Exercise Intensity during Olympic-Distance Triathlon in Well-Trained Age-Group Athletes: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Laboratory Tests
2.3.1. Incremental Swimming Test
2.3.2. Incremental Cycling Test
2.3.3. Incremental Treadmill Running Test
2.4. Gas Analysis
2.5. Determination of Aerobic and Anaerobic Thresholds, and Maximal Workload
2.6. Competition Measurements
2.7. Exercise Intensity Zone Settings
2.8. Data Analysis
2.9. Statistical Analysis
3. Results
3.1. Laboratory Tests
3.2. OD Triathlon Performance
3.3. Exercise Intensity of Each Leg
3.4. Exercise Intensity Distribution during the Race
4. Discussion
4.1. Laboratory Tests and OD Triathlon Performance
4.2. Exercise Intensity during the Race
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, S.S.; Peiffer, J.J.; Brisswalter, J.; Nosaka, K.; Abbiss, C.R. Factors influencing pacing in triathlon. Open Access J. Sports Med. 2014, 5, 223–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millet, G.P.; Bentley, D.J.; Vleck, V.E. The relationships between science and sport: Application in triathlon. Int. J. Sports Physiol. Perform. 2007, 2, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Revelles, A.B.F.; Granizo, I.R.; Sánchez, M.C.; Ruz, R.P. Men’s triathlon correlation between stages and final result in the London 2012 Olympic Games. J. Hum. Sport Exerc. 2018, 2, 514–528. [Google Scholar]
- Wu, S.S.X.; Peiffer, J.P.; Brisswalter, J.; Lau, W.Y.; Nosaka, K.; Abbiss, C.R. Influence of race distance and biological sex on age-related declines in triathlon performance: Part A. J. Sci. Cycl. 2014, 3, 42–48. [Google Scholar]
- Bentley, D.; Libicz, S.; Jougla, A.; Coste, O.; Manetta, J.; Chamari, K.; Millet, G. The effects of exercise intensity or drafting during swimming on subsequent cycling performance in triathletes. J. Sci. Med. Sport 2007, 10, 234–243. [Google Scholar] [CrossRef]
- Laursen, P.B.; Rhodes, E.C. Factors affecting performance in an ultraendurance triathlon. Sports Med. 2001, 31, 195–209. [Google Scholar] [CrossRef]
- Millet, G.P.; Vleck, V.E. Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: Review and practical recommendations for training. Br. J. Sports Med. 2000, 34, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.A. The Rise of Elite Short-course triathlon re-emphasises the necessity to transition efficiently from cycling to running. Sports 2019, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Tota, Ł.; Piotrowska, A.; Pałka, T.; Morawska, M.; Mikuľáková, W.; Mucha, D.; Żmuda-Pałka, M.; Pilch, W. Muscle and intestinal damage in triathletes. PLoS ONE 2019, 14, e0210651. [Google Scholar] [CrossRef] [Green Version]
- Olcina, G.; Timón, R.; Brazo-Sayavera, J.; Martínez-Guardado, I.; Marcos-Serrano, M.; Crespo, C. Changes in physiological and performance variables in non-professional triathletes after taking part in an Olympic distance triathlon. Res. Sports Med. 2018, 26, 323–331. [Google Scholar] [CrossRef]
- Logan-Sprenger, H.M. Fluid balance and thermoregulatory responses of competitive triathletes. J. Therm. Biol. 2019, 79, 69–72. [Google Scholar] [CrossRef]
