Cardiovascular Consequences of Skeletal Muscle Impairments in Breast Cancer
Abstract
:1. Introduction
2. Skeletal Muscle Damage
2.1. Reduced Muscle Mass
2.2. Reduced Muscle Quality
2.3. Reduced Oxidative Capacity
3. Cardiovascular and Clinical Repercussions of Skeletal Muscle Damage
Limited Potential for Aerobic Exercise as a Promoter of Cardiovascular Health
4. Targeting Skeletal Muscle Health with Resistance Training
5. Considerations and Recommendations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jatoi, I.; Chen, B.E.; Anderson, W.F.; Rosenberg, P.S. Breast cancer mortality trends in the United States according to estrogen receptor status and age at diagnosis. J. Clin. Oncol. 2007, 7, 1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeSantis, C.; Jemal, A.; Ward, E.; Thun, M.J. Temporal trends in breast cancer mortality by state and race. Cancer Causes Control 2008, 19, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Hooning, M.J.; Botma, A.; Aleman, B.M.P.; Baaijens, M.H.A.; Bartelink, H.; Klijn, J.G.M.; Taylor, C.W.; van Leeuwen, F.E. Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J. Natl. Cancer Inst. 2007, 99, 365–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, L.M.; Stoner, L.; Brown, C.; Baldi, C.; McLaren, B. Cardiovascular disease among breast cancer survivors: The call for a clinical vascular health toolbox. Breast Cancer Res. Treat. 2013, 142, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Hanrahan, E.O.; Gonzalez-Angulo, A.M.; Giordano, S.H.; Rouzier, R.; Broglio, K.R.; Hortobagyi, G.N.; Valero, V. Overall survival and cause-specific mortality of patients with stage T1a, bN0M0 breast carcinoma. J. Clin. Oncol. 2007, 25, 4952–4960. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, J.L.; Byers, T.; DiGuiseppi, C.; Dabelea, D.; Denberg, T.D. Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: A retrospective cohort study. Breast Cancer Res. 2011, 3, R64. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.C.; Zuppinger, C.; Guo, X.; Kuster, G.M.; Helmes, M.; Eppenberger, H.M.; Suter, T.M.; Liao, R.; Sawyer, D.B. Anthracyclines Induce Calpain-dependent Titin Proteolysis and Necrosis in Cardiomyocytes. J. Biol. Chem. 2004, 279, 8290–8299. [Google Scholar] [CrossRef] [Green Version]
- Pentassuglia, L.; Sawyer, D.B. The role of Neuregulin-1β/ErbB signaling in the heart. Exp. Cell Res. 2009, 315, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Drafts, B.C.; Twomley, K.M.; D’Agostino, R.; Lawrence, J.; Avis, N.; Ellis, L.R.; Thohan, V.; Jordan, J.; Melin, S.A.; Torti, F.M.; et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc. Imaging 2013, 6, 877–885. [Google Scholar] [CrossRef] [Green Version]
- Harrison, J.; Friese, C.; Barton, D.L.; Janz, N.K. Heart Failure and Long-Term Survival Among Older Women With Breast Cancer. Oncol. Nurs. Forum. 2018, 45, A1–A11. [Google Scholar] [CrossRef]
- Hufnagle, J.J.; Goyal, A. Radiation Therapy Induced Cardiac Toxicity; StatPearls: Petersburg, FL, USA, 2020. [Google Scholar]
- Guigni, B.A.; Callahan, D.M.; Tourville, T.W.; Miller, M.S.; Fiske, B.; Voigt, T.; Korwin-Mihavics, B.; Anathy, V.; Dittus, K.; Toth, M.J. Skeletal muscle atrophy and dysfunction in breast cancer patients: Role for chemotherapy-derived oxidant stress. Am. J. Physiol. Cell Physiol. 2018, 315, C744–C756. [Google Scholar] [CrossRef] [PubMed]
- Aries, A.; Paradis, P.; Lefebvre, C.; Schwartz, R.J.; Nemer, M. Essential role of GATA-4 in cell survival and drug-induced cardiotoxicity. Proc. Natl. Acad. Sci. USA 2004, 101, 6975–6980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz-Hector, S. Radiation-induced Heart Disease: Review of Experimental Data on Dose Reponse and Pathogenesis. Int. J. Radiat. Biol. 1992, 61, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Senkus-Konefka, E.; Jassem, J. Cardiovascular effects of breast cancer radiotherapy. Cancer Treat. Rev. 2007, 33, 578–593. [Google Scholar] [CrossRef] [PubMed]
