# Deformation Behavior of C15E + C Steel under Different Uniaxial Stress Tests

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. The Main Determinants of Research

## 3. Research Results

#### 3.1. Mechanical Behavior of Material at Different Temperatures

#### 3.2. Short-Time Creep Tests and Creep Simulation

#### 3.3. Testing the Energy of Impact Fracture of a Material and Fracture Toughness Assessment

#### 3.4. Uniaxial Fully Reversed Mechanical Fatigue of the Material

#### 3.4.1. Different Types of Material Fatigue

#### 3.4.2. Fatigue-Life (S-N) Diagram Based on Fully Reversed Mechanical Fatigue Tests

#### 3.4.3. Determination of Fatigue Limit Based on Modified Staircase Method

- ${k}_{\left(P,1-\alpha ,\nu \right)}$, the coefficient for the one-sided tolerance limit for a normal distribution, and
- ${\overline{\sigma}}_{y}$, the estimated standard deviation of the fatigue strength that can be calculated as:$${\overline{\sigma}}_{y}=1.62\times d\left(D+0.029\right).$$

- for $R=-1$ $\to $ ${\overline{\mu}}_{y}={\sigma}_{0}+d\left(\frac{A}{C}-\frac{1}{2}\right)$ = 250 + 10 (8/5 − 1/2) = 261 MPa,or, this can be obtained as (Table 3):for $R=-1$ $\to $ ${\overline{\mu}}_{y}$ = (250 + 260 + 270 + 260 + 270 + 260 + 270)/7 = 262.86 MPa, whose amount is similar to previously obtained ones.

- for $R=-1$ ${\overline{\sigma}}_{y}=1.62\times d\left(D+0.029\right)$ = 1.62$\times 10$ (0.24 + 0.029) = 4.36 MPa.

- for $R=-1$ $\to $ ${\sigma}_{f\left(0.1;0.9;6\right)}={\overline{\mu}}_{y}-{k}_{\left(P,1-\alpha ,\nu \right)}\times {\overline{\sigma}}_{y}$ = 261 –2.333 $\times $ 4.36 = 250.83 MPa.

#### 3.5. A Brief Analysis of the Microstructure of Material in State: As-Received, Previously Subjected to Creep, after Fracture Due to Fatigue

## 4. Conclusions

_{f(20°C,R = −1)}= 250.83MPa was determined. The strength of the material corresponding to the particular number of the cycles to failure can be monitored based on the stress—life (fatigue—life/$S\u2014N)$ diagram, and it is commonly referred to as fatigue life.

