Chronic Fish Oil Consumption with Resistance Training Improves Grip Strength, Physical Function, and Blood Pressure in Community-Dwelling Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Resistance Exercise Training
2.4. Fish Oil Supplement and Diet
2.5. Handgrip Strength and Physical Function Assessment
2.6. Blood Pressure Measurement
2.7. Statistical Analysis
3. Results
3.1. Handgrip Strength and Physical Function
3.2. Blood Pressure
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Carmeli, E.; Coleman, R.; Reznick, A.Z. The biochemistry of aging muscle. Exp. Gerontol. 2002, 37, 477–489. [Google Scholar] [CrossRef]
- Aniansson, A.; Sperling, L.; Rundgren, A.; Lehnberg, E. Muscle function in 75-year-old men and women. A longitudinal study. Scand. J. Rehabil. Med. Suppl. 1983, 9, 92–102. [Google Scholar] [PubMed]
- Wolfson, L.; Judge, J.; Whipple, R.; King, M. Strength is a major factor in balance, gait, and the occurrence of falls. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, 64–67. [Google Scholar] [PubMed]
- Tinetti, M.E.; Williams, C.S. Falls, injuries due to falls, and the risk of admission to a nursing home. N. Engl. J. Med. 1997, 337, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Giampaoli, S.; Ferrucci, L.; Cecchi, F.; Lo Noce, C.; Poce, A.; Dima, F.; Santaquilani, A.; Vescio, M.F.; Menotti, A. Hand-grip strength predicts incident disability in non-disabled older men. Age Ageing 1999, 28, 283–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rantanen, T.; Guralnik, J.M.; Foley, D.; Masaki, K.; Leveille, S.; Curb, J.D.; White, L. Midlife hand grip strength as a predictor of old age disability. JAMA 1999, 281, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Atkins, J.L.; Whincup, P.H.; Morris, R.W.; Lennon, L.T.; Papacosta, O.; Wannamethee, S.G. Sarcopenic obesity and risk of cardiovascular disease and mortality: A population-based cohort study of older men. J. Am. Geriatr. Soc. 2014, 62, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Bunout, D.; de la Maza, M.P.; Barrera, G.; Leiva, L.; Hirsch, S. Association between sarcopenia and mortality in healthy older people. Australas J. Ageing 2011, 30, 89–92. [Google Scholar] [CrossRef]
- Kannel, W.B.; Sorlie, P. Some health benefits of physical activity. The Framingham Study. Arch. Int. Med. 1979, 139, 857–861. [Google Scholar] [CrossRef]
- Vasan, R.S.; Beiser, A.; Seshadri, S.; Larson, M.G.; Kannel, W.B.; D’Agostino, R.B.; Levy, D. Residual lifetime risk for developing hypertension in middle-aged women and men: The Framingham Heart Study. JAMA 2002, 287, 1003–1010. [Google Scholar] [CrossRef]
- Berlin, J.A.; Colditz, G.A. A meta-analysis of physical activity in the prevention of coronary heart disease. Am. J. Epidemiol. 1990, 132, 612–628. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, G.F.; Balady, G.; Blair, S.N.; Blumenthal, J.; Caspersen, C.; Chaitman, B.; Epstein, S.; Sivarajan Froelicher, E.S.; Froelicher, V.F.; Pina, I.L.; et al. Statement on exercise: Benefits and recommendations for physical activity programs for all Americans. A statement for health professionals by the Committee on Exercise and Cardiac Rehabilitation of the Council on Clinical Cardiology, American Heart Association. Circulation 1996, 94, 857–862. [Google Scholar] [PubMed]