- Millard-Stafford, M.; Sparling, P.B.; Rosskopf, L.B.; Hinson, B.T.; DiCarlo, L.J. Carbohydrate-electrolyte replacement during a simulated triathlon in the heat. Med. Sci. Sports Exerc. 1990, 22, 621–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, R.F.; Osiecki, R.; Rama, L.M.P. Biochemical markers during and after an Olympic triathlon race. J. Exerc. Physiol. Online 2011, 14, 87–96. [Google Scholar]
- Park, C.H.; Kim, T.U.; Park, T.G.; Kwak, Y.S. Changes of immunological markers in elite and amateur triathletes. Int. SportMed J. 2008, 9, 116–130. [Google Scholar]
- Caillaud, C.; Serre-Cousiné, O.; Anselme, F.; Capdevilla, X.; Préfaut, C. Computerized tomography and pulmonary diffusing capacity in highly trained athletes after performing a triathlon. J. Appl. Physiol. 1995, 79, 1226–1232. [Google Scholar] [CrossRef]
- Le Gallais, D.; Hayot, M.; Hue, O.; Wouassi, D.; Boussana, A.; Ramonatxo, M.; Préfaut, C. Metabolic and cardioventilatory responses during a graded exercise test before and 24 h after a triathlon. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 79, 176–181. [Google Scholar] [CrossRef]
- Sultana, F.; Abbiss, C.R.; Louis, J.; Bernard, T.; Hausswirth, C.; Brisswalter, J. Age-related changes in cardio-respiratory responses and muscular performance following an Olympic triathlon in well-trained triathletes. Eur. J. Appl. Physiol. 2012, 112, 1549–1556. [Google Scholar] [CrossRef]
- Hopkins, W.G. Quantification of training in competitive sports. Sports Med. 1991, 12, 161–183. [Google Scholar] [CrossRef]
- Formenti, D.; Rossi, A.; Calogiuri, G.; Thomassen, T.O.; Scurati, R.; Weydahl, A. Exercise intensity and pacing strategy of cross-country skiers during a 10 km skating simulated race. Res. Sports Med. 2015, 23, 126–139. [Google Scholar] [CrossRef]
- Padilla, S.; Mujika, I.; Orbañanos, J.; Angulo, F. Exercise intensity during competition time trials in professional road cycling. Med. Sci. Sports Exerc. 2000, 32, 850–856. [Google Scholar] [CrossRef]
- Bernard, T.; Hausswirth, C.; Le Meur, Y.; Bignet, F.; Dorel, S.; Brisswalter, J. Distribution of power output during the cycling stage of a Triathlon World Cup. Med. Sci. Sports Exerc. 2009, 41, 1296–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Meur, Y.; Hausswirth, C.; Dorel, S.; Bignet, F.; Brisswalter, J.; Bernard, T. Influence of gender on pacing adopted by elite triathletes during a competition. Eur. J. Appl. Physiol. 2009, 106, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Hausswirth, C.; Lehénaff, D.; Dréano, P.; Savonen, K. Effects of cycling alone or in a sheltered position on subsequent running performance during a triathlon. Med. Sci. Sports Exerc. 1999, 31, 599–604. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.S.; Peiffer, J.J.; Brisswalter, J.; Nosaka, K.; Lau, W.Y.; Abbiss, C.R. Pacing strategies during the swim, cycle and run disciplines of sprint, Olympic and half-Ironman triathlons. Eur. J. Appl. Physiol. 2015, 115, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Robson, S.J.; King, M.J.; Davie, A.J. Correlations between short-course triathlon performance and physiological variables determined in laboratory cycle and treadmill tests. J. Sports Med. Phys. Fitness 1997, 37, 122–130. [Google Scholar]