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Stephens, R.I.; Fatemi, A.; Stephens, R.R.; Fuchs, H.O. Metal Fatigue in Engineering, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2001; pp. 1–3. [Google Scholar]
- Brooks, C.; Choudhury, A. Failure Analysis of Engineering Materials; McGraw-Hill: New York, NY, USA, 2002; pp. 2–7. [Google Scholar]
- Collins, J.A. Failure of Materials in Mechanical Design, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1993; pp. 6–15. [Google Scholar]
- Brnic, J. Analysis of Engineering Structures and Material Behavior; Wiley & Sons: Chichester, UK, 2018; pp. 209–222. [Google Scholar]
- Brnic, J.; Turkalj, G.; Niu, J.; Canadija, M.; Lanc, D. Analysis of experimental data on the behavior of steel S275JR—Reliability of modern design. Mater. Des.
**2013**, 47, 497–504. [Google Scholar] [CrossRef] - Findley, W.N.; James, S.L.; Ksif, O. Creep and Relaxation of Nonlinear Viscoelastic Materials; Dover Publications, Inc.: New York, NY, USA, 1989; pp. 3–7. [Google Scholar]
- Gariboldi, E.; Spigarelli, S. Creep and high-temperature deformation of metals and alloys. Metals
**2019**, 9, 1087. [Google Scholar] [CrossRef] [Green Version] - Raghavan, V. Materials Science and Engineering—A First Course, 6th ed.; PHI Learning, Private Limited: New Delhi, India, 2015; pp. 287–297. [Google Scholar]
- Boresi, A.P.; Schmidt, R.J.; Sidebottom, O.M. Advanced Mechanics of Material, 4th ed.; John Wiley & Sons: New York, NY, USA, 1993; pp. 655–691. [Google Scholar]
- Essa, K.; Kacmarcik, I.; Hartley, P.; Plancak, M.; Vilotic, D. Upsetting of bi-metallic ring billets. J. Mater. Process. Tech.
**2013**, 212, 817–824. [Google Scholar] [CrossRef] - Brezinová, J.; Guzanová, A.; Draganovská, D.; Egri, M. Assessment tribological properties of coatings applied by HVOF technology. Acta Mech. Autom.
**2013**, 7, 135–139. [Google Scholar] [CrossRef] [Green Version] - Zettl, B.; Mayer, H.; Ede, C.; Tschegg, S.S. Very high cycle fatigue of normalized carbon steels. Int. J. Fatigue
**2006**, 28, 1583–1589. [Google Scholar] [CrossRef] - Bach, J.; Göken, M.; Höppel, H.W. Fatigue of low-alloyed carbon steels in the HCF/VHCF-regimes. In Fatigue of Materials at Very High Numbers of Loading Cycles; Christ, H.J., Ed.; Springer Fachmedien Wiesbaden GmbH: Wiesbaden, Germany, 2018; pp. 1–23. [Google Scholar]
- Bach, J.; Göken, M.; Höppel, H.W. Stages of fatigue damage of plain carbon steels at the transition from the high cycle fatigue to the very high cycle fatigue regime. In Proceedings of the VHCF7-Seventh International Conference on Very High Cycle Fatigue, Dresden, Germany, 3–5 July 2017; Zimmermann, M., Christ, H.J., Eds.; University Siegen: Dresden, Germany, 2017; pp. 154–159. [Google Scholar]
- Nonaka, I.; Setowaki, S.; Ichikawa, Y. Effect of load frequency on high cycle fatigue strength of bullet train axle steel. Int. J. Fatigue
**2014**, 60, 43–47. [Google Scholar] [CrossRef] - Brnic, J.; Turkalj, G.; Canadija, M. Mechanical testing of the behavior of steel 1.7147 at different temperatures. Steel Compos. Struct.
**2014**, 17, 549. [Google Scholar] [CrossRef] - Brnic, J.; Canadija, M.; Turkalj, G.; Krscanski, S.; Lanc, D.; Brcic, M.; Gao, Z. Short-time creep, fatigue and mechanical properties of 42CrMo4-low alloy structural steel. Steel Compos. Struct.
**2016**, 22, 875. [Google Scholar] [CrossRef] - Krewerth, D.; Weidner, A.; Biermann, H. Investigation of the damage behavior of cast steel 42CrMo4 during ultrasonic fatigue by combination of thermography and fractography. Adv. Eng. Mater.
**2013**, 15, 1251–1259. [Google Scholar] [CrossRef] - Torizuka, S.; Kuntz, M.; Furuya, Y.; Bacher-Hoechst, M. Effect of tensile strength and microstructure on notch-fatigue properties of ultrafine-grained steels. ISIJ Int.