- Pai VBNMC. Cardiotoxicity of Chemotherapeutic Agents—Incidence, Treatment, and Prevention. Drug Saf. 2000, 22, 263–302. [Google Scholar] [CrossRef]
- Chang, H.M.; Moudgil, R.; Scarabelli, T.; Okwuosa, T.M.; Yeh, E.T. Cardiovascular Complications of Cancer Therapy: Best Practices in Diagnosis, Prevention, and Management: Part 1. JACC CardioOncol. 2017, 70, 2536–2551. [Google Scholar] [CrossRef]
- Scott, J.M.; Koelwyn, G.J.; Hornsby, W.E.; Khouri, M.; Peppercorn, J.; Douglas, P.S.; Jones, L.W. Exercise therapy as treatment for cardiovascular and oncologic disease after a diagnosis of early-stage cancer. Semin. Oncol. 2013, 40, 218–228. [Google Scholar] [CrossRef]
- Scott, J.M.; Adams, S.C.; Koelwyn, G.J.; Jones, L.W. Cardiovascular Late Effects and Exercise Treatment in Breast Cancer: Current Evidence and Future Directions. Can. J. Cardiovasc. 2016, 32, 881–890. [Google Scholar] [CrossRef] [Green Version]
- Meijers, W.C.; de Boer, R.A. Common risk factors for heart failure and cancer. Cardiovasc. Res. 2019, 115, 844–853. [Google Scholar] [CrossRef]
- SEER Cancer Statistics Review (CSR), 1975–2017 [Internet]. Available online: https://seer.cancer.gov/csr/1975_2017/sections.html (accessed on 16 May 2020).
- Giordano, S.; Hage, F.G.; Xing, D.; Chen, Y.F.; Allon, S.; Chen, C.; Oparil, S. Estrogen and cardiovascular disease: Is timing everything? Am. J. Med. Sci. 2015, 350, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Beaudry, R.I.; Howden, E.J.; Foulkes, S.; Bigaran, A.; Claus, P.; Haykowsky, M.J.; Gerche, A.L. Determinants of exercise intolerance in breast cancer patients prior to anthracycline chemotherapy. Physiol. Rep. 2019, 7, e13971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, L.W.; Haykowsky, M.J.; Swartz, J.J.; Douglas, P.S.; Mackey, J.R. Early Breast Cancer Therapy and Cardiovascular Injury. J. Am. Coll. Cardiol. 2007, 50, 1435–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, N.J.; Chang, Y.; Bender, C.; Conley, Y.; Chlebowski, R.T.; Van Londen, G.J.; Foraker, R.; Wassertheil-Smoller, S.; Stefanick, M.L.; Kuller, L.H. Cardiovascular disease and mortality after breast cancer in postmenopausal women: Results from the Women’s Health Initiative. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturgeon, K.M.; Mathis, K.M.; Rogers, C.J.; Schmitz, K.H.; Waning, D.L. Cancer- and Chemotherapy-Induced Musculoskeletal Degradation. JBMR PLUS 2019, 3, e10187. [Google Scholar] [CrossRef] [PubMed]
- Gilliam, L.A.A.; St Clair, D.K. Chemotherapy-induced weakness and fatigue in skeletal muscle: The role of oxidative stress. Antioxid. Redox Signal. 2011, 15, 2543–2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonsignore, A.; Warburton, D. The mechanisms responsible for exercise intolerance in early-stage breast cancer: What role does chemotherapy play? Hong Kong Physiother. J. 2013, 31, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Bruera, E.; Brenneis, C.; Michaud, M.; Jackson, P.I.; Macdonald, R.N. Muscle electrophysiology in patients with advanced breast cancer. J. Natl. Cancer Inst. 1988, 80, 282–285. [Google Scholar] [CrossRef]
- Aversa, Z.; Costelli, P.; Muscaritoli, M. Cancer-induced muscle wasting: Latest findings in prevention and treatment. Ther. Adv. Med. Oncol. 2017, 9, 369–382. [Google Scholar] [CrossRef] [Green Version]
