VO2FITTING: A Free and Open-Source Software for Modelling Oxygen Uptake Kinetics in Swimming and other Exercise Modalities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development and Validation of VO2FITTING Software: Source Code, Requirements, Availability and License
2.2. Subjects (Swimming Experiment)
2.3. Experimental Methodology
2.4. Experimental Measurements
2.5. Models and Parameters Estimation
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mujika, I.; Halson, S.; Burke, L.M.; Balague, G.; Farrow, D. An Integrated, Multifactorial Approach to Periodization for Optimal Performance in Individual and Team Sports. Int. J. Sports Physiol. Perform. 2018, 13, 538–561. [Google Scholar] [CrossRef]
- Przednowek, K.; Barabasz, Z.; Zadarko-Domaradzka, M.; Przednowek, K.; Nizioł-Babiarz, E.; Huzarski, M.; Sibiga, K.; Dziadek, B.; Zadarko, E. Predictive Modeling of VO2max Based on 20 m Shuttle Run Test for Young Healthy People. Appl. Sci. 2018, 8, 2213. [Google Scholar] [CrossRef]
- Abut, F.; Akay, M.F.; George, J. Developing new VO2max prediction models from maximal, submaximal and questionnaire variables using support vector machines combined with feature selection. Comput. Biol. Med. 2016, 79, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.; Poole, D. Introduction to oxygen uptake kinetics and historical development of the discipline. In Oxygen Uptake Kinetics in Sport, Exercise and Medicine; Jones, A., Poole, D., Eds.; Routledge: London, UK, 2005; pp. 3–35. [Google Scholar]
- Zacca, R.; Azevedo, R.; Ramos, V.R., Jr.; Abraldes, J.A.; Vilas-Boas, J.P.; Castro, F.A.S.; Pyne, D.B.; Fernandes, R.J. Biophysical Follow-up of Age-Group Swimmers During a Traditional Three-Peak Preparation Program. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Rossiter, H.B. Exercise: Kinetic considerations for gas exchange. Compr. Physiol. 2011, 1, 203–244. [Google Scholar] [CrossRef] [PubMed]
- Hagberg, J.M.; Hickson, R.C.; Ehsani, A.A.; Holloszy, J.O. Faster adjustment to and recovery from submaximal exercise in the trained state. J. Appl. Physiol. 1980, 48, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Green, H.J.; MacDonald, M.J.; Hughson, R.L. Progressive effect of endurance training on VO2 kinetics at the onset of submaximal exercise. J. Appl. Physiol. 1995, 79, 1914–1920. [Google Scholar] [CrossRef] [PubMed]
- Norris, S.R.; Petersen, S.R. Effects of endurance training on transient oxygen uptake responses in cyclists. J. Sports Sci. 1998, 16, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.C.; Figueiredo, P.; Oliveira, N.L.; Oliveira, J.; Silva, A.J.; Keskinen, K.L.; Rodriguez, F.A.; Machado, L.J.; Vilas-Boas, J.P.; Fernandes, R.J. VO2 kinetics in 200-m race-pace front crawl swimming. Int. J. Sports Med. 2011, 32, 765–770. [Google Scholar] [CrossRef]
- Reis, J.F.; Alves, F.B.; Bruno, P.M.; Vleck, V.; Millet, G.P. Effects of aerobic fitness on oxygen uptake kinetics in heavy intensity swimming. Eur. J. Appl. Physiol. 2012, 112, 1689–1697. [Google Scholar] [CrossRef]
- Ribeiro, J.; Figueiredo, P.; Sousa, A.; Monteiro, J.; Pelarigo, J.; Vilas-Boas, J.P.; Toussaint, H.M.; Fernandes, R.F. VO2 kinetics and metabolic contributions during full and upper body extreme swimming intensity. Eur. J. Appl. Physiol. 2015, 115, 1117–1124. [Google Scholar] [CrossRef]
