Quantification and Verification of Cardiorespiratory Fitness in Adults with Prehypertension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Incremental Test
2.2. Verification Test
2.3. Measurements
2.4. Data Management
- Attainment of VO2 plateau during the incremental test: For each incremental test, an assessment was made regarding the achievement of a VO2 plateau [24,25]. First, we completed a regression of the VO2 and WR relationship after excluding the first and last minute of data. Next, we calculated the “expected” increase in VO2 from the penultimate to the final stage using the VO2/WR regression. Finally, achievement of VO2 plateau was accepted when the difference between measured VO2 between the penultimate and final stage was less than 50% of the “expected” increase.
- Difference in VO2 between incremental and verification tests: To evaluate whether the highest VO2 during the verification test truly exceeded the highest incremental VO2, we calculated the “expected” verification VO2 at 105% of maximum WR using the VO2/WR regression from the incremental test as stated above. If the measured verification VO2 was equal to or exceeded the “expected” verification VO2, we concluded that the participant achieved a higher VO2 during the verification test.
- Time taken to reach highest VO2 during the verification test: Segmental regression analyses were conducted in Prism 8 (version 8.4.2, GraphPad Software, San Diego, CA, USA) to estimate the time at which the VO2 reached a “plateau” during the verification test. A similar assessment was conducted in Microsoft Excel (version 2011, Microsoft, Redmond, WA, USA) using visual inspection of the VO2 (L·min–1) versus time (s) plot to compare the two methods (i.e., Prism 8 vs. visual inspection in Excel).
- Quantification of cardiorespiratory fitness: VO2max was predicted for each participant using equations from Hansen and Wasserman, with age of 30 years used for adults younger than 30 years [16]:
2.5. Data Analyses
3. Results
3.1. Incremental Test
3.2. Verification Test
3.3. Incremental vs. Verification Test
3.4. Quantification of Cardiorespiratory Fitness
3.5. Predictors of Maximal Oxygen Uptake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nwankwo, T.; Yoon, S.S.; Burt, V.; Gu, Q. Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011–2012. In NCHS Data Brief; US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2013; pp. 1–8. [Google Scholar]
- Vasan, R.S.; Massaro, J.M.; Wilson, P.W.; Seshadri, S.; Wolf, P.A.; Levy, D.; D’Agostino, R.B. Antecedent blood pressure and risk of cardiovascular disease: The framingham heart study. Circulation 2002, 105, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Greenland, P.; Knoll, M.D.; Stamler, J.; Neaton, J.D.; Dyer, A.R.; Garside, D.B.; Wilson, P.W. Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. J. Am. Med. Assoc. 2003, 290, 891–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faselis, C.; Doumas, M.; Kokkinos, J.P.; Panagiotakos, D.; Kheirbek, R.; Sheriff, H.M.; Hare, K.; Papademetriou, V.; Fletcher, R.; Kokkinos, P. Exercise capacity and progression from prehypertension to hypertension. Hypertension 2012, 60, 333–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Park, W. The inverse relationship between cardiorespiratory fitness and intima-media thickness with prehypertensive middle-aged women. Tohoku J. Exp. Med. 2017, 243, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Kokkinos, P.; Pittaras, A.; Manolis, A.; Panagiotakos, D.; Narayan, P.; Manjoros, D.; Amdur, R.L.; Singh, S. Exercise capacity and 24-h blood pressure in prehypertensive men and women. Am. J. Hypertens. 2006, 19, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Kokkinos, P.; Pittaras, A.; Narayan, P.; Faselis, C.; Singh, S.; Manolis, A. Exercise capacity and blood pressure associations with left ventricular mass in prehypertensive individuals. Hypertension 2007, 49, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Kokkinos, P.; Myers, J.; Doumas, M.; Faselis, C.; Manolis, A.; Pittaras, A.; Kokkinos, J.P.; Singh, S.; Fletcher, R.D. Exercise capacity and all-cause mortality in prehypertensive men. Am. J. Hypertens. 2009, 22, 735–741. [Google Scholar] [CrossRef] [Green Version]