- Kirkham, A.A.; Beaudry, R.I.; Paterson, D.I.; Mackey, J.R.; Haykowsky, M.J. Curing breast cancer and killing the heart: A novel model to explain elevated cardiovascular disease and mortality risk among women with early stage breast cancer. Prog. Cardiovasc. Dis. 2019, 62, 116–126. [Google Scholar] [CrossRef]
- Beaudry, R.I.; Kirkham, A.A.; Thompson, R.B.; Grenier, J.G.; Mackey, J.R.; Haykowsky, M.J. Exercise Intolerance in Anthracycline-Treated Breast Cancer Survivors: The Role of Skeletal Muscle Bioenergetics, Oxygenation, and Composition. The Oncologist 2020. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.W.; Haykowsky, M.; Pituskin, E.N.; Jendzjowsky, N.G.; Tomczak, C.R.; Haennel, R.G.; Mackey, J.R. Cardiovascular Reserve and Risk Profile of Postmenopausal Women After Chemoendocrine Therapy for Hormone Receptor Positive Operable Breast Cancer. The Oncologist 2007, 12, 1156–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, L.W.; Eves, N.D.; Mackey, J.R.; Peddle, C.J.; Haykowsky, M.; Joy, A.A.; Courneya, K.S.; Tankel, K.; Spratlin, J.; Reiman, T. Safety and feasibility of cardiopulmonary exercise testing in patients with advanced cancer. Lung Cancer 2007, 55, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.; Prakash, M.; Froelicher, V.; Do, D.; Partington, S.; Edwin Atwood, J. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med. 2002, 346, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Ozemek, C.; Laddu, D.R.; Lavie, C.J.; Claeys, H.; Kaminsky, L.A.; Ross, R.; Wisloff, U.; Arena, R.; Blair, S.N. An Update on the Role of Cardiorespiratory Fitness, Structured Exercise and Lifestyle Physical Activity in Preventing Cardiovascular Disease and Health Risk. Prog. Cardiovasc. Dis. 2018, 61, 484–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peel, J.B.; Sui, X.; Adams, S.A.; HIbert, J.R.; Hardin, J.W.; Blair, S.N. A prospective study of cardiorespiratory fitness and breast cancer mortality. Med. Sci. Sports Exerc. 2009, 41, 742–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, L.W.; Courneya, K.S.; Mackey, J.R.; Muss, H.B.; Pituskin, E.N.; Scott, J.M.; Hornsby, W.E.; Coan, A.D.; Herndon, J.E.; Douglas, P.S.; et al. Cardiopulmonary function and age-related decline across the breast cancer: Survivorship continuum. J. Clin. Oncol. 2012, 30, 2530–2537. [Google Scholar] [CrossRef] [Green Version]
- Toth, M.J.; Callahan, D.M.; Miller, M.S.; Tourville, T.W.; Hackett, S.B.; Couch, M.E.; Dittus, K. Skeletal muscle fiber size and fiber type distribution in human cancer: Effects of weight loss and relationship to physical function. Clin. Nutr. 2016, 35, 1359–1365. [Google Scholar] [CrossRef]
- Mijwel, S.; Cardinale, D.A.; Norrbom, J.; Chapman, M.; Ivarsson, N.; Wengström, Y.; Sundberg, C.J.; Rundqvist, H. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer. FASEB J. 2018, 32, 5495–5505. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, D.E.; Webb, K.A.; Langer, D.; Elbehairy, A.F.; Neder, J.A.; Dudgeon, D.J. Respiratory Factors Contributing to Exercise Intolerance in Breast Cancer Survivors: A Case-Control Study. J. Pain. Symptom. Manag. 2016, 52, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Romero, S.A.D.; Jones, L.; Bauml, J.M.; Li, Q.S.; Cohen, R.B.; Mao, J.J. The association between fatigue and pain symptoms and decreased physical activity after cancer. Support Care Cancer 2018, 26, 3423–3430. [Google Scholar] [CrossRef]
- Evans, W.J. Skeletal muscle loss: Cachexia, sarcopenia, and inactivity. Am. J. Clin. Nutri. 2010, 91, 1123S–1127S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.P.; Puppa, M.J.; Gao, S.; Sato, S.; Welle, S.L.; Carson, J.A. Muscle mTORC1 suppression by IL-6 during cancer cachexia: A role for AMPK. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E1042–E1052. [Google Scholar] [CrossRef] [PubMed]
