Effects of Eight Weeks of High Intensity Functional Training on Glucose Control and Body Composition among Overweight and Obese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measures
2.2.1. Body Composition and Anthropometry
2.2.2. Heart Rate
2.2.3. Glucose Control
2.3. Exercise Groups
2.3.1. Aerobic and Resistance Training (A-RT) Exercise Group
2.3.2. High Intensity Functional Training (HIFT) Exercise Group
2.4. Incentive
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics and Baseline Measurement Values
3.2. Time Spent Exercising
3.3. Between-Group Differences for Body Composition and Glucose Variables
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rosella, L.C.; Lebenbaum, M.; Fitzpatrick, T.; O’Reilly, D.; Wang, J.; Booth, G.L.; Stukel, T.A.; Wodchis, W.P. Impact of diabetes on healthcare costs in a population-based cohort: A cost analysis. Diabet. Med. 2016, 33, 395–403. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Economic costs of diabetes in the U.S. In 2017. Diabetes Care 2018, 41, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M.; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [PubMed]
- Mokdad, A.H.; Ford, E.S.; Bowman, B.A.; Dietz, W.H.; Vinicor, F.; Bales, V.S.; Marks, J.S. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 2003, 289, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Fallahzadeh, H.; Ostovarfar, M.; Lotfi, M.H. Population attributable risk of risk factors for type 2 diabetes; bayesian methods. Diabet. Metab. Syndrome Cli. Res. Rev. 2019, in press. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight Fact Sheets. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 26 January 2019).
- Finkelstein, E.A.; Khavjou, O.A.; Thompson, H.; Trogdon, J.G.; Pan, L.; Sherry, B.; Dietz, W. Obesity and severe obesity forecasts through 2030. Am. J. Prev Med. 2012, 42, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabet. Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef]
- Ng, M.; Freeman, M.K.; Fleming, T.D.; Robinson, M.; Dwyer-Lindgren, L.; Thomson, B.; Wollum, A.; Sanman, E.; Wulf, S.; Lopez, A.D. Smoking prevalence and cigarette consumption in 187 countries, 1980–2012. JAMA 2014, 311, 183–192. [Google Scholar] [CrossRef]
- Stevens, G.A.; Finucane, M.M.; Paciorek, C.J.; Flaxman, S.R.; White, R.A.; Donner, A.J.; Ezzati, M.; Nutrition Impact Model Study Group. Trends in mild, moderate, and severe stunting and underweight, and progress towards mdg 1 in 141 developing countries: A systematic analysis of population representative data. Lancet 2012, 380, 824–834. [Google Scholar] [CrossRef]
- Feito, Y.; Heinrich, K.M.; Butcher, S.J.; Poston, W.S.C. High-intensity functional training (HIFT): Definition and research implications for improved fitness. Sports 2018, 6, 76. [Google Scholar] [CrossRef]
- Heinrich, K.M.; Becker, C.; Carlisle, T.; Gilmore, K.; Hauser, J.; Frye, J.; Harms, C.A. High-intensity functional training improves functional movement and body composition among cancer survivors: A pilot study. Eur. J. Cancer Care 2015, 24, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Church, T.S.; Blair, S.N.; Cocreham, S.; Johannsen, N.; Johnson, W.; Kramer, K.; Mikus, C.R.; Myers, V.; Nauta, M.; Rodarte, R.Q. Effects of aerobic and resistance training on hemoglobin a1c levels in patients with type 2 diabetes: A randomized controlled trial. JAMA 2010, 304, 2253–2262. [Google Scholar] [CrossRef] [PubMed]
- AminiLari, Z.; Fararouei, M.; Amanat, S.; Sinaei, E.; Dianatinasab, S.; AminiLari, M.; Daneshi, N.; Dianatinasab, M. The effect of 12 weeks aerobic, resistance, and combined exercises on omentin-1 levels and insulin resistance among type 2 diabetic middle-aged women. Diabet. Metab. J. 2017, 41, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Hoffstetter, W.; Serafini, P.; Mangine, G. Changes in body composition, bone metabolism, strength, and skill-specific performance resulting from 16-weeks of hift. PLoS ONE 2018, 13, e0198324. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, K.M.; Patel, P.M.; O’Neal, J.L.; Heinrich, B.S. High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: An intervention study. BMC Public Health 2014, 14, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Nieuwoudt, S.; Fealy, C.E.; Foucher, J.A.; Scelsi, A.R.; Malin, S.K.; Pagadala, M.; Rocco, M.; Burguera, B.; Kirwan, J.P. Functional high-intensity training improves pancreatic beta-cell function in adults with type 2 diabetes. Am. J. Physiol. Endocrinol. MeTable 2017, 313, E314–E320. [Google Scholar] [CrossRef] [PubMed]