- Wagner, E.N.; Hong, S.; Wilson, K.L.; Calfas, K.J.; Rock, C.L.; Redwine, L.S.; von Känel, R.; Mills, P.J. Effects of caloric intake and aerobic activity in individuals with prehypertension and hypertension on levels of inflammatory, adhesion and prothrombotic biomarkers-secondary analysis of a randomized controlled trial. J. Clin. Med. 2020, 9, 655. [Google Scholar] [CrossRef] [Green Version]
- Tadic, M.; Cuspidi, C.; Backovic, S.; Kleut, M.; Ivanovic, B.; Scepanovic, R.; Iracek, O.; Celic, V. High-normal blood pressure, functional capacity and left heart mechanics: Is there any connection? Blood Press. 2014, 23, 315–321. [Google Scholar] [CrossRef]
- Phillips, D.; Stickland, M.; Lesser, I.; Petersen, S. The effects of heavy load carriage on physiological responses to graded exercise. Eur. J. Appl. Physiol. 2016, 116, 275–280. [Google Scholar] [CrossRef]
- Garrison, R.J.; Kannel, W.B.; Stokes, J., III; Castelli, W.P. Incidence and precursors of hypertension in young adults: The framingham offspring study. Prev. Med. 1987, 16, 235–251. [Google Scholar] [CrossRef]
- Lorenzo, S.; Babb, T.G. Quantification of cardiorespiratory fitness in healthy nonobese and obese men and women. Chest 2012, 141, 1031–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Thoracic Society; American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am. J. Respir. Crit. Care Med. 2003, 167, 211–277. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Arena, R.; Halle, M.; Piepoli, M.F.; Myers, J.; Lavie, C.J. 2016 focused update: Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 2016, 133, e694–e711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasserman, K.; Hansen, J.E.; Sue, D.Y.; Stringer, W.W.; Whipp, B.J. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications, 5th ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2005; pp. 160–182. [Google Scholar]
- Hill, A.; Lupton, H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q. J. Med. 1923, 62, 135–171. [Google Scholar] [CrossRef]
- Poole, D.C.; Jones, A.M. Measurement of the maximum oxygen uptake VO2max: VO2peak is no longer acceptable. J. Appl. Physiol. 2017, 122, 997–1002. [Google Scholar] [CrossRef]
- Kirkeberg, J.M.; Dalleck, L.C.; Kamphoff, C.S.; Pettitt, R.W. Validity of 3 protocols for verifying VO2max. Int. J. Sports Med. 2011, 32, 266–270. [Google Scholar] [CrossRef]
- Sawyer, B.J.; Tucker, W.J.; Bhammar, D.M.; Gaesser, G.A. Using a verification test for determination of VO2max in sedentary adults with obesity. J. Strength Cond. Res. 2015, 29, 3432–3438. [Google Scholar] [CrossRef]
- Riebe, D.; Franklin, B.A.; Thompson, P.D.; Garber, C.E.; Whitfield, G.P.; Magal, M.; Pescatello, L.S. Updating ACSM’s recommendations for exercise preparticipation health screening. Med. Sci. Sports Exerc. 2015, 47, 2473–2479. [Google Scholar] [CrossRef] [Green Version]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T.; et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure—The JNC 7 Report. J. Am. Med. Assoc. 2003, 289, 2560–2572. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Day, J.R.; Rossiter, H.B.; Coats, E.M.; Skasick, A.; Whipp, B.J. The maximally attainable VO2 during exercise in humans: The peak vs. maximum issue. J. Appl. Physiol. 2003, 95, 1901–1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhammar, D.M.; Stickford, J.L.; Bernhardt, V.; Babb, T.G. Verification of maximal oxygen uptake in obese and nonobese children. Med. Sci. Sports Exerc. 2017, 49, 702–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, S.; Askew, C. VO2peak is an acceptable estimate of cardiorespiratory fitness but not VO2max. J. Appl. Physiol. 2018, 125, 229–232. [Google Scholar] [CrossRef] [Green Version]
- Crouter, S.E.; Antczak, A.; Hudak, J.R.; DellaValle, D.M.; Haas, J.D. Accuracy and reliability of the ParvoMedics TrueOne 2400 and MedGraphics VO2000 metabolic systems. Eur. J. Appl. Physiol. 2006, 98, 139–151. [Google Scholar] [CrossRef]
- Midgley, A.W.; McNaughton, L.R.; Carroll, S. Verification phase as a useful tool in the determination of the maximal oxygen uptake of distance runners. Appl. Physiol. Nutr. Metab. 2006, 31, 541–548. [Google Scholar] [CrossRef]
- Rossiter, H.; Kowalchuk, J.; Whipp, B. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. J. Appl. Physiol. 2006, 100, 764–770. [Google Scholar] [CrossRef]
- Poole, D.C.; Wilkerson, D.P.; Jones, A.M. Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur. J. Appl. Physiol. 2008, 102, 403–410. [Google Scholar] [CrossRef]
