Hot Deformation Behavior and Processing Map of GH901 Superalloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Hot Deformation Behavior
3.2. Constitutive Analysis
3.2.1. Establishment of Constitutive Equation
- A, and are the material constants, with ,
- is the true stress (MPa),
- is the molar gas constant, and number is 8.314,
- is the temperature (K).
3.2.2. Construction of Constitutive Model Based on Strain Compensation
3.3. Construction of Processing Map
3.4. Numerical Simulation of Isothermal Forging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Shirzadi, A.A. Diffusion bonding of copper alloy to nickel-based superalloy: Effect of heat treatment on the microstructure and mechanical properties of the joints. Sci. Technol. Weld. Join. 2021, 26, 1–7. [Google Scholar] [CrossRef]
- Wang, G.; Huang, L.; Zhao, P.; Zhan, X.; Qin, Z.; He, W.; Liu, F.; Nie, Y. Effect of Heat Treatment on Microstructure and Mechanical Properties of ODS Nickel-Based Superalloy via Strengthening Mechanism. JOM 2020, 72, 3279–3287. [Google Scholar] [CrossRef]
- Eroglu, U. Perturbation approach to Eringen’s local/non-local constitutive equation with applications to 1-D structures. Meccanica 2020, 55, 1119–1134. [Google Scholar] [CrossRef]
- Zhu, L.W.; Xin, Y.P.; Wang, X.N.; Zhu, Z.S. Hot Compressive Behavior and Constitutive Equation of Ti-Al-Nb-Zr-Mo-Cr Alloy. Mater. Sci. Forum 2020, 993, 230–236. [Google Scholar] [CrossRef]
- Ashtiani, H.; Shayanpoor, A.A. New constitutive equation utilizing grain size for modeling of hot deformation behavior of AA1070 aluminum. Trans. Nonferrous Met. Soc. China 2021, 31, 345–357. [Google Scholar] [CrossRef]
- Yun, P.Z.; Pin, X.; Pei, P.J. Thermal deformation behavior and processing diagram of Mg-5Sn-2.5Pb magnesium alloy. Trans. Mater. Heat Treat. 2017, 6, 195–200. [Google Scholar]
- Xu, D.Q.; Zhen, J.W.; Liang, T.; Chang, C.C.; Hong, P.S.; Yan, H. Study on hot deformation behavior and processing diagram of AZ91D magnesium alloy. Spec. Cast. Nonferrous Alloy. 2018, 4, 453–457. [Google Scholar]
- Bo, L.; Wang, W.; Chen, C.; Hai, H.W.; Xi, C.Y.; Sun, Y. Hot compression deformation behavior of a new Ni-Cr-Co-Mo alloy. Hot Work. Technol. 2017, 7, 55–59. [Google Scholar]
- Frost, H.J.; Ashby, F.M. Deformation-mechanism maps: The plasticity and creep of metals and ceramics. Pergamon Press 1982, 9, 265–276. [Google Scholar]
- Raj, R. Development of a processing map for use in warm-forming and hot-forming processes. Metall. Trans. A 1981, 12, 1089–1097. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Gegel, H.L.; Doraivelu, S.M.; Malas, J.C.; Morgan, J.T.; Lark, K.A.; Barker, D.R. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metall. Trans. A 1984, 15, 1883–1892. [Google Scholar] [CrossRef]
- Prasad, Y.V. Author´s reply: Dynamic materials model: Basis and principles. Metall. Mater. Trans. A 1996, 27, 235–236. [Google Scholar] [CrossRef]
- Prasad, Y.; Seshacharyulu, T. Modelling of hot deformation for microstructural control. Int. Mater. Rev. 1998, 43, 243–258. [Google Scholar] [CrossRef]
- Gegel, H.L.; Malas, J.C.; Doraivelu, S.M.; Shende, V. Modeling techniques used in forging process design. ASM Handb. 1988, 14, 417–438. [Google Scholar]
- Malas, J.C.; Seetharaman, V. Using material behavior models to develop process control strategies. JOM 1992, 44, 8–13. [Google Scholar] [CrossRef]
- Alexander, J.; Lenard, J. Modelling of Hot Deformation of Steels; Springer: Berlin, Germany, 1989; pp. 105–115. [Google Scholar]
- Bing, H.P. Effect of heat treatment on mechanical properties and grain size structure of GH901 alloy. Spec. Steel Technol. 2008, 14, 13–17. [Google Scholar]
- Huan, Z.; Qing, L.; Guo, Z.; Jun, G.H.; Wen, Z.; Wen, J.L. Effect of heat treatment on microstructure and hardness of GH901 alloy. Foundry Technol. 2015, 36, 2643–2645. [Google Scholar]