**2012**, 52, 910. [Google Scholar] [CrossRef] [Green Version] - Pantazopoulos, G.A. Short review on fracture mechanisms of mechanical components operated under industrial process conditions: Fractographic analysis and selected prevention strategies. Metals
**2019**, 8, 148. [Google Scholar] [CrossRef] [Green Version] - Mayer, H. Fatigue damage of low amplitude cycles in low carbon steel. J. Mater. Sci.
**2009**, 44, 4919. [Google Scholar] [CrossRef] - Cai, Y.; Young, B. Experimental investigation of carbon steel and stainless steel bolted connections at different strain rates. Steel Compos. Struct.
**2019**, 30, 551. [Google Scholar] [CrossRef] - Annual Book of ASTM Standards, Metals-Mechanical Testing; Elevated and Low-Temperature Tests; Metallography; ASTM International: Baltimore, MD, USA, 2015; Volume 03.01.
- ISO 12107:2012 (E) (2012), Metallic Materials—Fatigue Testing—Statistical Planning and Analysis of Data; ISO: Geneva, Switzerland, 2012.
- Rawlings, J.O.; Pantula, S.G.; Dickey, D.A. Applied Regression Analysis—A Research Tool, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 220–222. [Google Scholar]
- Horňák, P.; KyzioL, D.; Kyzioł, K.; Trebuňová, M.; Majerníková, J.; Kaczmarek, Ł.; Trebuňa, J.; Hašuľ, J.; Paľo, M. Microstructure and Mechanical Properties of Annealed WC/C PECVD Coatings Deposited Using Hexacarbonyl of W with Different Gases. Materials
**2020**, 13, 3576. [Google Scholar] [CrossRef] - Huang, T.; Song, Z.; Chen, F.; Guo, J.; Pei, Y.; Xing, B.; Xiang, N.; Song, K. Influence of the anisotropy on the microstructure and mechanical properties of Ti/Al laminated composites. Materials
**2020**, 13, 3556. [Google Scholar] [CrossRef] - Christopher, J.; Choudhary, B.K. Modeling creep deformation and damage behavior of tempered martensitic steel in the framework of additive creep rate formulation. J. Press. Vessel Technol.
**2018**, 140, 051401. [Google Scholar] [CrossRef] - Li, C.Q.; Fu, G.; Yang, W.; Yang, S. Derivation of elastic fracture toughness for ductile metal pipes with circumferential external cracks under combined tension and bending. Eng. Fract. Mech.
**2017**, 178, 39–49. [Google Scholar] [CrossRef] [Green Version] - Roberts, R.; Newton, C. Interpretive report on small-scale test correlation with K
_{Ic}data. Weld. Res. Counc. Bull.**1981**, 65, 1–16. [Google Scholar] - Brnic, J.; Turkalj, G.; Lanc, D.; Canadija, M.; Brcic, M.; Vukelic, G. Comparison of material properties: Steel 20MnCr5 and similar steels, J. Constr. Steel Res.
**2014**, 95, 81–89. [Google Scholar] [CrossRef] - Suresh, S. Fatigue of Materials, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003; pp. 1–35. [Google Scholar]
- Brnic, J.; Krscanski, S.; Brcic, M.; Geng, L.; Niu, J.; Ding, B. Reliable experimental data as a key factor for design of mechanical structures. Struct. Eng. Mech.
**2019**, 72, 245–256. [Google Scholar] [CrossRef] - Farahmand, B.; Bockrath, G.; Glassco, J. Fatigue and Fracture Mechanics of High Risk Parts; Chapman & Hall: New York, NY, USA, 1997; pp. 13–102. [Google Scholar]
- Barson, J.M.; Rolf, S.T. Fracture and Fatigue Control in Structures, 3rd ed.; Butterworth-Heinemann: Philadelphia, PA, USA, 1999; pp. 163–181. [Google Scholar]
- Feng, L.; Qian, X. Rapid S-N type life estimation for low cycle fatigue of high-strength steels at a low ambient temperature. Steel Compos. Struct.
**2019**, 33, 777–792. [Google Scholar] [CrossRef] - Papuga, J.; Fojtík, F. Multiaxial fatigue strength of common structural steel and the response of some estimation methods. Int. J. Fatigue
**2017**, 104, 27–42. [Google Scholar] [CrossRef] - Brnić, J.; Brčić, M.; Kršćanski, S.; Lanc, D.; Niu, J.; Wang, P. Steel 51CrV4 under high temperatures, short-time creep and high cycle fatigue. J. Constr. Steel Res.
**2018**, 147, 468–476. [Google Scholar] [CrossRef] - Christou, G.; Hegger, J.; Classen, M. Fatigue of clothoid shaped rib shear connectors. J. Constr. Steel Res.
**2020**, 171, 106133. [Google Scholar] [CrossRef]