- Fealy, C.E.; Nieuwoudt, S.; Foucher, J.A.; Scelsi, A.R.; Malin, S.K.; Pagadala, M.; Cruz, L.A.; Li, M.; Rocco, M.; Burguera, B.; et al. Functional high intensity exercise training ameliorates insulin resistance and cardiometabolic risk factors in type 2 diabetes. Exp. Physiol. 2018, 103, 985–994. [Google Scholar] [CrossRef]
- Kirwan, J.P.; Sacks, J.; Nieuwoudt, S. The essential role of exercise in the management of type 2 diabetes. Cleve. Clin. J. Med. 2017, 84, S15–S21. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D. Consort 2010 statement: Updated guidelines for reporting parallel group randomised trials. Ann. Intern. Med. 2010, 152, 726–732. [Google Scholar] [CrossRef]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the american college of cardiology/american heart association task force on practice guidelines and the obesity society. J. Am. Coll. Cardiol. 2014, 63, 2985–3023. [Google Scholar] [CrossRef]
- Kohrt, W.M. Preliminary evidence that dexa provides an accurate assessment of body composition. J. Appl. Physiol. 1998, 84, 372–377. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. General principles of exercise prescription. In Acsm’s Guidelines for Exercise Testing and Prescription, 10th ed.; Riebe, D., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2017; pp. 143–179. [Google Scholar]
- Glassman, G. A theoretical template for crossfit’s programming. CrossFit J. 2003, 6, 1–5. [Google Scholar]
- Pannacciulli, N.; Ortega, E.; Koska, J.; Salbe, A.D.; Bunt, J.C.; Krakoff, J. Glucose response to an oral glucose tolerance test predicts weight change in non-diabetic subjects. Obesity 2007, 15, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical power analysis. Curr. Directions Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Gibala, M.J. Functional high-intensity training: A hit to improve insulin sensitivity in type 2 diabetes. Exp. Physiol. 2018, 103, 937–938. [Google Scholar] [CrossRef] [PubMed]
- Olsen, D.B.; Sacchetti, M.; Dela, F.; Ploug, T.; Saltin, B. Glucose clearance is higher in arm than leg muscle in type 2 diabetes. J. Physiol. 2005, 565, 555–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, B.W.; Everhart, J.; Brown, R. The influence of high-resistance training on glucose tolerance in young and elderly subjects. Mech. Ageing Dev. 1989, 49, 147–157. [Google Scholar] [CrossRef]
- Fenicchia, L.; Kanaley, J.; Azevedo, J., Jr.; Miller, C.; Weinstock, R.; Carhart, R.; Ploutz-Snyder, L. Influence of resistance exercise training on glucose control in women with type 2 diabetes. Metabolism 2004, 53, 284–289. [Google Scholar] [CrossRef]
- Lessard, S.J.; Rivas, D.A.; Alves-Wagner, A.B.; Hirshman, M.F.; Gallagher, I.J.; Constantin-Teodosiu, D.; Atkins, R.; Greenhaff, P.L.; Qi, N.R.; Gustafsson, T.; et al. Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks. Diabetes 2013, 62, 2717–2727. [Google Scholar] [CrossRef]
- Stephens, N.A.; Xie, H.; Johannsen, N.M.; Church, T.S.; Smith, S.R.; Sparks, L.M. A transcriptional signature of “exercise resistance” in skeletal muscle of individuals with type 2 diabetes mellitus. Metabolism 2015, 64, 999–1004. [Google Scholar] [CrossRef] [Green Version]
- Mann, T.N.; Lamberts, R.P.; Lambert, M.I. High responders and low responders: Factors associated with individual variation in response to standardized training. Sports Med. 2014, 44, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Paine, J.; Uptgraft, J.; Wylie, R. CGSC CrossFit Study; Command and General Staff College: Fort Leavenworth, KS, USA, May 2010. [Google Scholar]
- Eather, N.; Morgan, P.J.; Lubans, D.R. Improving health-related fitness in adolescents: The crossfit teens randomised controlled trial. J. Sports Sci. 2016, 34, 209–223. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Morrison, J.; Zuniga, J. The benefits and risks of crossfit: A systematic review. Workplace Health Saf. 2017, 65, 612–618. [Google Scholar] [CrossRef] [PubMed]
- CrossFit Inc. The Crossfit Level 1 Training Guide; CrossFit, Inc.: Scotts Valley, CA, USA, 2018; p. 126. Available online: https://assets.crossfit.com/pdfs/seminars/CertRefs/CFD_L1_ParticipantHandbook_Revised_02.pdf (accessed on 26 January 2019).