- Laursen, P.B.; Knez, W.L.; Shing, C.M.; Langill, R.H.; Rhodes, E.C.; Jenkins, D.G. Relationship between laboratory-measured variables and heart rate during an ultra-endurance triathlon. J. Sports Sci. 2005, 23, 1111–1120. [Google Scholar] [CrossRef]
- Fornasiero, A.; Savoldelli, A.; Fruet, D.; Boccia, G.; Pellegrini, B.; Schena, F. Physiological intensity profile, exercise load and performance predictors of a 65-km mountain ultra-marathon. J. Sports Sci. 2018, 36, 1287–1295. [Google Scholar] [CrossRef] [Green Version]
- Esteve-Lanao, J.; Lucia, A.; Dekoning, J.J.; Foster, C. How do humans control physiological strain during strenuous endurance exercise? PLoS ONE 2008, 3, e2943. [Google Scholar] [CrossRef]
- Billat, V.L.; Petot, H.; Landrain, M.; Meilland, R.; Koralsztein, J.P.; Mille-Hamard, L. Cardiac output and performance during a marathon race in middle-aged recreational runners. Sci. World J. 2012, 2012, 810859. [Google Scholar] [CrossRef] [Green Version]
- Shimazu, W.; Takayama, F.; Tanji, F.; Nabekura, Y. Relationship between cardiovascular drift and performance in marathon running. Int. J. Sport Health Sci. 2020, 202036. [Google Scholar] [CrossRef]
- Lima-Silva, A.E.; Bertuzzi, R.C.; Pires, F.O.; Barros, R.V.; Gagliardi, J.F.; Hammond, J.; Kiss, M.A.; Bishop, D.J. Effect of performance level on pacing strategy during a 10-km running race. Eur. J. Appl. Physiol. 2010, 108, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Stöggl, T.L.; Hertlein, M.; Brunauer, R.; Welde, B.; Andersson, E.P.; Swarén, M. Pacing, exercise intensity, and technique by performance level in long-distance cross-country skiing. Front. Physiol. 2020, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.M.; Doust, J.H. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J. Sports Sci. 1996, 14, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Moseley, L.; Jeukendrup, A.E. The reliability of cycling efficiency. Med. Sci. Sports Exerc. 2001, 33, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Takayama, F.; Aoyagi, A.; Takahashi, K.; Nabekura, Y. Relationship between oxygen cost and C-reactive protein response to marathon running in college recreational runners. Open Access J. Sports Med. 2018, 9, 261–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newell, J.; Higgins, D.; Madden, N.; Cruickshank, J.; Einbeck, J.; McMillan, K.; McDonald, R. Software for calculating blood lactate endurance markers. J. Sports Sci. 2007, 25, 1403–1409. [Google Scholar] [CrossRef]
- Buchfuhrer, M.J.; Hansen, J.E.; Robinson, T.E.; Sue, D.Y.; Wasserman, K.; Whipp, B.J. Optimizing the exercise protocol for cardiopulmonary assessment. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 1558–1564. [Google Scholar] [CrossRef]
- Pallares, J.G.; Moran-Navarro, R.; Ortega, J.F.; Fernandez-Elias, V.E.; Mora-Rodriguez, R. Validity and reliability of ventilatory and blood lactate thresholds in well-trained cyclists. PLoS ONE 2016, 11, e0163389. [Google Scholar] [CrossRef]
