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Abstract: During the forging process GH901 superalloys easily produce cracks and defects, such as
coarse crystals in tissues, which affect the performance of the alloy. Using GH901 nickel-based alloy,
high-temperature compression tests at deformation temperatures of 990, 1040, 1090 and 1140 ◦C
were carried out in a Thermecmastor-Z thermal simulator, with strain rates 0.001, 0.01, 0.1 and 1 s−1.
Next, the isothermal forging process of a GH901 disc was simulated using DEFORM finite element
simulation software. The results showed that with the increase in deformation temperatures and
the decrease in strain rates, the flow stress clearly decreased. The flow stress constitutive model of
GH901 superalloy under ε0.3 and the flow stress constitutive model for strain compensation were
obtained. The processing map was built, and a reasonable range of thermal processing was obtained.
Meanwhile, the isothermal forging simulation verified the reliability of the thermal processing range
of the alloy.

Keywords: GH901 superalloy; hot deformation behavior; processing map; isothermal forging

1. Introduction

Nickel-based superalloy [1,2] is a kind of superalloy with high strength, good oxida-
tion resistance and gas corrosion resistance in the range of 650–1000 ◦C. The name derives
from the fact that its content is generally more than 50% nickel. The use of this superalloy is
widespread across numerous fields, including aerospace, automobile parts manufacturing,
and gas hydrate formation. The macroscopic hot deformation behavior of superalloy
corresponds with the dynamic recovery and dynamic recrystallization mechanism in the
alloy. At present, the hot deformation behavior of a superalloy is mainly studied within
a hot compression simulator. By formulating different process parameters to capture the
experimental data, the true stress–strain curve of the alloy can be obtained. The analysis of
the influence of different deformation parameters on the rheological behavior of the alloy
can then be conducted. The hot deformation constitutive equation [3–5] and processing
map of the alloy are obtained by constructing the relationship among deformation tem-
peratures, strain rates and deformation amount. The microstructure and machinability of
the alloy under hot deformation can be accurately predicted by analyzing the processing
map [6–8].

In the 1980s, processing maps were created based on the evaluation of the thermal
processing properties of the alloys based on different material models. Ashby et al. [9]
jointly studied the influence of process parameters (deformation temperatures, strain rates,
deformation amount, etc.) on the hot deformation process of the alloy, and created a hot
deformation mechanism diagram on this basis. However, their research mainly focused
on the creep mechanism of an alloy, and this mechanism is only applicable to the state of
low strain rates. In order to solve the limitations of the Ashby deformation mechanism
diagram, Raj et al. [10] flexibly applied the process parameters (deformation temperatures,
strain rates, etc.) during the hot deformation process of the alloy to the Ashby processing
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map, and created a processing map based on the atomic model. The creation of this
processing map was based on the precondition that the alloy material did not fracture
and cause tissue damage. However, there are some limitations. For example, this is not
suitable for an alloy with a more complex composition. Based on the above research
conclusions, Prasad et al. [11] created the Dynamic Material Model (DMM). Subsequently,
many researchers [12–16] further improved upon the DMM by superimposing the drawn
instability map and power dissipation map together. The processing map based on the
DMM was obtained, which made up for the deficiency of both the Ashby processing map,
and the Raj processing map.

In order to improve the comprehensive performance of GH901 superalloy, many re-
searchers have studied the subject from various angles. B. Pei [17] studied the relationship
between the heat treatment system of the GH901 superalloy and the yield strength, grain
size and endurance life at room temperature, which improved the comprehensive proper-
ties of the alloy GH901 from different perspectives. H Zhang et al. [18] studied the effects of
different aging temperatures on the microstructure and hardness of the GH901 superalloy,
and found that although the aging temperature had no obvious effect on the alloy grain
size, a greater effect on the hardness of the alloy was observed. S L Duan et al. [19] studied
the influence of the forging process on the wear performance of GH901 alloy shaft forgings,
and achieved better forging process parameters.