**Figure 1.**Equipment used in research. (

**a**) Materials testing machine, 400 kN. (

**b**) Dynamic testing machine, ±50 kN. (

**c**) Charpy impact machine, 300 J.

**Figure 2.**Test specimens used in research. (

**a**) Type of the specimen used in determination of engineering stress–strain curves and creep curves. (

**b**) Type of the specimen used in fatigue testing. (

**c**) Type of the specimen used in Charpy V-notch testing.

**Figure 3.**Engineering stress–strain diagrams and mechanical properties versus temperature. (

**a**) Engineering stress–strain diagrams, temperatures: 20, 100, 200, 250, and 300 °C. (

**b**) Engineering stress–strain diagrams, temperatures: 400, 500, and 600 °C. (

**c**) Ultimate tensile strength and yield strength versus temperature. (

**d**) Modulus of elasticity versus temperature.

**Figure 4.**Sort-time creep tests of C15E + C (1.1141) steel and creep modeling. (

**a**) Creep tests at 400 °C. (

**b**) Creep tests at 500 °C. (

**c**) Creep test at 600 °C. (

**d**) Creep modeling.

**Figure 5.**Measured impact fracture energy (CVN) and calculated fracture toughness (${K}_{Ic}$): C15E + C (1.1141) steel.

**Figure 6.**Fatigue life/stress-life (S—N) diagram; $\mathrm{stress}\text{}\mathrm{ratio}\text{}R=-1$; C15E + C (1.1141) steel.

**Figure 7.**Optical micrographs: As-received material (specimen 1), C15E + C (1.1141) steel, 3% nitric acid, and 97% alcohol, (500×). (

**a**) Cross-section of the specimen. (

**b**) Longitudinal section of the specimen.

**Figure 8.**SEM micrographs and the composition of the material at corresponding positions on SEM micrograph (3 and 4) marked in Figure 8a: Material previously subjected to creep (specimen 2), at 600 °C/8.6 MPa/1200 min, C15E + C (1.1141), steel, 3% nitric acid, and 97% alcohol. (

**a**) Cross-section, 3000×. (

**b**) Longitudinal section, 3000×. (

**c**) Composition-position 3 on the SEM micrograph (

**a**). (

**d**) Composition-position 4 on the SEM micrograph (

**a**).

**Figure 9.**SEM micrographs and the composition of the material at corresponding positions on SEM micrograph (4 and 5) marked in Figure 9a: Material fractured due to fatigue (specimen 3), fractured at 94979 cycles/$\pm 310\mathrm{MPa}$, C15E + C (1.1141) steel, 3% nitric acid, and 97% alcohol. (

**a**) Cross-section, 3000×, (

**b**) Composition-position 4 on the SEM micrograph. (

**c**) Composition–position 5 on the SEM micrograph.

**Figure 10.**Observation of fatigue fracture morphology, C15E + C (1.1141) steel. (

**a**) Fatigue streaks-back of fatigue fracture growth zone, 2000×. (

**b**) Front part of fatigue fracture growth zone, 3000×. (

**c**) Dimples in the last fracture zone of the fatigue fracture, 3000×. (

**d**) Brittle phase particles prone to crack formation, 3000×.

Material: C15E + C Steel (Special Nonalloyed-Case Hardening Steel) | |||||||
---|---|---|---|---|---|---|---|

Designation | |||||||

Steel name (type, grade, and quality)/i.e., letter mark of steel in accordance with the norm (country code): (EN, DIN, and other norms) | Steel number (Mat. No, W. Nr, and Mat. code)/i.e., numerical designation of steel | ||||||

(EN)/(DIN): (10084 (2008))/(17210 (1986)): C15E/C15, Ck15 England/ BS 080M15; France/AFNOR XC15; USA/AISI-ESA 1015 In accordance with above given norms that define technical delivery conditions, this steel belongs to the material group classified (named) as case hardening nonalloy special steels, which is confirmed by the below given chemical composition. | 1.1141 | ||||||