- Kaplan, N.M. Long-term effectiveness of nonpharmacological treatment of hypertension. Hypertension 1991, 18, I153–I160. [Google Scholar] [CrossRef] [PubMed]
- Fiatarone, M.A.; Marks, E.C.; Ryan, N.D.; Meredith, C.N.; Lipsitz, L.A.; Evans, W.J. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA 1990, 263, 3029–3034. [Google Scholar] [CrossRef] [PubMed]
- Frontera, W.R.; Meredith, C.N.; O’Reilly, K.P.; Knuttgen, H.G.; Evans, W.J. Strength conditioning in older men: Skeletal muscle hypertrophy and improved function. J. Appl. Physiol. (1985) 1988, 64, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Simons, R.; Andel, R. The effects of resistance training and walking on functional fitness in advanced old age. J. Aging Health 2006, 18, 91–105. [Google Scholar] [CrossRef]
- Taaffe, D.R.; Galvao, D.A.; Sharman, J.E.; Coombes, J.S. Reduced central blood pressure in older adults following progressive resistance training. J. Hum. Hypertens. 2007, 21, 96–98. [Google Scholar] [CrossRef]
- Lee, S.R.; Khamoui, A.V.; Jo, E.; Zourdos, M.C.; Panton, L.B.; Ormsbee, M.J.; Kim, J.S. Effect of conjugated linoleic acids and omega-3 fatty acids with or without resistance training on muscle mass in high-fat diet-fed middle-aged mice. Exp. Physiol. 2017, 102, 1500–1512. [Google Scholar] [CrossRef]
- Hainault, I.; Carolotti, M.; Hajduch, E.; Guichard, C.; Lavau, M. Fish oil in a high lard diet prevents obesity, hyperlipemia, and adipocyte insulin resistance in rats. Ann. N. Y. Acad. Sci. 1993, 683, 98–101. [Google Scholar] [CrossRef]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin. Sci. (Lond.) 2011, 121, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Halminski, M.A.; Marsh, J.B.; Harrison, E.H. Differential effects of fish oil, safflower oil and palm oil on fatty acid oxidation and glycerolipid synthesis in rat liver. J. Nutr. 1991, 121, 1554–1561. [Google Scholar] [CrossRef] [PubMed]
- GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GISSI-Prevenzione trial. Lancet 1999, 354, 447–455. [Google Scholar] [CrossRef]
- Christensen, J.H.; Gustenhoff, P.; Korup, E.; Aaroe, J.; Toft, E.; Moller, J.; Rasmussen, K.; Dyerberg, J.; Schmidt, E.B. Effect of fish oil on heart rate variability in survivors of myocardial infarction: A double blind randomised controlled trial. BMJ 1996, 312, 677–678. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, M.; Origasa, H.; Matsuzaki, M.; Matsuzawa, Y.; Saito, Y.; Ishikawa, Y.; Oikawa, S.; Sasaki, J.; Hishida, H.; Itakura, H.; et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): A randomised open-label, blinded endpoint analysis. Lancet 2007, 369, 1090–1098. [Google Scholar] [CrossRef]
- Hayashi, N.; Tashiro, T.; Yamamori, H.; Takagi, K.; Morishima, Y.; Otsubo, Y.; Sugiura, T.; Furukawa, K.; Nitta, H.; Nakajima, N.; et al. Effect of intravenous omega-6 and omega-3 fat emulsions on nitrogen retention and protein kinetics in burned rats. Nutrition 1999, 15, 135–139. [Google Scholar] [CrossRef]