- Whipp, B.J.; Davis, J.A.; Torres, F.; Wasserman, K. A test to determine parameters of aerobic function during exercise. Eur. J. Appl. Physiol. 1981, 50, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Whipp, B.J.; Mahler, M. Dynamics of pulmonary gas exchange during exercise. In Pulmonary Gas Exchange (Vol II) Organism and Environment; West, J.B., Ed.; Academic Press: London, UK, 1980; pp. 33–96. [Google Scholar]
- Poole, D.C.; Jones, A.M. Oxygen uptake kinetics. Compr. Physiol. 2012, 2, 933–996. [Google Scholar] [CrossRef] [PubMed]
- Zacca, R.; Fernandes, R.J.; Pyne, D.B.; Castro, F.A. Swimming Training Assessment: The Critical Velocity and the 400-m Test for Age-Group Swimmers. J. Strength Cond. Res. 2016, 30, 1365–1372. [Google Scholar] [CrossRef]
- Broxterman, R.M.; Layec, G.; Hureau, T.J.; Amann, M.; Richardson, R.S. Skeletal muscle bioenergetics during all-out exercise: Mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue. J. Appl. Physiol. 2017, 122, 1208–1217. [Google Scholar] [CrossRef]
- De Jesus, K.; Sousa, A.; de Jesus, K.; Ribeiro, J.; Machado, L.; Rodriguez, F.; Keskinen, K.; Vilas-Boas, J.P.; Fernandes, R.J. The effects of intensity on VO2 kinetics during incremental free swimming. Appl. Physiol. Nutr. Metab. 2015, 40, 918–923. [Google Scholar] [CrossRef]
- Gaesser, G.A.; Poole, D.C. The slow component of oxygen uptake kinetics in humans. Exerc. Sport Sci. Rev. 1996, 24, 35–71. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.W.; Poole, D.C.; Smith, J.C. The relationship between power and the time to achieve. VO(2max). Med. Sci. Sports Exerc. 2002, 34, 709–714. [Google Scholar]
- Burnley, M.; Jones, A.M. Oxygen uptake kinetics as a determinant of sports performance. Eur. J. Sport Sci. 2007, 7, 63–79. [Google Scholar] [CrossRef] [Green Version]
- Reis, J.F.; Millet, G.P.; Bruno, P.M.; Vleck, V.; Alves, F.B. Sex and Exercise Intensity Do Not Influence Oxygen Uptake Kinetics in Submaximal Swimming. Front. Physiol. 2017, 8, 72. [Google Scholar] [CrossRef]
- Fawkner, S.G.; Armstrong, N. Longitudinal changes in the kinetic response to heavy-intensity exercise in children. J. Appl. Physiol. 2004, 97, 460–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zacca, R.; Azevedo, R.; Silveira, R.P.; Vilas-Boas, J.P.; Pyne, D.B.; de S. Castro, F.A.; Fernandes, R.J. Comparison of incremental intermittent and time trial testing in age-group swimmers. J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.M.; Whitehouse, R.H.; Takaishi, M. Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965. II. Arch. Dis. Child. 1966, 41, 613–635. [Google Scholar] [CrossRef]
- Ribeiro, J.; Figueiredo, P.; Guidetti, L.; Alves, F.; Toussaint, H.; Vilas-Boas, J.P.; Baldari, C.; Fernandes, R.J. AquaTrainer(R) Snorkel does not Increase Hydrodynamic Drag but Influences Turning Time. Int. J. Sports Med. 2016, 37, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Baldari, C.; Fernandes, R.J.; Meucci, M.; Ribeiro, J.; Vilas-Boas, J.P.; Guidetti, L. Is the new AquaTrainer(R) snorkel valid for VO2 assessment in swimming? Int. J. Sports Med. 2013, 34, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, H.B.; Ward, S.A.; Kowalchuk, J.M.; Howe, F.A.; Griffiths, J.R.; Whipp, B.J. Dynamic asymmetry of phosphocreatine concentration and O2 uptake between the on- and off-transients of moderate- and high-intensity exercise in humans. J. Physiol. 2002, 541, 991–1002. [Google Scholar] [CrossRef]