Chemical composition, Mass (%) | |||||||

C | Si | Mn | P | S | Cr | Ni | |

0.135 | 0.233 | 0.38 | 0.01 | 0.009 | 0.084 | 0.06 | |

Mo | Cu | Al | W | Sn | Rest | ||

0.019 | 0.027 | 0.035 | 0.006 | 0.007 | 98.99 |

Material | C15E + C (1.1141) | |
---|---|---|

Time–Stress Dependence Model: $\epsilon \left(t\right)=\epsilon \left(\sigma ,t\right)$; | ||

$T=const$ | ||

Equation | ||

$\epsilon \left(t\right)={D}^{-T}{\sigma}^{p}{t}^{r}$ and Time (min) = 1200 | ||

Creep processes were carried out at temperature and stresses listed below | ||

Constant temperature/$\mathrm{T}$°C | 400 | |

Applied constant stress level $\sigma \left({10}^{6}\mathrm{Pa}\right)$ | 107 | 178.5 |

$\sigma =x\times {\sigma}_{0.2}$ | $x=0.3$ | $x=0.5$ |

Parameters (according to Equation) | Parameters $\left(D,p,r\right)$ valid for | |

x = 0.3–0.5 | ||

D | 1.21913163202914 | |

p | 3.96411487762191 | |

r | 0.686440947878887 |

$\mathbf{Stress}\mathbf{Ratio}\mathit{R}=-1,\mathbf{Steel}\mathbf{C}15\mathbf{E}+\mathbf{C}\left(1.1141\right),\mathbf{Room}\mathbf{Temperature},$ Failed (◆), Unfailed (○) | |||||||
---|---|---|---|---|---|---|---|

Stress ${\sigma}_{i},$ max (MPa) | Specimen | ||||||

1 | 2 | 3 | 4 | 5 | 6 | 7 | |

270 | ♦ | ♦ | ♦ | ||||

260 | ♦ | ♦ | ○ | ||||

250 | ○ |

**Table 4.**Data Analysis Related to Table 3.

$\mathbf{Stress}\mathbf{Ratio}\mathit{R}=-1,\mathbf{Steel}\mathbf{C}15\mathbf{E}+\mathbf{C}\left(1.1141\right),\mathbf{F}-\mathbf{Failed},$ Room Temperature | ||||
---|---|---|---|---|

Stress ${\sigma}_{i}$/MPa | Stress level, i | f_{i} | if_{i} | i^{2}f_{i} |

270 | 2 | 3 | 6 | 12 |

260 | 1 | 2 | 2 | 2 |

250 | 0 | 0 | 0 | 0 |

$\sum}{f}_{i},i{f}_{i},{i}^{2}{f}_{i$ | 5 | 8 | 14 |

$\mathbf{Stress}\mathbf{Ratio}\mathit{R}=-1$ | |
---|---|

Formula | Material: C15E + C (1.1141) |

$A={\displaystyle \sum}i\times {f}_{i}$ | 8 |

$B={\displaystyle \sum}{i}^{2}\times {f}_{i}$ | 14 |

$C={\displaystyle \sum}{f}_{i}$ | 5 |

$D=\frac{B\times C-{A}^{2}}{{C}^{2}}$ | 0.24 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Brnic, J.; Brcic, M.; Krscanski, S.; Niu, J.; Chen, S.; Gao, Z.
Deformation Behavior of C15E + C Steel under Different Uniaxial Stress Tests. *Metals* **2020**, *10*, 1445.
https://doi.org/10.3390/met10111445

**AMA Style**

Brnic J, Brcic M, Krscanski S, Niu J, Chen S, Gao Z.
Deformation Behavior of C15E + C Steel under Different Uniaxial Stress Tests. *Metals*. 2020; 10(11):1445.
https://doi.org/10.3390/met10111445

**Chicago/Turabian Style**

Brnic, Josip, Marino Brcic, Sanjin Krscanski, Jitai Niu, Sijie Chen, and Zeng Gao.
2020. "Deformation Behavior of C15E + C Steel under Different Uniaxial Stress Tests" *Metals* 10, no. 11: 1445.
https://doi.org/10.3390/met10111445