- Hirschberg, Y.; Pomposelli, J.J.; Blackburn, G.L.; Istfan, N.W.; Babayan, V.; Bistrian, B.R. The effects of chronic fish oil feeding in rats on protein catabolism induced by recombinant mediators. Metabolism 1990, 39, 397–402. [Google Scholar] [CrossRef]
- Smith, H.J.; Greenberg, N.A.; Tisdale, M.J. Effect of eicosapentaenoic acid, protein and amino acids on protein synthesis and degradation in skeletal muscle of cachectic mice. Br. J. Cancer 2004, 91, 408–412. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, H.; Kasagi, F.; Yamada, M.; Fujita, S. Grip strength predicts cause-specific mortality in middle-aged and elderly persons. Am. J. Med. 2007, 120, 337–342. [Google Scholar] [CrossRef]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A., Jr.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Amaral, C.A.; Amaral, T.L.M.; Monteiro, G.T.R.; Vasconcellos, M.T.L.; Portela, M.C. Hand grip strength: Reference values for adults and elderly people of Rio Branco, Acre, Brazil. PLoS ONE 2019, 14, e0211452. [Google Scholar] [CrossRef] [PubMed]
- Kallman, D.A.; Plato, C.C.; Tobin, J.D. The role of muscle loss in the age-related decline of grip strength: Cross-sectional and longitudinal perspectives. J. Gerontol. 1990, 45, M82–M88. [Google Scholar] [CrossRef] [PubMed]
- Delmonico, M.J.; Ferrell, R.E.; Meerasahib, A.; Martel, G.F.; Roth, S.M.; Kostek, M.C.; Hurley, B.F. Blood pressure response to strength training may be influenced by angiotensinogen A-20C and angiotensin II type I receptor A1166C genotypes in older men and women. J. Am. Geriatr. Soc. 2005, 53, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Martel, G.F.; Hurlbut, D.E.; Lott, M.E.; Lemmer, J.T.; Ivey, F.M.; Roth, S.M.; Rogers, M.A.; Fleg, J.L.; Hurley, B.F. Strength training normalizes resting blood pressure in 65- to 73-year-old men and women with high normal blood pressure. J. Am. Geriatr. Soc. 1999, 47, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.H.; Reyes, R.; Welsch, M.A.; Favaloro-Sabatier, J.; Sabatier, M.; Matthew Lee, C.; Johnson, L.G.; Hooper, P.F. Concurrent cardiovascular and resistance training in healthy older adults. Med. Sci. Sports Exerc. 2001, 33, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Anton, M.M.; Cortez-Cooper, M.Y.; DeVan, A.E.; Neidre, D.B.; Cook, J.N.; Tanaka, H. Resistance training increases basal limb blood flow and vascular conductance in aging humans. J. Appl. Physiol. (1985) 2006, 101, 1351–1355. [Google Scholar] [CrossRef]
- Mortensen, J.Z.; Schmidt, E.B.; Nielsen, A.H.; Dyerberg, J. The effect of N-6 and N-3 polyunsaturated fatty acids on hemostasis, blood lipids and blood pressure. Thromb. Haemost. 1983, 50, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Sanders, T.A.; Vickers, M.; Haines, A.P. Effect on blood lipids and haemostasis of a supplement of cod-liver oil, rich in eicosapentaenoic and docosahexaenoic acids, in healthy young men. Clin. Sci. (Lond) 1981, 61, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Jaeger, W.; Wirth, M.; Voigt, S.; Naumann, E.; Zimontkowski, S.; Hajdu, I.; Goedicke, W. Lipid and blood pressure-lowering effect of mackerel diet in man. Atherosclerosis 1983, 49, 99–108. [Google Scholar] [CrossRef]