At present, research reports on GH901 superalloy are relatively few. Systematic and
in-depth research on the hot deformation behavior of the alloy is also lacking in China.
Therefore, this paper deals with GH901 superalloy and tests the material rheological
characteristics under different deformation temperatures and strain rates. The constitutive
equation of the alloy was constructed by using the classic Arrhenius mathematical model.
The processing map was established based on the Dynamic Material Model, and the finite
element software DEFORM was used for simulation. The reasonable isothermal forging
process parameters of the GH901 plate were obtained, which provided the necessary
basis for formulating the process parameters necessary for the hot forming process of
GH901 superalloy.

2. Materials and Methods

The test material was GH901 superalloy bar. The superalloy was cast before forging.
The chemical composition of GH901 superalloy was listed, as summarized in Table 1.
GH901 superalloy is an Austenitic age–hardening alloy based on an Fe-43Ni-12Cr matrix.
It contained Ti, Al, Mo and other strengthening elements. Meanwhile, there were traces
of boron, carbon elements, the metastable intermetallic compound γ′′ [Ni3(Ti, Al)], and
phase diffusion, which strengthened the alloy. The elements of Al could have inhibited the
transformation of γ′′ to η-Ni3Ti. The melting point of the alloy was 1360 ◦C. The density
was 8.21 g/cm3. The alloy was non-magnetic, and similar grades were Nimonic901 (UK),
Z8NCDT42 (France), etc. Alloy disc forgings were formed by upsetting and then molding.

Table 1. Chemical composition of GH901 superalloy (wt. %).

C Mn Si Cr Mo S P Al

0.031 0.00063 0.045 12.43 6.00 0.0006 0.015 0.22

Ti Cu Co B Pb Bi Ag Ni+Co

3.06 0.0030 0.015 0.015 0.00017 0.000043 0.000073 42.28

The original metallographic structure of GH901 superalloy before hot deformation is
shown in Figure 1. The matrix was a single-phase austenite structure, and some twinning
structures existed in the structure. To clarify, two parts of crystal with the same structure
were arranged symmetrically according to a particular orientation relationship.
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Figure 2. Original cylindrical specimen. 

Figure 1. Original metallographic structure of GH901 superalloy.

The high-temperature compression experiment of GH901 superalloy was completed
in the Thermecmastor-Z thermal simulator (Aipei Test Equipment, Dongguan, China).
First, the cylindrical hot compression sample measuring Ø8 mm × 12 mm was cut out of
the Ø250 mm × 172 mm forged GH901 superalloy steel blank using an EDM wire-cutting
machine and the lathe, as shown in Figure 2. In order to prevent uneven deformation of
the sample during compression, glue was used to attach a mica sheet between the ceramic
indenter and the sample, so as to reduce friction. The experimental condition was a vacuum.
When the heating temperature of GH901 superalloy was between 1000 ◦C and 1100 ◦C, the
forging was not easy to crack and had good hot-deformation plasticity [20–22]. Therefore,
the deformation temperatures of the compression experiment were set as follows: 990, 1040,
1090, 1140 ◦C; strain rates, 0.001, 0.01, 0.1, 1 s−1; deformation degree, 50%; heating speed,
10 ◦C/s; holding time, 60 s; cooling method, the sample after compression deformation
is cooled by nitrogen. Figure 3 shows the flow chart of isothermal compression. During
this experiment, a Zeiss HAL100 Optical microscope (OM) (Fuji Radio Machinery Co., Ltd.,
Fuji-shi, Japan) was used to observe the microstructure of the samples.

Metals 2021, 11, x FOR PEER REVIEW 3 of 17 
 

 

structures existed in the structure. To clarify, two parts of crystal with the same structure 
were arranged symmetrically according to a particular orientation relationship. 

 
Figure 1. Original metallographic structure of GH901 superalloy. 