- Aragon, A.A.; Schoenfeld, B.J.; Wildman, R.; Kleiner, S.; VanDusseldorp, T.; Taylor, L.; Earnest, C.P.; Arciero, P.J.; Wilborn, C.; Kalman, D.S.; et al. International society of sports nutrition position stand: Diets and body composition. J. Int. Soc. Sports Nutr. 2017, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Balk, E.M.; Earley, A.; Raman, G.; Avendano, E.A.; Pittas, A.G.; Remington, P.L. Combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: A systematic review for the community preventive services task force. Ann. Inter. Med. 2015, 163, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Dubé, J.J.; Fleishman, K.; Rousson, V.; Goodpaster, B.H.; Amati, F. Exercise dose and insulin sensitivity: Relevance for diabetes prevention. Med. Sci. Sports Exerc. 2012, 44, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Linke, S.E.; Gallo, L.C.; Norman, G.J. Attrition and adherence rates of sustained vs. Intermittent exercise interventions. Ann. Behav. Med. 2011, 42, 197–209. [Google Scholar] [CrossRef]
- Coleman, K.J.; Raynor, H.R.; Mueller, D.M.; Cerny, F.J.; Dorn, J.M.; Epstein, L.H. Providing sedentary adults with choices for meeting their walking goals. Prev. Med. 1999, 28, 510–519. [Google Scholar] [CrossRef]
- Jakicic, J.M.; Wing, R.; Butler, B.; Robertson, R. Prescribing exercise in multiple short bouts versus one continuous bout: Effects on adherence, cardiorespiratory fitness, and weight loss in overweight women. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 1995, 19, 893–901. [Google Scholar]
- DeBusk, R.F.; Stenestrand, U.; Sheehan, M.; Haskell, W.L. Training effects of long versus short bouts of exercise in healthy subjects. Am. J. Cardiol. 1990, 65, 1010–1013. [Google Scholar] [CrossRef]
- Macfarlane, D.J.; Taylor, L.H.; Cuddihy, T.F. Very short intermittent vs continuous bouts of activity in sedentary adults. Prev. Med. 2006, 43, 332–336. [Google Scholar] [CrossRef]
- Bycura, D.; Feito, Y.; Prather, C.C. Motivational factors in crossfit® training participation. Health Behav. Policy Rev. 2017, 4, 539–550. [Google Scholar] [CrossRef]
- Feito, Y.; Brown, C.; Box, A.; Heinrich, K.M.; Petruzzello, S.J. An investigation into how motivational factors differed among individuals engaging in crossfit training. SAGE Open 2018, 8, 2158244018803139. [Google Scholar] [CrossRef]
- Box, A.G.; Feito, Y.; Petruzzello, S.J.; Mangine, G.T. Mood state changes accompanying the crossfit open competition in healthy adults. Sports 2018, 6, 67. [Google Scholar] [CrossRef]
Variable | A-RT 1 M ± SD | HIFT 2 M ± SD | t | p-Value | Cohen’s d |
---|---|---|---|---|---|
Weight (kg) | 86.1 ± 9.7 | 86.6 ± 10.1 | −0.11 | 0.91 | 0.05 |
Body Mass Index (kg/m2) | 30.1 ± 3.5 | 30.9 ± 2.3 | −0.52 | 0.61 | 0.27 |