- Shao, L.D.; Jun, J.L. Effect of Forging Process on Wear Properties of GH901 Superalloy Turbine Shaft Forgings. Hot Work. Technol. 2017, 21, 109–112. [Google Scholar]
- Yin, M.; Feng, D.; Han, G.W. Study on the Hot Working Process of Superalloy GH901. Acta Metall. Sin. 1999, 35, 24–27. [Google Scholar]
- Shore, F.M.; Morakabati, M.; Abbasi, S.M.; Momeni, A. Hot Deformation Behavior of Incoloy 901 through Hot Tensile Testing. J. Mater. Eng. Perform. 2014, 23, 1424–1433. [Google Scholar] [CrossRef]
- Shore, F.M.; Morakabati, M.; Abbasi, S.M.; Momeni, A.; Mahdavi, R. Hot Ductility of Incoloy 901 Produced by Vacuum Arc Remelting. ISIJ Int. 2014, 54, 1353–1360. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, X.; Zhou, H.; Zhou, X.; Li, F.; Liu, Q. Simulation of dynamic recrystallization in AZ80 magnesium alloy using cellular automaton. Comput. Mater. Sci. 2017, 140, 95–104. [Google Scholar] [CrossRef]
- Long, W.G. Research on New Forming Technology of High Pressure Elbow with Straight Section. Qinhuangdao Acad. Pap. Yanshan Univ. 2017, 4, 15–20. [Google Scholar]
- Li, F.M.; Cheng, L.H.; Zhen, Z. Research progress of friction model in metal plastic forming. Die Mould. Ind. 2014, 4, 1–7. [Google Scholar]
- Dong, S. Research on Finite Element Meshing Applied to 3D-IC. Diss. Dalian Univ. Technol. 2009, 7, 33–36. [Google Scholar]
C | Mn | Si | Cr | Mo | S | P | Al |
0.031 | 0.00063 | 0.045 | 12.43 | 6.00 | 0.0006 | 0.015 | 0.22 |
Ti | Cu | Co | B | Pb | Bi | Ag | Ni+Co |
3.06 | 0.0030 | 0.015 | 0.015 | 0.00017 | 0.000043 | 0.000073 | 42.28 |
Deformation Temperature T/°C | Strain Rate | |||
---|---|---|---|---|
0.001 | 0.01 | 0.1 | 1 | |
990 | 70.626 | 132.98 | 250.98 | 256.22 |
1040 | 55.984 | 99.08 | 177.32 | 212.79 |
1090 | 44.17034 | 78.609 | 132.82 | 180.94 |
1140 | 33.249 | 55.046 | 122.18 | 125.46 |
Material Parameter | Deformation Temperature T/°C | |||
---|---|---|---|---|
990 | 1040 | 1090 | 1140 | |
− | 4.60344 | 4.80803 | 4.76176 | 4.38038 |
− | 0.03107 | 0.0411 | 0.0492 | 0.06005 |
Material Parameter | Deformation Temperature T/°C | |||
---|---|---|---|---|
990 | 1040 | 1090 | 1140 | |
2.79443 | 3.37687 | 3.66579 | 3.72341 |
Material Parameter | Strain Rate | |||
---|---|---|---|---|
0.001 | 0.01 | 0.1 | 1 | |
9.61373 | 12.81344 | 16.30829 | 15.68962 |
Strain | ||||
---|---|---|---|---|
0.05 | 0.009956 | 4.219159 | 424.2852 | 33.42577 |
0.1 | 0.009368 | 3.911235 | 409.8304 | 32.06992 |
0.15 | 0.009136 | 3.709211 | 399.5897 | 31.28004 |
0.2 | 0.009176 | 3.599519 | 393.6089 | 30.82849 |
0.25 | 0.009526 | 3.420980 | 386.5302 | 30.20629 |
0.3 | 0.009779 | 3.390125 | 383.5184 | 29.93040 |
0.35 | 0.010049 | 3.377397 | 383.7422 | 29.92981 |
0.4 | 0.010337 | 3.345353 | 387.0122 | 30.232746 |
0.45 | 0.010514 | 3.411254 | 392.0682 | 30.696745 |
0.5 | 0.010743 | 3.466367 | 394.5052 | 30.913938 |
0.55 | 0.010999 | 3.434757 | 401.3594 | 31.554777 |
0.6 | 0.011112 | 3.506462 | 400.0757 | 31.460104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, R.; Li, L.; Zhai, R.; Meng, X.; Zhao, J. Hot Deformation Behavior and Processing Map of GH901 Superalloy. Metals 2021, 11, 1808. https://doi.org/10.3390/met11111808
Ma R, Li L, Zhai R, Meng X, Zhao J. Hot Deformation Behavior and Processing Map of GH901 Superalloy. Metals. 2021; 11(11):1808. https://doi.org/10.3390/met11111808
Chicago/Turabian StyleMa, Rui, Lulu Li, Ruixue Zhai, Xiangnan Meng, and Jun Zhao. 2021. "Hot Deformation Behavior and Processing Map of GH901 Superalloy" Metals 11, no. 11: 1808. https://doi.org/10.3390/met11111808
APA StyleMa, R., Li, L., Zhai, R., Meng, X., & Zhao, J. (2021). Hot Deformation Behavior and Processing Map of GH901 Superalloy. Metals, 11(11), 1808. https://doi.org/10.3390/met11111808