Deformation of Al85Y8Ni5Co2 Metallic Glasses under Cyclic Mechanical Load and Uniform Heating
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Anderson, P.W. Through the Glass Lightly. Science 1995, 267, 1615–1616. [Google Scholar] [CrossRef]
- Betekhtin, V.I.; Kadomtsev, A.G.; Tolochko, O.V. Inherent submicroporosity and crystallization of amorphous alloys. Phys. Solid State 2001, 43, 1892–1897. [Google Scholar] [CrossRef]
- Louzguine, D.V.; Pol’kin, V.I. Bulk metallic glasses: Fabrication, structure, and structural changes under heating. Russ. J. Non Ferr. Met. 2016, 5, 25–32. [Google Scholar] [CrossRef]
- Li, N.; Ling, N.; Xu, X.; Zheng, Z.; Liu, L. Enhanced formability of a Zr-based bulk metallic glass in a supercooled liquid state by vibrational loading. Acta Mater. 2014, 65, 400–411. [Google Scholar] [CrossRef]
- Lad’yanov, V.I.; Bel’tyukov, A.L.; Men’shikova, S.G.; Maslov, V.V.; Nosenko, V.K.; Mashira, V. Viscosity of glass forming Al86Ni8(La/Ce)6, Al86Ni6Co2Gd4(Y/Tb)2 melts. Phys. Chem. Liq. 2008, 46, 71–77. [Google Scholar] [CrossRef]
- Yu, H.; Wang, W.; Samwer, K. The β relaxation in metallic glasses: An overview. Mater. Today 2013, 16, 183–191. [Google Scholar] [CrossRef]
- Duwez, P. Structure and properties of alloys rapidly quenched from the liquid state. Trans. Am. Soc. Met. 1967, 60, 607–633. [Google Scholar]
- Ketov, S.V.; Sun, Y.H.; Nachum, S.; Lu, Z.; Checchi, A.; Beraldin, A.R.; Bai, H.Y.; Wang, W.H.; Louzguine-Luzgin, D.V.; Carpenter, M.A.; et al. Rejuvenation of metallic glasses by non-affine thermal strain. Nature 2015, 524, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Berezner, A.D.; Fedorov, V.A.; Perov, N.S.; Pluzhnikova, T.N.; Fedotov, D.Y.; Shlikova, A.A. Magnetic properties of Co-based and Fe-based tape amorphous alloys. J. Phys. Condens. Matter 2020, 32, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A. Al-Ni-Y-Co amorphous alloys with high mechanical strengths, wide supercooled liquid region and large glass-forming capacity. Mater. Trans. JIM 1990, 31, 493–500. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.V.; Inoue, A. Comparative study of the effect of cold rolling on the structure of Al–RE–Ni–Co (RE = rare-earth metals) amorphous and glassy alloys. J. Non Cryst. Solids 2006, 352, 3903–3909. [Google Scholar] [CrossRef]
- Inoue, A. Amorphous, quasicrystalline and nanocrystalline alloys in Al- and Mg-based systems. In Handbook on the Physics and Chemistry of Rare Earths, 1st ed.; Gschneidner, K.A., Eyring, L., Eds.; Elsevier: North Holland, The Netherlands, 1995; Volume 24, pp. 83–219. [Google Scholar]
- Louzguine-Luzgin, D.V. Aluminum-base amorphous and nanocrystalline materials. Met. Sci Heat Treat. 2012, 53, 472–477. [Google Scholar] [CrossRef]
- Abrosimova, G.E.; Aronin, A.S. Effect of the concentration of a rare-earth component on the parameters of the nanocrystalline structure in aluminum-based alloys. Phys. Solid State 2009, 51, 1765–1771. [Google Scholar] [CrossRef]
- Abrosimova, G.E.; Aronin, A.S.; Zver’kova, I.I.; Kir’yanov, Y.V. Phase Transformations upon Crystallization of Amorphous Al–Ni–RE Alloys. Phys. Met. Metallogr. 2002, 94, 102–107. [Google Scholar]