- Knapp, H.R.; FitzGerald, G.A. The antihypertensive effects of fish oil. A controlled study of polyunsaturated fatty acid supplements in essential hypertension. N Engl. J. Med. 1989, 320, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Berger, I.; Luck, K.; Taube, C.; Naumann, E.; Godicke, W. Long-term effect of mackerel diet on blood pressure, serum lipids and thromboxane formation in patients with mild essential hypertension. Atherosclerosis 1986, 62, 259–265. [Google Scholar] [CrossRef]
- Lakatta, E.G.; Levy, D. Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part II: The aging heart in health: Links to heart disease. Circulation 2003, 107, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K. Docosahexaenoic acid regulates vascular endothelial cell function and prevents cardiovascular disease. Lipids Health Dis. 2017, 16, 118. [Google Scholar] [CrossRef] [PubMed]
- O'Rourke, M.F.; Hashimoto, J. Mechanical factors in arterial aging: A clinical perspective. J. Am. Coll. Cardiol. 2007, 50, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, F.; Volpe, M. Hypertension, stroke, and endothelium. Curr. Hypertens. Rep. 2005, 7, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Ventura, H.O.; Milani, R.V.; Lavie, C.J.; Smart, F.W.; Stapleton, D.D.; Toups, T.S.; Price, H.L. Cyclosporine-induced hypertension. Efficacy of omega-3 fatty acids in patients after cardiac transplantation. Circulation 1993, 88, II281–II285. [Google Scholar] [PubMed]
- Das, U.N. Long-chain polyunsaturated fatty acids interact with nitric oxide, superoxide anion, and transforming growth factor-beta to prevent human essential hypertension. Eur. J. Clin. Nutr. 2004, 58, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Ruzickova, J.; Rossmeisl, M.; Prazak, T.; Flachs, P.; Sponarova, J.; Veck, M.; Tvrzicka, E.; Bryhn, M.; Kopecky, J. Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids 2004, 39, 1177–1185. [Google Scholar] [CrossRef]
Variable | CON (n = 8) | RT (n = 10) | RTFO (n = 10) |
---|---|---|---|
Age (years) | 66.5 ± 5.0 | 66.6 ± 7.3 | 67.1 ± 4.4 |
Height (cm) | 167.2 ± 10.24 | 167.9 ± 5.7 | 171.6 ± 9.3 |
Weight (kg) | 68.9 ± 15.8 | 66.5 ± 11.5 | 70.8 ± 13.5 |
Body mass index (kg/m2) | 24.3 ± 3.4 | 23.5 ± 3.6 | 24.0 ± 3.2 |
Exercise | Groups | Training Volume | Weeks 1–2 | Weeks 3–4 | Weeks 5–6 | Weeks 7–8 | Weeks 9–10 | Weeks 11–12 |
---|---|---|---|---|---|---|---|---|
Lat Pull-down | RT | Weight (kg) | 34.1 ± 13.2 | 39.9 ± 17.4 | 44.8 ± 19.7 | 48.5 ± 22.2 | 51.7 ± 24.3 | 54.0 ± 25.2 |
Reps | 39.4 ± 2.1 | 38.8 ± 3.8 | 36.9 ± 6.0 | 38.2 ± 2.5 | 34.3 ± 7.1 | 35.7 ± 6.8 | ||
RTFO | Weight (kg) | 28.9 ± 10.5 | 36.9 ± 13.6 | 41.3 ± 15.7 | 45.3 ± 17.7 | 47.8 ± 17.9 | 50.1 ± 17.5 | |
Reps | 40.0 ± 0.0 | 37.8 ± 3.5 | 36.4 ± 4.3 | 35.1 ± 7.1 | 33.4 ± 9.0 | 31.6 ± 8.9 | ||
Seated Row | RT | Weight (kg) | 29.0 ± 11.4 | 37.0 ± 15.0 | 41.8 ± 16.9 | 44.1 ± 20.7 | 47.9 ± 23.9 | 52.3 ± 22.2 |