- Esau, P.J.; Gittemeier, E.M.; Opoku-Acheampong, A.B.; Rollins, K.S.; Baumfalk, D.R.; Poole, D.C.; Musch, T.I.; Behnke, B.J.; Copp, S.W. Prostate cancer reduces endurance exercise capacity in association with reductions in cardiac and skeletal muscle mass in the rat. Am. J. Cancer Res. 2017, 7, 2566–2576. [Google Scholar] [PubMed]
- Cicoira, M.; Zanolla, L.; Franceschini, L.; Rossi, A.; Golia, G.; Zamboni, M.; Tosoni, P.; Zardini, P. Skeletal muscle mass independently predicts peak oxygen consumption and ventilatory response during exercise in noncachectic patients with chronic heart failure. J. Am. Coll. Cardiol. 2001, 37, 2080–2085. [Google Scholar] [CrossRef] [Green Version]
- Strassburg, S.; Springer, J.; Anker, S.D. Muscle wasting in cardiac cachexia. Int. J. Biochem. Cell Biol. 2005, 37, 1938–1947. [Google Scholar] [CrossRef]
- Battaglini, C.L.; Hackney, A.C.; Goodwin, M.L. Cancer cachexia: Muscle physiology and exercise training. Cancers (Basel) 2012, 4, 1247–1251. [Google Scholar] [CrossRef] [Green Version]
- Fearon, K.C.H.; Glass, D.J.; Guttridge, D.C. Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell Metab. 2012, 16, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Goodpaster, B.H.; Theriault, R.; Watkins, S.C.; Kelley, D.E. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism 2000, 49, 467–472. [Google Scholar] [CrossRef]
- Manini, T.M.; Clark, B.C.; Nalls, M.A.; Goodpaster, B.H.; Ploutz-Snyder, L.L.; Harris, T.B. Reduced physical activity increases intermuscular adipose tissue in healthy young adults. Am. J. Clin. Nutr. 2007, 85, 377–384. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Thaete, F.L.; Kelley, D.E. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am. J. Clin. Nutr. 2000, 71, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Haykowsky, M.J.; Kouba, E.J.; Brubaker, P.H.; Nicklas, B.J.; Eggebeen, J.; Kitzman, D.W. Skeletal muscle composition and its relation to exercise intolerance in older patients with heart failure and preserved ejection fraction. Am. J. Cardiol. 2014, 113, 1211–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinonen, I.; Bucci, M.; Kemppainen, J.; Knuuti, J.; Nuutila, P.; Boushel, R.; Kalliokoski, K.K. Regulation of subcutaneous adipose tissue blood flow during exercise in humans. J. Appl. Physiol. 2012, 112, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Haykowsky, M.J.; Beaudry, R.; Brothers, R.M.; Nelson, M.D.; Sarma, S.; Gerche, A.L. Pathophysiology of exercise intolerance in breast cancer survivors with preserved left ventricular ejection fraction. Clin. Sci. 2016, 130, 2239–2244. [Google Scholar] [CrossRef] [PubMed]
- Didier, K.D.; Ederer, A.K.; Reiter, L.K.; Brown, M.; Hardy, R.; Caldwell, J.; Black, C.; Bemben, M.G.; Ade, C.J. Altered blood flow response to small muscle mass exercise in cancer survivors treated with adjuvant therapy. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, C.M.; Hsieh, C.C.; Sprod, L.K.; Carter, S.D.; Hayward, R. Cancer treatment-induced alterations in muscular fitness and quality of life: The role of exercise training. Ann. Oncol. 2007. [Google Scholar] [CrossRef]
- Winters-Stone, K.M.; Bennett, J.A.; Nail, L.; Schwartz, A. Strength, physical activity, and age predict fatigue in older breast cancer survivors. Oncol. Nurs. Forum. 2008, 18, 1957–1962. [Google Scholar] [CrossRef]
- Kaya, T.; Karatepe, A.G.; Günaydn, R.; Yetiş, H.; Uslu, A. Disability and health-related quality of life after breast cancer surgery: Relation to impairments. South Med. J. 2010, 103, 37–41. [Google Scholar] [CrossRef]