- Esteve-Lanao, J.; San Juan, A.; Earnest, C.P.; Foster, C.; Lucia, A. How do endurance runners actually train? Relationship with competition performance. Med. Sci. Sports Exerc. 2005, 37, 496–504. [Google Scholar] [CrossRef] [Green Version]
- Binder, R.K.; Wonisch, M.; Corra, U.; Cohen-Solal, A.; Vanhees, L.; Saner, H.; Schmid, J.-P. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 726–734. [Google Scholar] [CrossRef]
- Cejuela-Anta, R.; Esteve-Lanao, J. Training load quantification in triathlon. J. Hum. Sport Exerc. 2011. [Google Scholar] [CrossRef] [Green Version]
- Kuipers, H.; Verstappen, F.T.; Keizer, H.A.; Geurten, P.; van Kranenburg, G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int. J. Sports Med. 1985, 6, 197–201. [Google Scholar] [CrossRef]
- Esteve-Lanao, J.; Foster, C.; Seiler, S.; Lucia, A. Impact of training intensity distribution on performance in endurance athletes. J. Strength Cond. Res. 2007, 21, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Seiler, S.; Tønnessen, E. Intervals, thresholds, and long slow distance: The role of intensity and duration in endurance training. Sportscience 2009, 13, 32–53. [Google Scholar]
- Granier, C.; Abbiss, C.R.; Aubry, A.; Vauchez, Y.; Dorel, S.; Hausswirth, C.; Le Meur, Y. Power output and pacing during international cross-country mountain bike cycling. Int. J. Sports Physiol. Perform. 2018, 13, 1243–1249. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2. [Google Scholar] [CrossRef] [Green Version]
- Hausswirth, C.; Bigard, A.X.; Guezennec, C.Y. Relationships between running mechanics and energy cost of running at the end of a triathlon and a marathon. Int. J. Sports Med. 1997, 18, 330–339. [Google Scholar] [CrossRef]
- Butts, N.K.; Henry, B.A.; McLean, D. Correlations between VO2 max and performance times of recreational triathletes. J. Sports Med. Phys. Fitness 1991, 31, 339–344. [Google Scholar]
- Suriano, R.; Bishop, D. Physiological attributes of triathletes. J. Sci. Med. Sport 2010, 13, 340–347. [Google Scholar] [CrossRef]
- Millet, G.P.; Vleck, V.E.; Bentley, D.J. Physiological requirements in triathlon. J. Hum. Sport Exerc. 2011, 6, 184–204. [Google Scholar] [CrossRef] [Green Version]
- Aoyagi, A.; Ishikura, K.; Shirai, Y.; Nabekura, Y. The relationship between running performance in the Olympic-distance triathlon and aerobic physiological variables, focusing on the three factors of the classic model. Japan J. Phys. Educ. Health Sport Sci. 2020, 65, 815–830. (In Japanese) [Google Scholar] [CrossRef]
- Barrero, A.; Chaverri, D.; Erola, P.; Iglesias, X.; Rodríguez, F.A. Intensity profile during an ultra-endurance triathlon in relation to testing and performance. Int. J. Sports Med. 2014, 35, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Abbiss, C.R.; Quod, M.J.; Martin, D.T.; Netto, K.J.; Nosaka, K.; Lee, H.; Surriano, R.; Bishop, D.; Laursen, P.B. Dynamic pacing strategies during the cycle phase of an Ironman triathlon. Med. Sci. Sports Exerc. 2006, 38, 726–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delextrat, A.; Brisswalter, J.; Hausswirth, C.; Bernard, T.; Vallier, J.M. Does prior 1500-m swimming affect cycling energy expenditure in well-trained triathletes? Can. J. Appl. Physiol. 2005, 30, 392–403. [Google Scholar] [CrossRef]
