An Investigation of Atomic Interaction between Ag and Ti2AlC under the Processing Temperature of 1080 °C
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phenomenon 1: Structural Transformation of Ag in the Ti2AlC
3.2. Phenomenon 2: Structural Transformation of the Ti2AlC at the Grain Boundaries
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomas, T.; Zhang, C.; Sahu, A.; Nautiyal, P.; Loganathan, A.; Laha, T.; Boesl, B.; Agarwal, A. Effect of graphene reinforcement on the mechanical properties of Ti2AlC ceramic fabricated by spark plasma sintering. Mater. Sci. Eng. A 2018, 728, 45–53. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, C.; Zhao, Z.; Wu, G. High plasticity achieved by spark plasma sintering method in aluminum matrix composites reinforced with Ti2AlC particles. Mater. Charact. 2021, 177, 111204. [Google Scholar] [CrossRef]
- Lee, G.W.; Kim, T.W.; Sloof, W.G.; Lee, K.S. Self–healing capacity of Mullite–Yb2SiO5 environmental barrier coating material with embedded Ti2AlC MAX phase particles. Ceram. Int. 2021, 47, 22478–22486. [Google Scholar] [CrossRef]
- Yu, W.; Guénolé, J.; Ghanbaja, J.; Vallet, M.; Guitton, A. Frank partial dislocation in Ti2AlC–MAX phase induced by matrix–Cu diffusion. Scripta Mater. 2021, 191, 34–39. [Google Scholar] [CrossRef]
- Liu, K.; Li, Y.; Yang, J.; Liu, Y.; Yao, Y. Generative principal component thermography for enhanced defect detection and analysis. IEEE. Trans. Instrum. Meas. 2020, 69, 8261–8269. [Google Scholar] [CrossRef]
- Barsoum, M.W. The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid. State. Chem. 2000, 28, 201–281. [Google Scholar] [CrossRef]
- Li, X.; Xie, X.; Gonzalez-Julian, J.; Malzbender, J.; Yang, R. Mechanical and oxidation behavior of textured Ti2AlC and Ti3AlC2 MAX phase materials. J. Eur. Ceram. Soc. 2020, 40, 5258–5271. [Google Scholar] [CrossRef]
- Barsoum, M.W.; Salama, I.; El-Raghy, T.; Golczewski, J.; Seifert, H.J.; Aldinger, F.; Porter, W.D.; Wang, H. Thermal and electrical properties of Nb2AlC, (Ti, Nb)2AlC and Ti2AlC. Metall. Mater. Trans. A 2002, 33, 2775–2779. [Google Scholar] [CrossRef]
- Fey, T.; Stumpf, M.; Chmielarz, A.; Colombo, P.; Greil, P.; Potoczek, M. Microstructure, thermal conductivity and simulation of elastic modulus of MAX-phase (Ti2AlC) gel-cast foams. J. Eur. Ceram. Soc. 2018, 38, 3424–3432. [Google Scholar] [CrossRef]
- Lu, J.L.; Abbas, N.; Tang, J.N.; Tang, J.; Zhu, G.M. Synthesis and characterization of conductive ceramic MAX-phase coatings for metal bipolar plates in simulated PEMFC environments. Corros. Sci. 2019, 158, 108106. [Google Scholar] [CrossRef]
- Byeon, J.; Liu, J.; Hopkins, M.; Fischer, W.; Garimella, N.; Park, K.; Brady, M.; Radovic, M.; El-Raghy, T.; Sohn, Y. Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air. Oxid. Met. 2007, 68, 97–111. [Google Scholar] [CrossRef]
- Wang, Z.; Li, W.; Wang, C.; Wu, H.; Ke, P.; Wang, A. Transforming the amorphous Ti-Al-C coatings to high-purity Ti2AlC MAX phase coatings by prolonged annealing at 550 °C. Mater. Lett. 2020, 261, 127160. [Google Scholar] [CrossRef]
- Xiao, J.; Yang, T.; Wang, C.; Xue, J.; Wang, Y. Investigations on radiation tolerance of Mn+1AXn phases: Study of Ti3SiC2, Ti3AlC2, Cr2AlC, Cr2GeC, Ti2AlC, and Ti2AlN. J. Am. Ceram. Soc. 2015, 98, 1323–1331. [Google Scholar] [CrossRef]
