.; Tang, E.; Ou, X.; Gao, X.; Jiang, L.; Chen, C.; Chang, M.; Han, Y. Energy release of Al/PTFE materials enhanced by aluminum honeycomb framework subjected to high speed impact under vacuum environment. Journal of Materials Research and Technology. J. Mater. Res. Technol. 2020, 9, 14528–14539. [Google Scholar] [CrossRef]
- Valluri, S.K.; Schoenitz, M.; Dreizin, E.L. Metal-rich aluminum–polytetrafluoroethylene reactive composite powders prepared by mechanical milling at different temperatures. J. Mater. Sci. 2017, 52, 7452–7465. [Google Scholar] [CrossRef]
- Chen, C.; Tang, E.; Luo, H.; Han, Y.; Duan, Z.; Chang, M.; Guo, K.; He, L. Heat conduction and deflagration behavior of Al/PTFE induced by thermal shock wave under temperature gradient. Int. Commun. Heat Mass Transf. 2020, 118, 104834. [Google Scholar] [CrossRef]
- Xiong, W.; Zhang, X.; Tan, M.; Liu, C.; Wu, X. The Energy Release Characteristics of Shock-Induced Chemical Reaction of Al/Ni Composites. J. Phys. Chem. C 2016, 120, 24551–24559. [Google Scholar] [CrossRef]
- Shiryaev, A.A. Thermodynamics of SHS: Modern approach. Int. J. Self-Propag. High-Temp Synth. 1995, 4, 351–362. [Google Scholar]
- Alymov, M.I.; Vadchenko, S.G.; Saikov, I.V.; Kovalev, I.D. Shock-wave treatment of tungsten/fluoropolymer powder compositions. Inorg. Mater. Appl. Res. 2017, 8, 340–343. [Google Scholar] [CrossRef]
- Vadchenko, S.G.; Alymov, M.I.; Saikov, I.V. Ignition of Some Powder Mixtures of Metals with Teflon. Inorg. Mater. Appl. Res. 2018, 9, 517–522. [Google Scholar] [CrossRef]
- Wang, J.; Zeng, C.; Zhan, C.; Zhang, L. Tuning the reactivity and combustion characteristics of PTFE/Al through carbon nanotubes and grapheme. Thermochim. Acta 2019, 676, 276–281. [Google Scholar] [CrossRef]
- Gaurav, M.; Ramakrishna, P.A. Effect of mechanical activation of high specific surface area with PTFE on composite solid propellants. Combust. Flame 2016, 166, 203–215. [Google Scholar] [CrossRef]
- Ao, W.; Fan, Z.; Liu, L.; An, Y.; Ren, J.; Zhao, M.; Liu, P.; Li, L.K.B. Agglomeration and combustion characteristics of solid composite propellants containing aluminum-based alloys. Combust. Flame 2020, 220, 288–297. [Google Scholar] [CrossRef]
- Metcalfe, A. Interfaces in Metal Matrix Composites. In Composite Materials, 1st ed.; Metcalfe, A., Ed.; Academic Press: New York, NY, USA, 1974; Volume 1, pp. 64–126. [Google Scholar]
- Turlo, V.; Politano, O.; Baras, F. Alloying propagation in nanometric Ni/Al multilayers: A molecular dynamics study. J. Appl. Phys. 2017, 121, 055304. [Google Scholar] [CrossRef]
- Beason, M.T.; Gunduz, I.E.; Son, S.F. The Role of Fracture in the Impact Initiation of Ni–Al Intermetallic Composite Reactives during Dynamic Loading. Acta Mater. 2017, 133, 247–257. [Google Scholar] [CrossRef]
- Oh, M.; Oh, M.C.; Han, D.; Jung, S.-H.; Ahn, B. Exothermic Reaction Kinetics in High Energy Density Al–Ni with Nanoscale Multilayers Synthesized by Cryomilling. Metals 2018, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Rehwoldt, M.; Kline, D.J.; Wu, T.; Wang, P.; Zachariah, M.R. Comparison study of the ignition and combustion characteristics of directly-written Al/PVDF, Al/Viton and Al/THV composites. Combust. Flame 2019, 201, 181–186. [Google Scholar] [CrossRef]
Composition | Ni–Al | Ni–Al + Boron Fiber | Ni–Al + Tungsten Fiber | Ni–Al–PTFE | Ni–Al–PTFE + Boron Fiber |
---|---|---|---|---|---|
Type of specimens | a | b | c | d | e |
Relative density | 0.7; 0.8 | 0.7; 0.8 | 0.7; 0.8 | 0.84–0.99 * | 0.84–0.94 * |
PTFE, wt % | – | – | – | 1; 3; 5; 10; 15; 20; 25 | 1; 3; 5 |
Type of Specimens | a | a, b, c | a, b | a |
---|---|---|---|---|
Holding Time, h | Temperature of Heating, °C | |||
1 | 300 | 400 | 500 | 550 |
2 | 300 | 400 | 500 | 550 |
3 | 300 | 400 | 500 | 550 |
Temperature of Heating °C | 400 | 500 | 550 |
---|---|---|---|
Holding Time, h | Temperature of Ignition, °C | ||
1 | 760 | 720 | 785 |
2 | 770 | 810 | 915 |
3 | 740 | 820 | 980 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seropyan, S.; Saikov, I.; Andreev, D.; Saikova, G.; Alymov, M. Reactive Ni–Al-Based Materials: Strength and Combustion Behavior. Metals 2021, 11, 949. https://doi.org/10.3390/met11060949
Seropyan S, Saikov I, Andreev D, Saikova G, Alymov M. Reactive Ni–Al-Based Materials: Strength and Combustion Behavior. Metals. 2021; 11(6):949. https://doi.org/10.3390/met11060949
Chicago/Turabian StyleSeropyan, Stepan, Ivan Saikov, Dmitrii Andreev, Gulnaz Saikova, and Mikhail Alymov. 2021. "Reactive Ni–Al-Based Materials: Strength and Combustion Behavior" Metals 11, no. 6: 949. https://doi.org/10.3390/met11060949
APA StyleSeropyan, S., Saikov, I., Andreev, D., Saikova, G., & Alymov, M. (2021). Reactive Ni–Al-Based Materials: Strength and Combustion Behavior. Metals, 11(6), 949. https://doi.org/10.3390/met11060949