- Coyle, E.F. Cardiovascular drift during prolonged exercise and the effects of dehydration. Int. J. Sports Med. 1998, 19 (Suppl. 2), S121–S124. [Google Scholar] [CrossRef]
- Ganio, M.S.; Wingo, J.E.; Carrolll, C.E.; Thomas, M.K.; Cureton, K.J. Fluid ingestion attenuates the decline in VO2peak associated with cardiovascular drift. Med. Sci. Sports Exerc. 2006, 38, 901–909. [Google Scholar] [CrossRef]
- Hargreaves, M.; Dillo, P.; Angus, D.; Febbraio, M. Effect of fluid ingestion on muscle metabolism during prolonged exercise. J. Appl. Physiol. 1996, 80, 363–366. [Google Scholar] [CrossRef]
- O’Toole, M.; Douglas, P.; Hiller, W. Lactate, oxygen uptake, and cycling performance in triathletes. Int. J. Sports Med. 1989, 10, 413–418. [Google Scholar] [CrossRef]
- Etxebarria, N.; Hunt, J.; Ingham, S.; Ferguson, R. Physiological assessment of isolated running does not directly replicate running capacity after triathlon-specific cycling. J. Sports Sci. 2014, 32, 229–238. [Google Scholar] [CrossRef]
- Berry, N.T.; Wideman, L.; Shields, E.W.; Battaglini, C.L. The Effects of a duathlon simulation on ventilatory threshold and running economy. J. Sports Sci. Med. 2016, 15, 247–253. [Google Scholar]
- De Vito, G.; Bernardi, M.; Sproviero, E.; Figura, F. Decrease of endurance performance during Olympic triathlon. Int. J. Sports Med. 1995, 16, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Boussana, A.; Hue, O.; Matecki, S.; Galy, O.; Ramonatxo, M.; Varray, A.; Le Gallais, D. The effect of cycling followed by running on respiratory muscle performance in elite and competition triathletes. Eur. J. Appl. Physiol. 2002, 87, 441–447. [Google Scholar] [PubMed] [Green Version]
- Hue, O.; Le Gallais, D.; Boussana, A.; Chollet, D.; Prefaut, C. Performance level and cardiopulmonary responses during a cycle-run trial. Int. J. Sports Med. 2000, 21, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Hue, O.; Galy, O.; Le Gallais, D.; Préfaut, C. Pulmonary responses during the cycle-run succession in elite and competitive triathletes. Can. J. Appl. Physiol. 2001, 26, 559–573. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.P.; Millet, G.Y.; Hofmann, M.D.; Candau, R.B. Alterations in running economy and mechanics after maximal cycling in triathletes: Influence of performance level. Int. J. Sports Med. 2000, 21, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.; Millet, G.; Candau, R. Duration and seriousness of running mechanices alterations after maximal cycling in triathlets: Influence of the performance level. J. Sports Med. Phys. Fitness 2001, 41, 147. [Google Scholar] [PubMed]
- Kreider, R.B. Physiological considerations of ultraendurance performance. Int. J. Sport Nutr. Exerc. Metab. 1991, 1, 3–27. [Google Scholar] [CrossRef]
- Del Coso, J.; Fernández de Velasco, D.; Fernández, D.; Abián-Vicen, J.; Salinero, J.J.; González-Millán, C.; Areces, F.; Ruiz, D.; Gallo, C.; Calleja-González, J.; et al. Running pace decrease during a marathon is positively related to blood markers of muscle damage. PLoS ONE 2013, 8, e57602. [Google Scholar] [CrossRef]