The high-temperature compression experiment of GH901 superalloy was completed 
in the Thermecmastor-Z thermal simulator (Aipei Test Equipment, Dongguan, China). First, 
the cylindrical hot compression sample measuring Ø8 mm × 12 mm was cut out of the 
Ø250 mm × 172 mm forged GH901 superalloy steel blank using an EDM wire-cutting 
machine and the lathe, as shown in Figure 2. In order to prevent uneven deformation of 
the sample during compression, glue was used to attach a mica sheet between the ce-
ramic indenter and the sample, so as to reduce friction. The experimental condition was a 
vacuum. When the heating temperature of GH901 superalloy was between 1000 °C and 
1100 °C, the forging was not easy to crack and had good hot-deformation plasticity [20–
22]. Therefore, the deformation temperatures of the compression experiment were set as 
follows: 990, 1040, 1090, 1140 °C; strain rates, 0.001, 0.01, 0.1, 1 s−1; deformation degree, 
50%; heating speed, 10 °C/s; holding time, 60 s; cooling method, the sample after com-
pression deformation is cooled by nitrogen. Figure 3 shows the flow chart of isothermal 
compression. During this experiment, a Zeiss HAL100 Optical microscope (OM) (Fuji 
Radio Machinery Co., LTD, Fuji-shi, Japan) was used to observe the microstructure of the 
samples. 

 
Figure 2. Original cylindrical specimen. Figure 2. Original cylindrical specimen.

Metals 2021, 11, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 3. Flow chart of isothermal compression. 

3. Results 
3.1. Hot Deformation Behavior 

The flow–curves and microstructure of the GH901 superalloy under different de-
formation temperatures and strain rates are shown in Figures 4–7. 

Figures 4 and 5 show that, due to the low rate of 0.001 s−1, dynamic recrystallization 
fully occurred. This formed fine equiaxed structures that absorbed surrounding grains 
and expanded. At 0.01 s−1, the volume fraction of recrystallized grains significantly de-
creased, and there were a lot of coarse original grains in the microstructure. At 0.1 s−1, the 
elongated original deformed grains were retained and a small amount of dynamic re-
crystallized grains existed around them. At 1 s−1, the volume fraction of recrystallization 
clearly increased. Under the same conditions, the same deformation temperature, and 
using the same time intervals, when the strain rate was higher the degree of plastic de-
formation of the material was larger. The dislocation density increased, and the 
work-hardening effect was obvious, which increased the deformation resistance of the 
material. Under the same strain, due to the high strain rate, fast deformation rate, short 
dynamic recrystallization and dynamic recovery time, the difference between the sof-
tening effect and the hardening effect was large, and the steady state flow stress of the 
material increased along with the strain rates. At 1 s−1, a large amount of heat was re-
leased in a short time during the deformation process, and the thermal effect formed 
promoted the dynamic recrystallization. The lower strain rate was beneficial to the for-
mation of a substructure, and the dynamic recrystallization nucleation and growth pro-
cess quickened. Thus, dynamic recrystallization behavior was promoted. Once the sof-
tening effect and hardening effect were balanced, the peak stress and corresponding 
strain value decreased alongside the strain rates. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

150

200

250

300

350

Tr
ue

 st
re

ss
/M

Pa

True strain

1.0s-1

0.1s-1

0.01s-1

0.001s-1

 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

150

200

250

300

350

Tr
ue

 st
re

ss
/M

Pa

True strain

1.0s-1

0.1s-1

0.01s-1

0.001s-1

 
(a) (b) 

Figure 3. Flow chart of isothermal compression.
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3. Results
3.1. Hot Deformation Behavior

The flow–curves and microstructure of the GH901 superalloy under different defor-
mation temperatures and strain rates are shown in Figures 4–7.
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Figure 4. True stress–strain curves of GH901. (a) T = 990 ◦C, (b) T = 1040 ◦C, (c) T = 1090 ◦C,
(d) T = 1140 ◦C.
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Figure 5. Microstructure of GH901 superalloy deformed at 1090 ◦C. (a) Microstructure at 0.001 s−1,
(b) Microstructure at 0.01 s−1, (c) Microstructure at 0.1 s−1, (d) Microstructure at 1 s−1.
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Figures 4 and 5 show that, due to the low rate of 0.001 s−1, dynamic recrystallization
fully occurred. This formed fine equiaxed structures that absorbed surrounding grains and
expanded. At 0.01 s−1, the volume fraction of recrystallized grains significantly decreased,
and there were a lot of coarse original grains in the microstructure. At 0.1 s−1, the elongated
original deformed grains were retained and a small amount of dynamic recrystallized
grains existed around them. At 1 s−1, the volume fraction of recrystallization clearly
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increased. Under the same conditions, the same deformation temperature, and using the
same time intervals, when the strain rate was higher the degree of plastic deformation of
the material was larger. The dislocation density increased, and the work-hardening effect
was obvious, which increased the deformation resistance of the material. Under the same
strain, due to the high strain rate, fast deformation rate, short dynamic recrystallization
and dynamic recovery time, the difference between the softening effect and the hardening
effect was large, and the steady state flow stress of the material increased along with
the strain rates. At 1 s−1, a large amount of heat was released in a short time during the
deformation process, and the thermal effect formed promoted the dynamic recrystallization.
The lower strain rate was beneficial to the formation of a substructure, and the dynamic
recrystallization nucleation and growth process quickened. Thus, dynamic recrystallization
behavior was promoted. Once the softening effect and hardening effect were balanced, the
peak stress and corresponding strain value decreased alongside the strain rates.