Reps | 40.0 ± 0.0 | 40.0 ± 0.0 | 40.0 ± 0.0 | 37.6 ± 6.2 | 36.9 ± 6.1 | 39.0 ± 1.1 | ||
RTFO | Weight (kg) | 27.8 ± 12.3 | 34.2 ± 13.6 | 38.3 ± 15.6 | 42.7 ± 17.5 | 45.5 ± 17.5 | 48.1 ± 16.7 | |
Reps | 40.0 ± 0.0 | 40.0 ± 0.0 | 39.8 ± 0.6 | 37.3 ± 5.3 | 39.3 ± 1.5 | 38.8 ± 2.4 | ||
Biceps Curl | RT | Weight (kg) | 9.4 ± 2.9 | 12.0 ± 3.8 | 13.4 ± 4.4 | 14.4 ± 5.2 | 14.7 ± 5.5 | 15.5 ± 6.2 |
Reps | 39.6 ± 1.4 | 39.1 ± 2.8 | 37.7 ± 4.0 | 36.9 ± 4.6 | 38.0 ± 2.1 | 38.0 ± 3.6 | ||
RTFO | Weight (kg) | 9.6 ± 3.2 | 12.3 ± 4.2 | 13.9 ± 4.9 | 15.4 ± 5.3 | 16.3 ± 5.3 | 18.3 ± 6.2 | |
Reps | 40.0 ± 0.0 | 39.7 ± 0.9 | 39.2 ± 1.9 | 37.4 ± 5.0 | 38.1 ± 4.6 | 37.7 ± 4.6 | ||
Leg Press | RT | Weight (kg) | 92.7 ± 29.8 | 119.3 ± 38.5 | 134.7 ± 43.3 | 148.9 ± 49.2 | 162.1 ± 51.9 | 174.6 ± 56.0 |
Reps | 40.0 ± 0.0 | 40.0 ± 0.0 | 40.0 ± 0.0 | 39.7 ± 0.8 | 39.2 ± 1.4 | 39.2 ± 1.0 | ||
RTFO | Weight (kg) | 95.3 ± 26.6 | 124.2 ± 32.9 | 137.9 ± 37.5 | 153.2 ± 42.7 | 163.7 ± 42.1 | 168.7 ± 47.9 | |
Reps | 40.0 ± 0.0 | 40.0 ± 0.0 | 40.0 ± 0.0 | 38.5 ± 4.7 | 40.0 ± 0.0 | 40.0 ± 0.0 | ||
Calf Rise | RT | Weight (kg) | 33.7 ± 11.1 | 43.6 ± 14.5 | 48.7 ± 16.4 | 54.0 ± 18.1 | 58.8 ± 19.9 | 63.6 ± 20.8 |
Reps | 40.0 ± 0.0 | 40.0 ± 0.0 | 39.4 ± 2.1 | 39.9 ± 0.3 | 39.5 ± 0.8 | 39.4 ± 0.8 | ||
RTFO | Weight (kg) | 35.4 ± 10.5 | 46.3 ± 13.8 | 51.1 ± 16.0 | 56.7 ± 18.2 | 60.4 ± 18.5 | 71.1 ± 26.0 | |
Reps | 39.9 ± 0.2 | 36.6 ± 9.4 | 40.0 ± 0.0 | 37.7 ± 4.9 | 39.5 ± 0.9 | 37.3 ± 6.7 |
Variable | CON (n = 8) | RT (n = 10) | RTFO (n = 10) | |||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | |
Handgrip strength (kg) | 26.8 ± 6.6 | 25.8 ± 6.3 * | 28.5 ± 6.8 | 30.0 ± 7.6 * | 26.7 ± 4.6 | 29.2 ± 4.8 * |
5X-STS (s) | 6.7 ± 1.0 | 6.9 ± 1.0 | 7.1 ± 1.6 | 6.5 ± 1.3 * | 7.5 ± 1.2 | 5.9 ± 0.7 * |
TUG (s) | 6.1 ± 0.6 | 6.5 ± 0.6 * | 5.7 ± 0.7 | 5.2 ± 0.6 *! | 5.8 ± 0.8 | 4.8 ± 0.4 *! |
6MW (s) | 3.7 ± 0.5 | 3.8 ± 0.4 | 3.3 ± 0.5 | 3.0 ± 0.3 *! | 3.2 ± 0.2 | 2.7 ± 0.2 *! |
30S-STS (repetition) | 23.5 ± 1.9 | 22.5 ± 2.1 * | 20.7 ± 4.9 | 22.9 ± 4.1 * | 19.3 ± 2.9 | 23.4 ± 2.7 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-R.; Jo, E.; Khamoui, A.V. Chronic Fish Oil Consumption with Resistance Training Improves Grip Strength, Physical Function, and Blood Pressure in Community-Dwelling Older Adults. Sports 2019, 7, 167. https://doi.org/10.3390/sports7070167
Lee S-R, Jo E, Khamoui AV. Chronic Fish Oil Consumption with Resistance Training Improves Grip Strength, Physical Function, and Blood Pressure in Community-Dwelling Older Adults. Sports. 2019; 7(7):167. https://doi.org/10.3390/sports7070167
Chicago/Turabian StyleLee, Sang-Rok, Edward Jo, and Andy V. Khamoui. 2019. "Chronic Fish Oil Consumption with Resistance Training Improves Grip Strength, Physical Function, and Blood Pressure in Community-Dwelling Older Adults" Sports 7, no. 7: 167. https://doi.org/10.3390/sports7070167
APA StyleLee, S.-R., Jo, E., & Khamoui, A. V. (2019). Chronic Fish Oil Consumption with Resistance Training Improves Grip Strength, Physical Function, and Blood Pressure in Community-Dwelling Older Adults. Sports, 7(7), 167. https://doi.org/10.3390/sports7070167