- Hausswirth, C.; Bigard, A.X.; Berthelot, M.; Thomaïdis, M.; Guezennec, C.Y. Variability in energy cost of running at the end of a triathlon and a marathon. Int. J. Sports Med. 1996, 17, 572–579. [Google Scholar] [CrossRef]
- Hermansen, L.; Hultman, E.; Saltin, B. Muscle glycogen during prolonged severe exercise. Acta Physiol. Scand. 1967, 71, 129–139. [Google Scholar] [CrossRef]
- Wingo, J.E. Exercise intensity prescription during heat stress: A brief review. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 1), 90–95. [Google Scholar] [CrossRef]
- Hue, O.; Galy, O.; Le Gallais, D. Exercise intensity during repeated days of racing in professional triathletes. Appl. Physiol. Nutr. Metab. 2006, 31, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Galy, O.; Manetta, J.; Coste, O.; Maimoun, L.; Chamari, K.; Hue, O. Maximal oxygen uptake and power of lower limbs during a competitive season in triathletes. Scand. J. Med. Sci. Sports 2003, 13, 185–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All (N = 17) | Faster (n = 9) | Slower (n = 8) | |
---|---|---|---|
Subject characteristics | |||
Age (yr) | 23.1 ± 6.7 | 24.3 ± 8.4 | 21.6 ± 4.2 |
Height (cm) | 173.8 ± 5.9 | 174.2 ± 5.2 | 173.4 ± 7.0 |
Mass (kg) | 65.1 ± 5.5 | 64.9 ± 6.1 | 65.3 ± 5.2 |
Body Fat (%) | 10.3 ± 1.7 | 9.8 ± 1.4 | 10.9 ± 1.9 |
BMI | 21.5 ± 1.1 | 21.4 ± 1.5 | 21.7 ± 0.3 |
Triathlon experience (yr) | 4.1 ± 6.1 | 5.4 ± 8.1 | 2.6 ± 2.4 |
Olympic-distance race times | |||
Swimming (h:min:s) | 0:26:28 ± 0:04:01 | 0:23:34 ± 0:01:49 | 0:29:45 ± 0:03:10 ** |
Cycling (h:min:s) | 1:10:33 ± 0:02:53 | 1:08:54 ± 0:02:19 | 1:12:25 ± 0:02:19 * |
Running (h:min:s) | 0:42:49 ± 0:04:39 | 0:39:57 ± 0:02:14 | 0:46:02 ± 0:04:37 ** |
Total (h:min:s) | 2:19:50 ± 0:09:38 | 2:12:24 ± 0:02:54 | 2:28:12 ± 0:07:11 ** |
All (N = 17) | Faster (n = 9) | Slower (n = 8) | |
---|---|---|---|
Overall | |||
Air temperature (°C) | 21.6 ± 3.7 | 20.9 ± 3.6 | 22.3 ± 3.9 |
Relative humidity (%) | 64.3 ± 17.0 | 58.6 ± 15.2 | 70.0 ± 17.7 |
Wind speed (m·s−1) | 3.5 ± 1.0 | 3.4 ± 0.9 | 3.6 ± 1.1 |
Barometric pressure (mmHg) | 759.1 ± 7.1 | 760.8 ± 6.1 | 757.4 ± 8.1 |
Swimming | |||
Water temperature (°C) | 20.3 ± 3.3 | 21.3 ± 3.1 | 20.1 ± 3.7 |
Cycling | |||
Cumulated positive elevation (m) | 173.7 ± 115.6 | 147.8 ± 134.2 | 202.8 ± 90.3 |
Elevation to distance ratio (m·km−1) | 4.3 ± 2.9 | 3.7 ± 3.4 | 5.1 ± 2.3 |
Running | |||
Cumulated positive elevation (m) | 37.7 ± 31.3 | 28.7 ± 20.6 | 47.8 ± 39.2 |
Elevation to distance ratio (m·km−1) | 3.8 ± 3.1 | 2.9 ± 2.1 | 4.8 ± 3.9 |
All (N = 17) | Faster (n = 9) | Slower (n = 8) | |
---|---|---|---|
Swimming | |||
Speed at AeT (m·s−1) | 0.88 ± 0.14 | 0.98 ± 0.10 | 0.78 ± 0.10 ** |
Speed at AnT (m·s−1) | 0.93 ± 0.13 | 1.02 ± 0.10 | 0.84 ± 0.09 ** |
SSmax (m·s−1) | 1.07 ± 0.13 | 1.16 ± 0.09 | 0.96 ± 0.08 ** |
HR at AeT (bpm) | 138 ± 17 | 142 ± 15 | 135 ± 19 |
HR at AnT (bpm) | 150 ± 13 | 149 ± 10 | 151 ± 18 |
HRmax (bpm) | 185 ± 9 | 186 ± 9 | 182 ± 10 |
%HRmax at AeT (%) | 74.8 ± 6.7 | 76.0 ± 6.8 | 73.6 ± 6.7 |
%HRmax at AnT (%) | 81.2 ± 6.0 | 80.0 ± 4.8 | 82.5 ± 7.2 |
Cycling | |||
PO at AeT (W) | 190 ± 32 | 203 ± 28 | 176 ± 33 * |
PO at AnT (W) | 252 ± 33 | 263 ± 32 | 239 ± 31 |