According to Figures 6 and 7, when the alloy was deformed at 990 ◦C, part of the
microstructure was dynamically recrystallized, and formed fine equiaxed grains. This was
surrounded by the original coarse grains, which formed a serrated boundary chain. At
1040 ◦C, the recrystallized grains further increased and formed a “necklace” shape with
an elongated coarse structure. At 1090 ◦C, the number of recrystallized grains increased
and their size grew. At 1140 ◦C, when compared with the microstructure at 1090 ◦C,
the equiaxed grains formed by recrystallization absorbed the deformed grains and grew
upwards. Some irregular coarse grains also existed. With a higher deformation tempera-
ture, the softening effect gradually offset the work-hardening effect, the softening effect
continued to increase, and the flow stress value of the material decreased. At the same
time, the more violent the atomic motion in the alloy and the higher the atomic diffusion
rate, the higher the probability of dislocation climb and slip, and dynamic recrystallization.
At the same strain rate, the strain value corresponding to the peak stress decreased with
the increase in deformation temperature.

3.2. Constitutive Analysis
3.2.1. Establishment of Constitutive Equation

The influence of different deformation conditions on the hot deformation process can
be characterized by an exponential equation. The mathematical expressions of the equations
are found in Equations (1)–(4). According to the study of Hollomon and Zener [23], the
influence of strain rates and deformation temperatures on the hot deformation process can
be expressed by a mathematical expression. This contains parameter Z, as Equation (5),
and Z is a factor that temperatures compensate the strain rates.

.
ε = AF(σ) exp[−Q/(RT)], (1)

F(σ) = σn1 (ασ < 0.8), (2)

F(σ) = exp(βσ) (ασ > 1.2), (3)

F(σ) = [sinh(ασ)]n, (4)

Z =
.
ε exp(Q/RT). (5)

where F(σ) is the function of stress,

A, n1 and β are the material constants, with α = β/n1,
σ is the true stress (MPa),
R is the molar gas constant, and number is 8.314,
T is the temperature (K).

The data with strain value of 0.3 under different deformation conditions were used as
the basis for constructing the constitutive model, as shown in Table 2.



Metals 2021, 11, 1808 7 of 16

Table 2. The corresponding stress when the strain is 0.3 (Mpa).

Deformation Temperature T/◦C
Strain Rate

.
ε/s−1

0.001 0.01 0.1 1

990 70.626 132.98 250.98 256.22
1040 55.984 99.08 177.32 212.79
1090 44.17034 78.609 132.82 180.94
1140 33.249 55.046 122.18 125.46

ln σ0.3 was as the horizontal axes and ln
.
ε was as the vertical axes, as shown in

Figure 8a,b. Then, linear regression was performed on all curves to obtain the slope
of the fitting line at different deformation temperatures, as shown in Table 3.
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Table 3. Regression analysis results of ε0.3 and
.
ε under different temperatures.

Material Parameter
Deformation Temperature T/◦C

990 1040 1090 1140

n1 : ln
.
ε − ln σ0.3 4.60344 4.80803 4.76176 4.38038

β : ln
.
ε − σ0.3 0.03107 0.0411 0.0492 0.06005

ln
.
ε − ln[sinh(ασ0.3)] were as the horizontal and vertical axes images rendered, shown

as Figure 8c. Linear regression was performed on the curve to obtain the fitting slope of
deformation temperature, and the fitting parameters, as summarized in Table 4.