- Wang, J.Q.; Liu, Y.H.; Imhoff, S.; Chen, N.; Louzguine-Luzgin, D.V.; Takeuchi, A.; Chen, M.W.; Kato, H.; Perepezko, J.H.; Inoue, A. Enhance the thermal stability and glass forming ability of Al-based metallic glass by Ca minor-alloying. Intermetallics 2012, 29, 35–40. [Google Scholar] [CrossRef]
- Lei, T.J.; Rangel DaCosta, L.; Liu, M.; Wang, W.H.; Sun, Y.H.; Greer, A.L.; Atzmon, M. Shear transformation zone analysis of anelastic relaxation of a metallic glass reveals distinct properties of α and β relaxations. Phys. Rev. E 2019, 100, 1–8. [Google Scholar] [CrossRef]
- Pelletier, J.-M.; Louzguine-Luzgin, D.V.; Li, S.; Inoue, A. Elastic and viscoelastic properties of glassy, quasicrystalline and crystalline phases in Zr65Cu5Ni10Al 7.5Pd 12.5alloys. Acta Mater. 2011, 59, 2797–2806. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, V.; Kumar, R.; Kumar, R.; Pruncu, C.I. Fabrication and characterization of ZrO2 incorporated SiO2–CaO–P2O5 bioactive glass scaffolds. J. Mech. Behav. Biomed. Mater. 2020, 109, 1–10. [Google Scholar] [CrossRef]
- Wang, D.P.; Qiao, J.C.; Liu, C.T. Relating structural heterogeneity to β relaxation processes in metallic glasses. Mater. Res. Lett. 2019, 7, 305–311. [Google Scholar] [CrossRef]
- Rusinko, A.; Rusinko, K. Plasticity and Creep of Metals, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–442. [Google Scholar]
- Steuer, S.; Hervier, Z.; Thabart, S.; Castaing, C.; Pollock, T.M.; Cormier, J. Creep behavior under isothermal and non-isothermal conditions of AM3 single crystal superalloy for different solutioning cooling rates. Mater. Sci. Eng. A 2014, 601, 145–152. [Google Scholar] [CrossRef]
- Fedorov, V.A.; Berezner, A.D.; Beskrovnyi, A.I.; Neov, D. Determining the Form of a Hydrodynamic Flow upon Creep of an Amorphous Cobalt-Based Metal Alloy in a Variable Temperature Field. Tech. Phys. Lett. 2018, 44, 678–680. [Google Scholar] [CrossRef]
- Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 1977, 25, 407–415. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Elsevier: North Holland, The Netherlands, 2011; pp. 485–489. [Google Scholar]
- Dorrestijn, M.; Bietsch, A.; Açıkalın, T.; Raman, A.; Hegner, M.; Meyer, E.; Gerber, C. Chladni Figures Revisited Based on Nanomechanics. Phys. Rev. Lett. 2007, 98, 026102. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berezner, A.D.; Fedorov, V.A.; Zadorozhnyy, M.Y.; Golovin, I.S.; Louzguine-Luzgin, D.V. Deformation of Al85Y8Ni5Co2 Metallic Glasses under Cyclic Mechanical Load and Uniform Heating. Metals 2021, 11, 908. https://doi.org/10.3390/met11060908
Berezner AD, Fedorov VA, Zadorozhnyy MY, Golovin IS, Louzguine-Luzgin DV. Deformation of Al85Y8Ni5Co2 Metallic Glasses under Cyclic Mechanical Load and Uniform Heating. Metals. 2021; 11(6):908. https://doi.org/10.3390/met11060908
Chicago/Turabian StyleBerezner, Arseniy D., Victor A. Fedorov, Mikhail Yu. Zadorozhnyy, Igor S. Golovin, and Dmitri V. Louzguine-Luzgin. 2021. "Deformation of Al85Y8Ni5Co2 Metallic Glasses under Cyclic Mechanical Load and Uniform Heating" Metals 11, no. 6: 908. https://doi.org/10.3390/met11060908
APA StyleBerezner, A. D., Fedorov, V. A., Zadorozhnyy, M. Y., Golovin, I. S., & Louzguine-Luzgin, D. V. (2021). Deformation of Al85Y8Ni5Co2 Metallic Glasses under Cyclic Mechanical Load and Uniform Heating. Metals, 11(6), 908. https://doi.org/10.3390/met11060908