- Mazaheri, Y.; Bahiraei, M.; Jalilvand, M.M.; Ghasemi, S.; Heidarpour, A. Improving mechanical and tribological performances of pure copper matrix surface composites reinforced by Ti2AlC MAX phase and MoS2 nanoparticles. Mater. Chem. Phys. 2021, 270, 124790. [Google Scholar] [CrossRef]
- Richardson, P.; Cuskelly, D.; Brandt, M.; Kisi, E. Effects of furnace annealing on in situ reacted Ti2AlC MAX phase composite coatings deposited by laser cladding. Surf. Coat. Technol. 2021, 405, 126597. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, X.; Hang, W.; Liu, M.; Song, Y.; Yuan, J.; Zhang, T. Nanoindentation size effect on stochastic behavior of incipient plasticity in a LiTaO3 single crystal. Eng. Fract. Mech. 2020, 226, 106877. [Google Scholar] [CrossRef]
- Pietzka, M.; Schuster, J. Summary of constitutional data on the aluminum–carbon–titanium system. J. Phase. Equilibria 1994, 15, 392–400. [Google Scholar] [CrossRef]
- Lin, Y.; Maozhong, Y.; Liping, R. Tribological behavior of a novel C/C–Cu sliding electrical contact material. Tribology 2009, 29, 458–463. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhong, Z.; Qu, D.; Ge, C. Design and joining of graphite to copper by a simple direct casting technology. Int. J. Mater. Prod. Technol. 2011, 42, 21–28. [Google Scholar] [CrossRef]
- Manohar, G.; Pandey, K.M.; Maity, S.R. Effect of microwave sintering on the microstructure and mechanical properties of AA7075/B4C/ZrC hybrid nano composite fabricated by powder metallurgy techniques. Ceram. Int. 2021, 47, 32610–32618. [Google Scholar] [CrossRef]
- Bentzel, G.W.; Ghidiu, M.; Anasori, B.; Barsoum, M.W. On the interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with silicon carbide and pyrolytic carbon at 1300 degrees C. J. Eur. Ceram. Soc. 2015, 35, 4107–4114. [Google Scholar] [CrossRef] [Green Version]
- Zavalikhin, D.V.; Frolov, V.A.; Fedorov, S.A. Experience and prospects for the development of equipment for light beam welding, brazing, and heat treatment (review). Weld. Int. 2009, 23, 856–860. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Yu, D.; Sun, D.; Li, H. A review paper on effect of the welding process of ceramics and metals. Int. J. Mater. Prod. Technol. 2020, 9, 16214–16236. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, J.; Zhang, L.; He, P.; Zhang, J. Microstructure of alumina ceramic/Ag–Cu–Ti brazing alloy/Kovar alloy joint. Mater. Sci. Tech. Lond. 2007, 23, 320–323. [Google Scholar] [CrossRef]
- Ong, F.S.; Rheingans, B.; Goto, K.; Tobe, H.; Ohmura, T.; Janczak-Rusch, J.; Sato, E. Residual stress induced failure of Ti–6Al–4V/Si3N4 joints brazed with Ag-Cu-Ti filler: The effects of brazing zone’s elasto–plasticity and ceramics’ intrinsic properties. J. Eur. Ceram. Soc. 2021, 41, 6319–6329. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, G.; He, Y.a.; Sun, Y.; He, X. Effect of joining temperature and holding time on microstructure and shear strength of Ti2AlC/Cu joints brazed using Ag–Cu filler alloy. Mater. Sci. Eng. A 2013, 567, 58–64. [Google Scholar] [CrossRef]
- Wang, G.C.; Zhang, J.; Liu, X.W. Characterizing the Decomposition of Ti2AlC during its Brazing with Cu by Using Ag–Cu Filler Alloy. In Materials Science Forum; Trans Tech Publications Ltd.: Kapellweg, Switzerland, 2013; Volume 762, pp. 607–611. [Google Scholar] [CrossRef]
- Lu, C.; Wang, G.; Yang, G.; Fan, G.; Zhang, J.; Liu, X. Substitution behavior of Ag atoms in the Ti2AlC ceramic. J. Am. Ceram. Soc. 2017, 100, 732–738. [Google Scholar] [CrossRef]