- Sidney, K.H.; Shephard, R.J. Maximum and submaximum exercise tests in men and women in the seventh, eighth, and ninth decades of life. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1977, 43, 280–287. [Google Scholar] [CrossRef]
- Wilkerson, D.P.; Koppo, K.; Barstow, T.J.; Jones, A.M. Effect of work rate on the functional ‘gain’of Phase II pulmonary O2 uptake response to exercise. Respir. Physiol. Neurobiol. 2004, 142, 211–223. [Google Scholar] [CrossRef]
- Jones, A.M.; Wilkerson, D.P.; Burnley, M.; Koppo, K. Prior heavy exercise enhances performance during subsequent perimaximal exercise. Med. Sci. Sports Exerc. 2003, 35, 2085–2092. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.-H.; Ihm, S.-H.; Lee, D.-H.; Chung, W.-B.; Jung, H.O.; Youn, H.-J. Prehypertension is associated with early complications of atherosclerosis but not with exercise capacity. Int. J. Cardiol. 2017, 227, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Buskirk, E.R.; Taylor, H.L. Maximal oxygen intake and its relation to body composition, with special reference to chronic physical activity and obesity. J. Appl. Physiol. 1957, 11, 72–78. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Himmelfarb, C.D.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar] [PubMed]
Variable | All (N = 11) | Men (N = 7) | Women (N = 4) | p |
---|---|---|---|---|
Age (year) | 22.5 ± 2.9 | 21.7 ± 2.4 | 23.8 ± 3.4 | 0.447 |
Height (cm) | 170.4 ± 8.3 | 174.4 ± 5.5 | 163.4 ± 8.1 | 0.047 |
Weight (kg) | 71.7 ± 12.6 | 77.0 ± 12.7 | 62.5 ± 5.5 | 0.059 |
BMI (kg·m2) | 24.6 ± 3.2 | 25.2 ± 3.2 | 23.6 ± 3.5 | 0.450 |
Normal weight/Overweight | 6/5 | 3/4 | 3/1 | 0.545 |
Resting HR (beats/min) | 75 ± 7 | 73 ± 6 | 79 ± 8 | 0.155 |
Resting systolic BP (mm Hg) | 125 ± 4 | 126 ± 3 | 124 ± 5 | 0.250 |
Resting diastolic BP (mm Hg) | 75 ± 5 | 73 ± 3 | 79 ± 5 | 0.037 |
Maximum work rate (Watt) | 206 ± 42 | 232 ± 24 | 160 ± 16 | 0.007 |
Sex | BMI (kg·m−2) | Incr VO2 (L·min−1) | Ver VO2 (L·min−1) | Ver VO2 > Incr VO2 | Incr VO2 Plateau | Incr HR (% Pred) | Incr RER | Ver Duration (s) | VO2max (% Pred) |
---|---|---|---|---|---|---|---|---|---|
F | 20.6 | 1.74 | 1.73 | No | No | 98 | 1.39 | 96 | 94.53 |
F | 21.9 | 1.67 | 1.74 | No | No | 93 | 1.42 | 103 | 88.49 |
F | 23.3 | 1.43 | 1.64 | Yes | No | 97 | 1.44 | 122 | 89.69 * |
F | 28.5 | 1.54 | 1.54 | No | Yes | 84 | 1.47 | 121 | 84.17 |
M | 20.7 | 2.22 | 2.12 | No | Yes | 89 | 1.33 | 139 | 76.62 |
M | 22.3 | 2.67 | 2.82 | Yes | Yes | 91 | 1.28 | 107 | 97.77 |
M | 22.8 | 2.77 | 2.79 | No | Yes | 95 | 1.37 | 115 | 98.26 |
M | 26.8 | 2.46 | 2.51 | No | Yes | 91 | 1.54 | 150 | 87.07 |
M | 27.2 | 2.64 | 2.57 | No | Yes | 89 | 1.39 | 145 | 85.62 |
M | 27.6 | 2.95 | 2.93 | No | Yes | 96 | 1.42 | 157 | 96.24 |
M | 29.1 | 2.46 | 2.71 | Yes | No | 79 | 1.15 | 137 | 78.56 |
Variable | Incremental Test | Verification Test | p |
---|---|---|---|
VO2 (L·min−1) | 2.23 ± 0.54 | 2.28 ± 0.54 | 0.213 |
VO2 (mL·min−1·kg−1) | 31.56 ± 6.65 | 32.22 ± 6.26 | 0.213 |
VO2 (% predicted) | 86.06 ± 8.52 | 88.13 ± 8.04 | 0.248 |
VCO2 (L·min−1) | 3.07 ± 0.94 | 2.81 ± 0.77 | 0.091 |
RER | 1.38 ± 0.10 | 1.21 ± 0.13 | 0.010 |
VE (L·min−1) | 87.47 ± 22.16 | 84.04 ± 23.20 | 0.374 |
HR (beats·min−1) | 180 ± 11 | 180 ± 7 | 0.646 |
HR (% predicted) | 91.04 ± 5.92 | 91.05 ± 3.24 | 0.646 |
VT (L) | 2.32 ± 0.63 | 2.33 ± 0.71 | 0.534 |
fB (breaths·min−1) | 38 ± 7 | 37 ± 9 | 0.477 |
RPE * | 17.2 ± 1.3 | 17.0 ± 1.5 | 0.414 |
RPB * | 5.5 ± 1.8 | 5.3 ± 2.1 | 0.705 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhammar, D.M.; Chien, L.-C. Quantification and Verification of Cardiorespiratory Fitness in Adults with Prehypertension. Sports 2021, 9, 9. https://doi.org/10.3390/sports9010009
Bhammar DM, Chien L-C. Quantification and Verification of Cardiorespiratory Fitness in Adults with Prehypertension. Sports. 2021; 9(1):9. https://doi.org/10.3390/sports9010009
Chicago/Turabian StyleBhammar, Dharini M., and Lung-Chang Chien. 2021. "Quantification and Verification of Cardiorespiratory Fitness in Adults with Prehypertension" Sports 9, no. 1: 9. https://doi.org/10.3390/sports9010009
APA StyleBhammar, D. M., & Chien, L.-C. (2021). Quantification and Verification of Cardiorespiratory Fitness in Adults with Prehypertension. Sports, 9(1), 9. https://doi.org/10.3390/sports9010009