- Whipp, B.J.; Rossiter, H.B. The kinetics of oxygen uptake. Physiological inferences from parameters. In Oxygen Uptake Kinetics in Sport, Exercise and Medicine; Jones, A., Poole, D., Eds.; Routledge: London, UK, 2005; pp. 62–94. [Google Scholar]
- Lamarra, N.; Whipp, B.J.; Ward, S.A.; Wasserman, K. Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J. Appl. Physiol. 1987, 62, 2003–2012. [Google Scholar] [CrossRef] [PubMed]
- Spencer, M.D.; Murias, J.M.; Lamb, H.P.; Kowalchuk, J.M.; Paterson, D.H. Are the parameters of VO2, heart rate and muscle deoxygenation kinetics affected by serial moderate-intensity exercise transitions in a single day? Eur. J. Appl. Physiol. 2011, 111, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.F.; Millet, G.P.; Malatesta, D.; Roels, B.; Borrani, F.; Vleck, V.E.; Alves, F.B. Are oxygen uptake kinetics modified when using a respiratory snorkel? Int. J. Sports Physiol. Perform. 2010, 5, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Katch, V.L.; Sady, S.S.; Freedson, P. Biological variability in maximum aerobic power. Med. Sci. Sports Exerc. 1982, 14, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Bearden, S.E.; Henning, P.C.; Bearden, T.A.; Moffatt, R.J. The slow component of VO2 kinetics in very heavy and fatiguing square-wave exercise. Eur. J. Appl. Physiol. 2004, 91, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Keir, D.A.; Murias, J.M.; Paterson, D.H.; Kowalchuk, J.M. Breath-by-breath pulmonary O2 uptake kinetics: Effect of data processing on confidence in estimating model parameters. Exp. Physiol. 2014, 99, 1511–1522. [Google Scholar] [CrossRef] [PubMed]
- Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Curran-Everett, D. Explorations in statistics: The bootstrap. Adv. Physiol. Educ. 2009, 33, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.P.; Borrani, F. Comments on point: Counterpoint: The kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phase. Modeling concerns. J. Appl. Physiol. 2009, 107, 1669–1670. [Google Scholar] [PubMed]
- Murias, J.M.; Spencer, M.D.; Kowalchuk, J.M.; Paterson, D.H. Influence of phase I duration on phase II VO2 kinetics parameter estimates in older and young adults. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, R218–R224. [Google Scholar] [CrossRef]
- Ma, S.; Rossiter, H.B.; Barstow, T.J.; Casaburi, R.; Porszasz, J. Clarifying the equation for modeling of VO2 kinetics above the lactate threshold. J. Appl. Physiol. 2010, 109, 1283–1284. [Google Scholar] [CrossRef]
- Borrani, F.; Candau, R.; Millet, G.Y.; Perrey, S.; Fuchslocher, J.; Rouillon, J.D. Is the VO2 slow component dependent on progressive recruitment of fast-twitch fibers in trained runners? J. Appl. Physiol. 2001, 90, 2212–2220. [Google Scholar] [CrossRef]
- Chang, W.; Cheng, J.; Allaire, J.; Xie, Y.; McPherson, J. Shiny: Web Application Framework for R. R Package Version 0.12.2. 2015. Available online: http://CRAN.R-project.org/package=shiny (accessed on 12 December 2016).