Table 4. The hyperbolic sine function fits the slope of
.
ε and ε0.3 under different deformation conditions.

Material Parameter
Deformation Temperature T/◦C

990 1040 1090 1140

n 2.79443 3.37687 3.66579 3.72341

The average of slope n was 3.390125. By linear regression processing, we could obtain
the relation curve of ln[sinh(ασ0.3)] −

(
1
T

)
, shown as Figure 8d. The slope of the fitting

line at different deformation temperatures is summarized in Table 5. The average thermal
activation energy Q of the alloy was 383.5184 KJ ·mol−1. ln[sinh(ασ0.3)] − ln Z were the
horizontal and vertical axes image rendering and could acquire A = 9.967989× 1012,
shown as Figure 8e.

Table 5. The regression analysis results of hyperbolic sine function of temperature and ε0.3.

Material Parameter
Strain Rate

.
ε/s−1

0.001 0.01 0.1 1
Q

nR 9.61373 12.81344 16.30829 15.68962

By substituting in the calculated material constants Q, A, n, α, we could obtain the
kinetic Equation (6) of alloy steel GH901. The flow stress constitutive equation applicable
to any stress level state was also obtained, Equation (7).

.
ε = 9.9680× 1012[sinh(0.009779σ0.3)]

3.390 exp[−383518/(RT)], (6)

 σ = (1/0.009779) ln
{(

Z/9.9680E12)(1/3.390)
+
[(

Z/9.9680E12)(2/3.390)
+ 1
]1/2

}
Z =

.
ε exp[383518/(RT)]

(7)

where E is the Elastic Modulus (GPa).
As shown in Figure 9, the calculated correlation coefficient R between the test value

and the predicted value was 0.967, close to the constant 1. The absolute value of the
average relative error between the test value and the predicted value, AARE (%) was
9.279%, and therefore within the acceptable margin for error of 10%. Therefore, the flow
stress constitutive equation based on strain 0.3 could better predict the flow stress of GH901
alloy material under the conditions of deformation temperatures 990–1140 ◦C and strain
rates 0.001–1 s−1.
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3.2.2. Construction of Constitutive Model Based on Strain Compensation

The flow stress constitutive equation, which was based on strain 0.3, did not consider
the effect of strain on the rheological model. Therefore, in this section, the strain compensa-
tion method was used as a comprehensive and accurate flow stress constitutive equation
for solving issues with processing maps of GH901 superalloy, such as comprehensive
consideration of strain rates, deformation temperatures, deformation of alloy hot forming
parameters, and the influence of the flow stress. The corresponding stress value data under
different strains (0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6) were extracted and
integrated. The material parameters of the constitutive model corresponding to each strain
were solved by linear regression processing, as shown in Table 6.

Table 6. Material parameters Q, n, α and ln A under different strains.

Strain α n Q/KJ·mol−1 lnA

0.05 0.009956 4.219159 424.2852 33.42577
0.1 0.009368 3.911235 409.8304 32.06992

0.15 0.009136 3.709211 399.5897 31.28004
0.2 0.009176 3.599519 393.6089 30.82849

0.25 0.009526 3.420980 386.5302 30.20629
0.3 0.009779 3.390125 383.5184 29.93040

0.35 0.010049 3.377397 383.7422 29.92981
0.4 0.010337 3.345353 387.0122 30.232746

0.45 0.010514 3.411254 392.0682 30.696745
0.5 0.010743 3.466367 394.5052 30.913938

0.55 0.010999 3.434757 401.3594 31.554777
0.6 0.011112 3.506462 400.0757 31.460104

The data of each group in Table 6 were substituted into Equation (8). Then, the seventh
degree polynomial was used in Origin software to fit the relationship between material
parameters and strain under various deformation conditions. The fitting image of data for
each group is shown in Figure 10.