- Gulina, L.B.; Tolstoy, V.P.; Kasatkin, I.A.; Fateev, S.A. Flower–like silver nanocrystals: Facile synthesis via a gas–solution interface technique. J. Mater. Sci. 2018, 53, 8161–8169. [Google Scholar] [CrossRef]
- Yang, H.; Pei, Y.; Rao, J.; De Hosson, J.T.M. Self–healing performance of Ti2AlC ceramic. J. Mater. Chem. 2012, 22, 8304–8313. [Google Scholar] [CrossRef]
- Liu, P.; Xie, J.; Wang, A.; Ma, D.; Mao, Z. An interatomic potential for accurately describing the atomic–scale deformation behaviors of Ti2AlC crystal. Comp. Mater. Sci. 2020, 182, 109757. [Google Scholar] [CrossRef]
- Nicolaï, J.; Furgeaud, C.; Fonrose, B.W.; Bail, C.; Beaufort, M.F. Formation mechanisms of Ti2AlC MAX phase on SiC–4H using magnetron sputtering and post–annealing. Mater. Des. 2018, 144, 209–213. [Google Scholar] [CrossRef]
- Liao, T.; Wang, J.; Li, M.; Zhou, Y. First–principles study of oxygen incorporation and migration mechanisms in Ti2AlC. J. Mater. Res. 2009, 24, 3190–3196. [Google Scholar] [CrossRef]
- Liao, T.; Wang, J.; Zhou, Y. Ab initio modeling of the formation and migration of monovacancies in Ti2AlC. Scripta Mater. 2008, 59, 854–857. [Google Scholar] [CrossRef]
- Van der Walt, C.; Terblans, J.J.; Swart, H.C. Molecular dynamics study of the temperature dependence and surface orientation dependence of the calculated vacancy formation energies of Al, Ni, Cu, Pd, Ag, and Pt. Comp. Mater. Sci. 2014, 83, 70–77. [Google Scholar] [CrossRef]
- Gao, Q.; Du, A.; Yang, Z. Structural inheritance and difference between Ti2AlC, Ti3AlC2 andTi5Al2C3 under pressure from first principles. Mod. Phys. Lett. B 2017, 31, 1750016. [Google Scholar] [CrossRef]
- Cao, L.; Wang, H.W.; Zou, C.M.; Wei, Z.J. Microstructural characterization and micromechanical properties of dual–phase carbide in arc–melted titanium aluminide base alloy with carbon addition. J. Alloys Compd. 2009, 484, 816–821. [Google Scholar] [CrossRef]
- Tian, W.H.; Nemoto, M. Precipitation behavior of (Al, Ag)3Ti and Ti3AlC in L10–TiAl in Ti–Al–Ag system. Intermetallics 1999, 7, 1261–1269. [Google Scholar] [CrossRef]
- Li, M.; Xiao, S.; Xu, L.; Tian, J.; Chen, Y. Microscale investigation of perovskite–Ti3AlC strengthening and plastic deformation in high niobium containing TiAl alloys. J. Alloys Compd. 2021, 857, 157563. [Google Scholar] [CrossRef]
Phase | Theoretical Value (Å) [36] | Experimental Value (Å) | ||
---|---|---|---|---|
d{220} | d{200} | d{220} | d{200} | |
Ag | 1.445 | 2.044 | 1.487 | 2.085 |
TiC | 1.530 | 2.163 | – | – |
Ti3AlC | 1.465 | 2.074 | 1.438 | 2.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Li, Y.; Chen, W.; Yang, J.; Zhang, J.; He, Y. An Investigation of Atomic Interaction between Ag and Ti2AlC under the Processing Temperature of 1080 °C. Metals 2021, 11, 1963. https://doi.org/10.3390/met11121963
Wang G, Li Y, Chen W, Yang J, Zhang J, He Y. An Investigation of Atomic Interaction between Ag and Ti2AlC under the Processing Temperature of 1080 °C. Metals. 2021; 11(12):1963. https://doi.org/10.3390/met11121963
Chicago/Turabian StyleWang, Guochao, Yafei Li, Weijian Chen, Jianguo Yang, Jie Zhang, and Yanming He. 2021. "An Investigation of Atomic Interaction between Ag and Ti2AlC under the Processing Temperature of 1080 °C" Metals 11, no. 12: 1963. https://doi.org/10.3390/met11121963
APA StyleWang, G., Li, Y., Chen, W., Yang, J., Zhang, J., & He, Y. (2021). An Investigation of Atomic Interaction between Ag and Ti2AlC under the Processing Temperature of 1080 °C. Metals, 11(12), 1963. https://doi.org/10.3390/met11121963