POmax (W) | 343 ± 34 | 359 ± 34 | 325 ± 24 * |
HR at AeT (bpm) | 136 ± 15 | 140 ± 16 | 132 ± 14 |
HR at AnT (bpm) | 156 ± 13 | 158 ± 16 | 154 ± 10 |
HRmax (bpm) | 183 ± 8 | 183 ± 9 | 182 ± 7 |
%HRmax at AeT (%) | 74.7 ± 6.5 | 76.6 ± 6.3 | 72.6 ± 6.5 |
%HRmax at AnT (%) | 85.6 ± 5.0 | 86.5 ± 6.2 | 84.6 ± 3.4 |
O2 max (L·min−1) | 3.8 ± 0.4 | 4.0 ± 0.3 | 3.6 ± 0.3 * |
O2 max (ml·kg−1·min−1) | 58.7 ± 5.9 | 62.4 ± 4.7 | 54.5 ± 3.9 ** |
% O2 max at AeT (%) | 63.7 ± 7.9 | 64.7 ± 5.5 | 62.6 ± 10.2 |
% O2 max at AnT (%) | 80.8 ± 6.2 | 81.2 ± 7.5 | 80.3 ± 4.8 |
GE (%) | 21.3 ± 1.4 | 21.3 ± 1.2 | 21.3 ± 1.6 |
Running | |||
Speed at AeT (km·h−1) | 12.2 ± 1.2 | 12.6 ± 1.0 | 11.9 ± 1.3 |
Speed at AnT (km·h−1) | 14.5 ± 1.5 | 14.9 ± 0.9 | 14.1 ± 2.0 |
RSmax (km·h−1) | 17.5 ± 1.0 | 17.8 ± 0.7 | 17.1 ± 1.2 |
HR at AeT (bpm) | 154 ± 10 | 153 ± 13 | 155 ± 8 |
HR at AnT (bpm) | 171 ± 13 | 171 ± 13 | 172 ± 12 |
HRmax (bpm) | 192 ± 9 | 190 ± 9 | 194 ± 9 |
%HRmax at AeT (%) | 80.1 ± 4.0 | 80.3 ± 4.6 | 79.8 ± 3.5 |
%HRmax at AnT (%) | 89.1 ± 4.4 | 89.6 ± 3.9 | 88.5 ± 5.1 |
O2 max (L·min−1) | 3.9 ± 0.4 | 4.0 ± 0.4 | 3.8 ± 0.4 |
O2 max (ml·kg−1·min−1) | 60.4 ± 4.4 | 62.2 ± 2.8 | 58.5 ± 5.3 |
% O2 max at AeT (%) | 72.2 ± 6.1 | 71.8 ± 5.5 | 72.8 ± 7.0 |
% O2 max at AnT (%) | 86.9 ± 6.2 | 86.2 ± 3.9 | 87.6 ± 8.3 |
Running economy (ml·kg−1·km−1) | 217 ± 14 | 217 ± 9 | 216 ± 18 |
Group | Swimming | Cycling | Running | |
---|---|---|---|---|
Absolute workload a | All (N = 17) | 1.03 ± 0.18 | 210 ± 24 | 14.1 ± 1.4 |
Faster (n = 9) | 1.14 ± 0.18 | 221 ± 26 | 14.9 ± 0.8 | |
Slower (n = 8) | 0.92 ± 0.09 ** | 197 ± 15 | 13.2 ± 1.4 * | |
Relative workload (%maximal workload) | All (N = 17) | 96.6 ± 8.8 | 61.3 ± 5.2 | 80.5 ± 4.9 |
Faster (n = 9) | 97.8 ± 10.0 | 61.5 ± 5.5 | 83.4 ± 2.9 | |
Slower (n = 8) | 95.2 ± 7.7 | 61.0 ± 5.2 | 77.2 ± 4.5 * | |
Absolute HR (bpm) | All (N = 17) | 166 ± 12 | 166 ± 9 | 174 ± 9 |
Faster (n = 9) | 170 ± 13 | 170 ± 7 | 179 ± 7 | |
Slower (n = 8) | 162 ± 11 | 162 ± 8 | 169 ± 9 * | |
Relative HR (%HRmax) | All (N = 17) | 89.8 ± 3.7 | 91.1 ± 4.4 | 90.7 ± 5.1 |
Faster (n = 9) | 90.9 ± 3.1 | 93.1 ± 4.3 | 94.0 ± 2.2 | |
Slower (n = 8) | 88.6 ± 4.1 | 89.0 ± 3.7 | 87.0 ± 5.1 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aoyagi, A.; Ishikura, K.; Nabekura, Y. Exercise Intensity during Olympic-Distance Triathlon in Well-Trained Age-Group Athletes: An Observational Study. Sports 2021, 9, 18. https://doi.org/10.3390/sports9020018
Aoyagi A, Ishikura K, Nabekura Y. Exercise Intensity during Olympic-Distance Triathlon in Well-Trained Age-Group Athletes: An Observational Study. Sports. 2021; 9(2):18. https://doi.org/10.3390/sports9020018
Chicago/Turabian StyleAoyagi, Atsushi, Keisuke Ishikura, and Yoshiharu Nabekura. 2021. "Exercise Intensity during Olympic-Distance Triathlon in Well-Trained Age-Group Athletes: An Observational Study" Sports 9, no. 2: 18. https://doi.org/10.3390/sports9020018
APA StyleAoyagi, A., Ishikura, K., & Nabekura, Y. (2021). Exercise Intensity during Olympic-Distance Triathlon in Well-Trained Age-Group Athletes: An Observational Study. Sports, 9(2), 18. https://doi.org/10.3390/sports9020018