α = α0 + α1ε + α2ε2 + α3ε3 + α4ε4 + α5ε5 + α6ε6 + α7ε7

n = n0 + n1ε + n2ε2 + n3ε3 + n4ε4 + n5ε5 + n6ε6 + n7ε7

Q = Q0 + Q1ε + Q2ε2 + Q3ε3 + Q4ε4 + Q5ε5 + Q6ε6 + Q7ε7

ln A = a0 + a1ε + a2ε2 + a3ε3 + a4ε4 + a5ε5 + a6ε6 + a7ε7

, (8)
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The flow stress constitutive equation of GH901 superalloy with a comprehensive
consideration of deformation temperatures, strain rates and amount of deformation could
be obtained from the above calculation, as shown in Equation (9):

α = 0.0106− 0.0093ε− 0.1423ε2 + 1.6163ε3 − 6.0594ε4 + 10.815ε5 − 9.2018ε6 + 2.9228ε7

n = 4.6878− 11.104ε + 31.514ε2 + 113.54ε3 − 1315.0ε4 + 4385.0ε5 − 6344.8ε6 + 3396.4ε7

Q = 469.72− 1528.6ε + 17.130ε2 − 112.554ε3 + 412.151ε4 − 833.977ε5 + 878.448ε6 − 37.7126ε7

ln A = 38.439− 172.86ε + 1991.5ε2 − 12.790ε3 + 45.592ε4 − 90.225ε5 + 93.321ε6 − 39.450ε7

Z =
.
ε exp(Q/RT)

σ = (1/α) ln
{
(Z/A)1/n +

[
(Z/A)2/n + 1

]1/2
}

(9)

As can be seen from Figures 11 and 12, under different strains, the absolute value of
the average relative error AARE (%) between the tested stress value and the predicted stress
value was 8.123%, which was less than the acceptable error range of 10%. Meanwhile, the
correlation coefficient R between the tested stress value and the predicted stress value under
different strains was 0.992, close to the constant 1. Therefore, the flow stress constitutive
equation built under different strain conditions could better realize the prediction of
the flow stress of a GH901 nickel-based superalloy under the conditions of deformation
temperatures 990–1140 ◦C and strain rates 0.001–1 s−1.
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3.3. Construction of Processing Map

According to the basic principle of the dynamic material model and the established
constitutive model, the alloy material can be regarded as a nonlinear energy dissipation
system during the hot deformation process. The power dissipation map can be used to
reflect the microstructure evolution mechanism of alloy materials during hot deformation,
such as dynamic recovery and dynamic recrystallization. The energy dissipation of the
tissue after evolution can be expressed by power dissipation efficiency factor η, and can be
expressed as follows:

η =
J

Jmax
=

2m
m + 1

, (10)



Metals 2021, 11, 1808 12 of 16

In the equation, η is a dimensionless constant, which changes with the strain rates and
deformation temperatures in the hot deformation process. Furthermore, this equation can
be used to draw the isolines of alloy materials at different deformation amounts, and then
form the power dissipation map.

On the basis of the dynamic material model (DMM), Prasad et al. [11] judged the
rheological instability of the material according to the extreme value principle in irreversible
thermodynamics, that is, when the power dissipation value J and deformation strain rate

.
ε

of the alloy material satisfied the following relation in the hot deformation process:

∂J
∂

.
ε
<

J
.
ε

, (11)

combined with Equation (11), the decision equation of Prasad’s rheological instability
criterion can be derived. When ξ

( .
ε
)
< 0, the material has rheological instability:

ξ
( .
ε
)
=

∂ ln[m/(m + 1)]
∂ ln

.
ε

+ m < 0. (12)

Finally, in the coordinate system, temperature T is the abscissa and the logarithm of
strain rate ln

.
ε is as the ordinate, contour curves of ξ

( .
ε
)

under different strain variables are
drawn, and a rheological instability map can be obtained under different strains.

The power dissipation map and rheological instability map obtained by the above
calculation are superimposed to obtain a processing map under different deformation
conditions, as shown in Figure 13. As can be seen from the Figure, the stable thermal
processing parameters of GH901 alloy were mainly focused on the deformation temper-
atures of 990–1070 ◦C, the strain rates of 0.001–0.17 s−1, the deformation temperatures
of 1070–1100 ◦C, and the strain rates of 0.001–0.6 s−1. The deformation temperatures
ranged from 1100 ◦C to 1140 ◦C and the strain rates ranged from 0.001–0.35 s−1. According
to the extreme value of power dissipation efficiency η, the optimal thermal processing
parameters of GH901 alloy were as follows: deformation temperatures of 990–1030 ◦C,
strain rates of 0.004–0.05 s−1, and deformation temperatures of 1120–1140 ◦C, strain rates
of 0.006–0.08 s−1.