- Butt, Z.; Rosenbloom, S.K.; Abernethy, A.P.; Beaumont, J.L.; Paul, D.; Hampton, D.; Jacobsen, P.B.; Syrjala, K.L.; Von Roenn, J.H.; Cella, D. Fatigue is the most important symptom for advanced cancer patients who have had chemotherapy. JNCCN J. Natl. Compr. Cancer Netw. 2008, 6, 448–455. [Google Scholar] [CrossRef] [Green Version]
- Villaseñor, A.; Ballard-Barbash, R.; Baumgartner, K.; Baumgartner, R.; Bernstein, L.; McTiernan, A.; Neuhouser, M.L. Prevalence and prognostic effect of sarcopenia in breast cancer survivors: The HEAL Study. J. Cancer Surviv. 2012, 6, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Piraux, E.; Caty, G.; Reychler, G. Effects of preoperative combined aerobic and resistance exercise training in cancer patients undergoing tumour resection surgery: A systematic review of randomised trials. Surg. Oncol. 2018, 27, 584–594. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Saltin, B. Exercise as medicine—Evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J. Med. Sci. Sport. 2015, 25, 1–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liska, D.; Straska, B.; Pupis, M. Physical Therapy as an Adjuvant Treatment for the Prevention and Treatment of Cancer. Klin. Onkol. 2020, 33, 101–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courneya, K.S.; Segal, R.J.; Mackey, J.R.; Gelmon, K.; Reid, R.D.; Friedenreich, C.M.; Ladha, A.B.; Proulx, C.; Vallance, J.K.H.; Lane, K.; et al. Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: A multicenter randomized controlled trial. J. Clin. Oncol. 2007, 25, 4396–4404. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, K.H.; Courneya, K.S.; Matthews, C.; Demark-Wahnefried, W.; Galvão, D.A.; Pinto, B.M.; Irwin, M.L.; Wolin, K.Y.; Segal, R.J.; Lucia, A.; et al. American college of sports medicine roundtable on exercise guidelines for cancer survivors. Med. Sci. Sports Exerc. 2010, 42, 1409–1426. [Google Scholar] [CrossRef]
- ACS Guidelines for Nutrition and Physical Activity [Internet]. Available online: https://www.cancer.org/healthy/eat-healthy-get-active/acs-guidelines-nutrition-physical-activity-cancer-prevention/guidelines.html (accessed on 18 May 2020).
- Hornsby, W.E.; Douglas, P.S.; West, M.J.; Kenjale, A.A.; Lane, A.R.; Schwitzer, E.R.; Ray, K.A.; Herndon, J.E.; Coan, A.; Gutierrez, A.; et al. Safety and efficacy of aerobic training in operable breast cancer patients receiving neoadjuvant chemotherapy: A phase II randomized trial. Acta Oncol. (Madr.) 2014, 53, 65–74. [Google Scholar] [CrossRef]
- Kolden, G.G.; Strauman, T.J.; Ward, A.; Kuta, J.; Woods, T.E.; Schneider, K.L.; Heerey, E.; Sanborn, L.; Burt, C.; Millbrandt, L.; et al. A pilot study of group exercise training (GET) for women with primary breast cancer: Feasibility and health benefits. Psychooncology 2002, 11, 447–456. [Google Scholar] [CrossRef]
- Cheema, B.S.; Kilbreath, S.L.; Fahey, P.P.; Delaney, G.P.; Atlantis, E. Safety and efficacy of progressive resistance training in breast cancer: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2014, 148, 249–268. [Google Scholar] [CrossRef]
- Speck, R.M.; Courneya, K.S.; Mâsse, L.C.; Duval, S.; Schmitz, K.H. An update of controlled physical activity trials in cancer survivors: A systematic review and meta-analysis. J. Cancer Surviv. 2010, 4, 87–100. [Google Scholar] [CrossRef]
- Khouri, M.G.; Hornsby, W.E.; Risum, N.; Velazquez, E.J.; Thomas, S.; Lane, A.; Scott, J.M.; Koelwyn, G.J.; Herndon, J.E.; Mackey, J.R.; et al. Utility of 3-dimensional echocardiography, global longitudinal strain, and exercise stress echocardiography to detect cardiac dysfunction in breast cancer patients treated with doxorubicin-containing adjuvant therapy. Breast Cancer Res. Treat. 2014, 143, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.W.; Liang, Y.; Pituskin, E.N.; Battaglini, C.L.; Scott, J.M.; Hornsby, W.E.; Haykowsky, M. Effect of Exercise Training on Peak Oxygen Consumption in Patients with Cancer: A Meta-Analysis. Oncologist 2011. [Google Scholar] [CrossRef]