Waist Circumference (cm) | 91.8 ± 8.8 | 97.2 ± 7.0 | −1.45 | 0.17 | 0.68 |
Body Fat (%) | 43.7 ± 7.2 | 40.5 ± 7.4 | 1.04 | 0.31 | 0.44 |
Fat Mass (kg) | 35.6 ± 7.1 | 33.2 ± 6.7 | 0.74 | 0.47 | 0.35 |
Lean Body Mass (kg) | 46.5 ± 9.3 | 49.0 ± 10.4 | −0.54 | 0.60 | 0.25 |
Fasting Plasma Glucose (mg/dL) | 87.3 ± 8.1 | 88.4 ± 10.6 | 0.29 | 0.78 | 0.12 |
Glucose AUC | 4292 ± 677 | 4448 ± 793 | 0.49 | 0.63 | 0.21 |
Variable | A-RT 1 M Difference ± SD | HIFT 2 M Difference ± SD | Cohen’s d | ƒ | p-Value |
---|---|---|---|---|---|
Weight (kg) | −0.4 ± 1.4 | −0.4 ± 1.6 | 0.00 | 0.00 | 0.97 |
Body Mass Index (kg/m2) | −0.1 ± 0.6 | −0.2 ± 0.7 | 0.15 | 0.24 | 0.63 |
Waist Circumference (cm) | −2.4 ± 4.8 | −1.4 ± 5.1 | 0.20 | 0.18 | 0.68 |
Body Fat (%) | −0.3 ± 1.7 | −1.1 ± 1.6 | 0.48 | 0.94 | 0.35 |
Fat Mass (kg) | −0.6 ± 1.5 | −1.0 ± 1.7 | 0.25 | 0.34 | 0.57 |
Lean Body Mass (kg) | 0.1 ± 1.6 | 0.6 ± 1.2 | 0.35 | 0.57 | 0.46 |
Fasting Plasma Glucose (mg/dL) | 1.4 ± 8.4 | 0.4 ± 14.0 | 0.09 | 0.03 | 0.86 |
Glucose AUC | 279.4 ± 404.6 3 | −23.8 ± 577.1 | 0.61 | 1.58 | 0.23 |
Variable | A-RT 1 M Difference ± SD | HIFT 2 M Difference ± SD | Cohen’s d | ƒ | p-Value |
---|---|---|---|---|---|
Arms Lean Body Mass (kg) | 0.02 ± 0.33 | 0.17 ± 0.65 | 0.29 | 0.35 | 0.56 |
Arms Fat Mass (kg) | −0.03 ± 0.21 | −0.10 ± 0.35 | 0.24 | 0.24 | 0.63 |
Trunk Lean Body Mass (kg) | −0.14 ± 1.20 | −0.22 ± 1.53 | 0.06 | 0.02 | 0.90 |
Trunk Fat Mass (kg) | 0.02 ± 0.87 | −0.90 ± 1.57 | 0.69 | 2.49 | 0.13 |
Legs Lean Body Mass (kg) | 0.13 ± 0.84 | 0.53 ± 0.48 3 | 0.58 | 1.53 | 0.23 |
Legs Fat Mass (kg) | −0.41 ± 0.82 | −0.03 ± 0.58 | 0.54 | 1.28 | 0.27 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feito, Y.; Patel, P.; Sal Redondo, A.; Heinrich, K.M. Effects of Eight Weeks of High Intensity Functional Training on Glucose Control and Body Composition among Overweight and Obese Adults. Sports 2019, 7, 51. https://doi.org/10.3390/sports7020051
Feito Y, Patel P, Sal Redondo A, Heinrich KM. Effects of Eight Weeks of High Intensity Functional Training on Glucose Control and Body Composition among Overweight and Obese Adults. Sports. 2019; 7(2):51. https://doi.org/10.3390/sports7020051
Chicago/Turabian StyleFeito, Yuri, Pratik Patel, Andrea Sal Redondo, and Katie M. Heinrich. 2019. "Effects of Eight Weeks of High Intensity Functional Training on Glucose Control and Body Composition among Overweight and Obese Adults" Sports 7, no. 2: 51. https://doi.org/10.3390/sports7020051
APA StyleFeito, Y., Patel, P., Sal Redondo, A., & Heinrich, K. M. (2019). Effects of Eight Weeks of High Intensity Functional Training on Glucose Control and Body Composition among Overweight and Obese Adults. Sports, 7(2), 51. https://doi.org/10.3390/sports7020051