3.4. Numerical Simulation of Isothermal Forging

The structural size of GH901 superalloy plate forgings to be studied in this section
is shown in Figure 14. The forging temperature of the alloy was 1090 ◦C. The billet
measured Ø250 × 172 mm. The corresponding INCOLOY-901[1800–2050F (980–1120 ◦C)]
was selected from the DEFORM material library for GH901 nickel-based superalloy. The
constitutive equation of GH901 superalloy was introduced into the material model.

In the plastic forming process of alloys, there are commonly used classical models such
as Coulomb friction model and shear friction model [24]. If the Coulomb friction model is
used, the normal stress is generally greater than the yield stress of the material, and the
friction stress obtained is often high, which results in the application of the model having
great limitations. If the shear friction model is used, the friction stress only depends on the
material’s own characteristics, which is suitable for the plastic forming process under high
stress state. In this study, the shear friction model was adopted, and the coefficient was set
to 0.3 [25].

The workpiece was defined as a plastic body, and the upsetting and pressing of
the upper and lower dies were defined as a rigid body. The number of grids, which
were divided in the numerical simulation needed to be reasonable [26]; too much would
increase the simulation time and reduce the work efficiency, and too little would lead to
low accuracy and fail to meet the requirements. In this section, triangular meshes were
used in the numerical simulation process, and 26,000 meshes were divided. Figure 15 is
the 3D model diagram of the plate parts. Figure 16a,b are the results after the completion
of numerical simulation of the two forming processes, respectively.
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Figure 16. Numerical simulation results. (a) Upsetting after billet, (b) disk forging.

Figure 17 showed the strain-rate nephogram of GH901 superalloy disk at a deforma-
tion temperature of 1090 ◦C. The blue figure in the upper right corner includes the shaft
journal and wheel rim with a large bearing capacity. They were selected on the disk for
stress analysis. Since the strain rate during the whole deformation process could not be
guaranteed to be in the optimal processing range, the maximum bearing capacity was
selected for testing. Figure 17 illustrates that the bearing capacity of the two reached the
maximum value at 10.9 s. The average strain rates were 0.03 s−1 and 0.2 s−1. They were
in line with the reasonable thermal processing range determined by the processing map.
The supporting evidence provided has proved that the optimum technological parameters
obtained in this paper were reasonable. The forging produced by using this parameter is
shown in Figure 18.
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4. Conclusions

Based on the thermal simulation experiments, the true stress–strain curves of GH901
superalloy under different deformation temperatures and strain rates were obtained. Pro-
cessing maps of GH901 superalloy based on strain 0.3 and strain compensation were
constructed. These showed that the hot deformation behavior of GH901 superalloy was
related to the true strains, deformation temperatures and strain rates.

The stable thermal-processing parameters of GH901 superalloy mainly focused on the
deformation temperatures of 990–1070 ◦C, the strain rates of 0.001–0.17 s−1, the deforma-
tion temperatures of 1070–1100 ◦C, and the strain rates of 0.001–0.6 s−1. The deformation
temperatures ranged from 1100 ◦C to 1140 ◦C and the strain rates ranged from 0.001 to
0.35 s−1. According to the extreme value of power dissipation efficiency η, the optimal
thermal-processing parameters of GH901 superalloy were as follows: deformation tem-
peratures of 990–1030 ◦C, strain rates of 0.004–0.05 s−1, and deformation temperatures of
1120–1140 ◦C, and strain rates of 0.006–0.08 s−1.

The results showed that the average strain rates of the journal and flange parts with
a large bearing capacity were 0.03 s−1 and 0.2 s−1, which were in accordance with the
parameters selected by the processing map of the upper section. They were suitable for
thermal processing of GH901 superalloy.
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