- Battaglini, C.; Bottaro, M.; Dennehy, C.; Rae, L.; Shields, E.; Kirk, D.; Hackney, A. The effects of an individualized exercise intervention on body composition in breast cancer patients undergoing treatment. Sao Paulo Med. J. 2007, 16, 112–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, L.W.; Habel, L.A.; Weltzien, E.; Castillo, A.; Gupta, D.; Kroenke, C.H.; Kwan, M.L.; Quesenberry, C.P.; Scott, J.; Sternfeld, B.; et al. Exercise and Risk of cardiovascular events in women with nonmetastatic breast cancer. J. Clin. Oncol. 2016, 34, 2743–2749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palomo, A.; Ray, R.M.; Johnson, L.; Paskett, E.; Caan, B.; Jones, L.; Okwuosa, T. Associations between exercise prior to and around the time of cancer diagnosis and subsequent cardiovascular events in women with breast cancer: A women’s ehalth initiative (WHI) analysis. J. Am. Coll. Cardiol. 2017, 69. [Google Scholar] [CrossRef]
- Ventura-Clapier, R.; Mettauer, B.; Bigard, X. Beneficial effects of endurance training on cardiac and skeletal muscle energy metabolism in heart failure. Cardiovasc. Res. 2007, 73, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, N.; Prasad, A.; Hastings, J.L.; Arbab-Zadeh, A.; Bhella, P.S.; Shibata, S.; Palmer, D.; Levine, B.D. Cardiovascular effects of 1 year of progressive and vigorous exercise training in previously sedentary individuals older than 65 years of age. Circulation 2010, 122, 1797–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haykowsky, M.J.; Mackey, J.R.; Thompson, R.B.; Jones, L.W.; Paterson, D.I. Adjuvant trastuzumab induces ventricular remodeling despite aerobic exercise training. Clin. Cancer Res. 2009, 15, 4963–4967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Tripathy, D.; Demark-Wahnefried, W.; Courneya, K.S.; Sami, N.; Bernstein, L.; Spicer, D.; Buchanan, T.A.; Mortimer, J.E.; Dieli-Conwright, C.M. Effect of Aerobic and Resistance Exercise Intervention on Cardiovascular Disease Risk in Women with Early-Stage Breast Cancer: A Randomized Clinical Trial. JAMA Oncol. 2019, 5, 710–714. [Google Scholar] [CrossRef]
- Kim, C.J.; Kang, D.H.; Smith, B.A.; Landers, K.A. Cardiopulmonary responses and adherence to exercise in women newly diagnosed with breast cancer undergoing adjuvant therapy. Cancer Nurs. 2006, 29, 156–165. [Google Scholar] [CrossRef]
- Scott, J.M.; Nilsen, T.S.; Gupta, D.; Jones, L.W. Exercise therapy and cardiovascular toxicity in cancer. Circulation 2018, 137, 1176–1191. [Google Scholar] [CrossRef]
- Atella, V.; Piano Mortari, A.; Kopinska, J.; Belotti, F.; Lapi, F.; Cricelli, C.; Fontana, L. Trends in age-related disease burden and healthcare utilization. Aging Cell 2019, 18. [Google Scholar] [CrossRef] [PubMed]
- McLeod, M.; Breen, L.; Hamilton, D.L.; Philp, A. Live strong and prosper: The importance of skeletal muscle strength for healthy ageing. Biogerontology 2016, 17, 497–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battaglini, C.L.; Mills, R.C.; Phillips, B.L.; Lee, J.T.; Story, C.E.; Nascimento, M.G.B.; Hackney, A.C. Twenty-five years of research on the effects of exercise training in breast cancer survivors: A systematic review of the literature. World J. Clin. Oncol. 2014, 5, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Hanson, E.D.; Wagoner, C.W.; Anderson, T.; Battaglini, C.L. The Independent Effects of Strength Training in Cancer Survivors: A Systematic Review. Curr. Oncol. Rep. 2016, 18, 31. [Google Scholar] [CrossRef] [PubMed]
- Hanson, E.D.; Srivatsan, S.R.; Agrawal, S.; Menon, K.S.; Delmonico, M.J.; Wang, M.Q.; Hurley, B.F. Effects of strength training on physical function: Influence of power, strength, and body composition. J. Strength Cond. Res. 2009, 23, 2627–2637. [Google Scholar] [CrossRef] [Green Version]
- Vincent, K.R.; Braith, R.W.; Feldman, R.A.; Kallas, H.E.; Lowenthal, D.T. Improved cardiorespiratory endurance following 6 months of resistance exercise in elderly men and women. Arch. Intern Med. 2002, 162, 673–678. [Google Scholar] [CrossRef]
- Frontera, W.R.; Meredith, C.N.; O’Reilly, K.P.; Evans, W.J. Strength training and determinants of VO2(max) in older men. J. Appl. Physiol. 1990, 68, 329–333. [Google Scholar] [CrossRef] [Green Version]
- Wagoner, C.W.; Hanson, E.D.; Ryan, E.D.; Brooks, R.; Wood, W.A.; Jensen, B.C.; Lee, J.T.; Coffman, E.M.; Battaglini, C.L. Two weeks of lower body resistance training enhances cycling tolerability to improve precision of maximal cardiopulmonary exercise testing in sedentary middle-aged females. Appl. Physiol. Nutr. Metab. 2019, 44, 1159–1164. [Google Scholar] [CrossRef]
- Dos Santos, W.D.N.; Gentil, P.; de Moraes, R.F.; Ferreira Júnior, J.B.; Campos, M.H.; de Lira, C.A.B.; Freitas Júnior, R.; Bottaro, M.; Vieira, C.A. Chronic Effects of Resistance Training in Breast Cancer Survivors. Biomed. Res. Int. 2017. [Google Scholar] [CrossRef] [Green Version]
- Rahnama, N.; Nouri, R.; Rahmaninia, F.; Damirchi, A.; Emami, H. The effects of exercise training on maximum aerobic capacity, resting heart rate, blood pressure and anthropometric variables of postmenopausal women with breast cancer. J. Res. Med. Sci. 2010, 15, 78–83. [Google Scholar]
- Linschoten, M.; Teske, A.J.; Cramer, M.J.; van der Wall, E.; Asselbergs, F.W. Chemotherapy-Related Cardiac Dysfunction: A Systematic Review of Genetic Variants Modulating Individual Risk. Circ. Genom. Precis. Med. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.W.; Hornsby, W.E.; Freedland, S.J.; Lane, A.; West, M.J.; Moul, J.W.; Ferrandino, M.N.; Allen, J.D.; Kenjale, A.A.; Thomas, S.M.; et al. Effects of nonlinear aerobic training on erectile dysfunction and cardiovascular function following radical prostatectomy for clinically localized prostate cancer. Eur. Urol. 2014, 65, 853–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkham, A.A.; Bonsignore, A.; Bland, K.A.; McKenzie, D.C.; Gelmon, K.A.; Van Patten, C.L.; Campbell, K.L. Exercise prescription and adherence for breast cancer: One size does not FITT All. Med. Sci. Sports Exerc. 2018, 50, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Quevedo-Jerez, K.; Gil-Rey, E.; Maldonado-Martín, S.; Herrero-Román, F. Exercise-Intensity Adherence During Aerobic Training and Cardiovascular Response During Resistance Training in Cancer Survivors. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
H. Zieff, G.; W. Wagoner, C.; Paterson, C.; Pagan Lassalle, P.; T. Lee, J. Cardiovascular Consequences of Skeletal Muscle Impairments in Breast Cancer. Sports 2020, 8, 80. https://doi.org/10.3390/sports8060080
H. Zieff G, W. Wagoner C, Paterson C, Pagan Lassalle P, T. Lee J. Cardiovascular Consequences of Skeletal Muscle Impairments in Breast Cancer. Sports. 2020; 8(6):80. https://doi.org/10.3390/sports8060080
Chicago/Turabian StyleH. Zieff, Gabriel, Chad W. Wagoner, Craig Paterson, Patricia Pagan Lassalle, and Jordan T. Lee. 2020. "Cardiovascular Consequences of Skeletal Muscle Impairments in Breast Cancer" Sports 8, no. 6: 80. https://doi.org/10.3390/sports8060080
APA StyleH. Zieff, G., W. Wagoner, C., Paterson, C., Pagan Lassalle, P., & T. Lee, J. (2020). Cardiovascular Consequences of Skeletal Muscle Impairments in Breast Cancer. Sports, 8(6), 80. https://doi.org/10.3390/sports8060080