- Baty, F.; Ritz, C.; Charles, S.; Brutsche, M.; Flandrois, J.-P.; Delignette-Muller, M.-L. A Toolbox for Nonlinear Regression in R: The Package nlstools. J. Stat. Softw. 2015, 66, 1–21. [Google Scholar] [CrossRef]
- Elzhov, T.V.; Mullen, K.M.; Spiess, A.; Bolker, B. R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK. Plus Support Bounds 2010. [Google Scholar]
- Francescato, M.P.; Cettolo, V.; Bellio, R. Confidence intervals for the parameters estimated from simulated O2 uptake kinetics: Effects of different data treatments. Exp. Physiol. 2014, 99, 187–195. [Google Scholar] [CrossRef]
- Capelli, C.; Cautero, M.; Pogliaghi, S. Algorithms, modelling and VO2 kinetics. Eur. J. Appl. Physiol. 2011, 111, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, H.B.; Howe, F.A.; Ward, S.A.; Kowalchuk, J.M.; Griffiths, J.R.; Whipp, B.J. Intersample fluctuations in phosphocreatine concentration determined by 31P-magnetic resonance spectroscopy and parameter estimation of metabolic responses to exercise in humans. J. Physiol. 2000, 528, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Koga, S.; Shiojiri, T.; Kondo, N. Measuring VO2 kinetics. The practicalities. In Oxygen Uptake Kinetics in Sport, Exercise and Medicine; Jones, A., Poole, D., Eds.; Routledge: London, UK, 2005; pp. 39–61. [Google Scholar]
- Rossiter, H.B.; Ward, S.A.; Doyle, V.L.; Howe, F.A.; Griffiths, J.R.; Whipp, B.J. Inferences from pulmonary O2 uptake with respect to intramuscular [phosphocreatine] kinetics during moderate exercise in humans. J. Physiol. 1999, 518, 921–932. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Carter, H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000, 29, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.C.; Jones, A.M. Measurement of the maximum oxygen uptake VO2max: VO2peak is no longer acceptable. J. Appl. Physiol. 2017, 122, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.J.; Keskinen, K.L.; Colaco, P.; Querido, A.J.; Machado, L.J.; Morais, P.A.; Novais, D.Q.; Marinho, D.A.; Vilas Boas, J.P. Time limit at VO2max velocity in elite crawl swimmers. Int. J. Sports Med. 2008, 29, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Burnley, M.; Jones, A.M. Power-duration relationship: Physiology, fatigue, and the limits of human performance. Eur. J. Sport Sci. 2018, 18, 1–12. [Google Scholar] [CrossRef]
- Vanhatalo, A.; Poole, D.C.; DiMenna, F.J.; Bailey, S.J.; Jones, A.M. Muscle fiber recruitment and the slow component of O2 uptake: Constant work rate vs. all-out sprint exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R700–R707. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, P.; Pendergast, D.R.; Vilas-Boas, J.P.; Fernandes, R.J. Interplay of biomechanical, energetic, coordinative, and muscular factors in a 200 m front crawl swim. BioMed Res. Int. 2013, 2013, 897232. [Google Scholar] [CrossRef]
Mono-Exponential | Bi-Exponential | |
---|---|---|
A0 (mL·kg−1·min−1) | 8.8 ± 3.4 | 8.8 ± 3.4 |
A0 (mL·min−1) | 528 ± 204 | 528 ± 204 |
Ap (mL·kg−1·min−1) | 44.1 ± 7.0 | 40.0 ± 7.3 |
Ap (mL·min−1) | 2644 ± 419 | 2398 ± 438 |
95%CI (mL·kg−1·min−1) | 42.9 to 45.4 | 35.0 to 42.9 |
CV (%) | 1.5% | 5.3% |
TDp (s) | 20.8 ± 6.1 | 24.0 ± 6.8 |
95%CI (s) | 13.9 to 26.9 | 16.5 to 30.4 |
CV (%) | 18.5% | 16.3% |
τp (s) | 26.5 ± 12.0 | 16.5 ± 7.4 |
95%CI (s) | 18.3 to 36.4 | 8.1 to 28.1 |
CV (%) | 16.6% | 36.4% |
Asc_end (mL·kg−1·min−1) | - | 7.0 ± 1.8 |
Asc_end (mL·min−1) | - | 417 ± 108 |
95%CI (mL·kg−1·min−1) | - | 3.3 to 12.4 |
CV (%) | - | 34.8% |
TDsc (s) | - | 137 ± 23 |
95%CI (s) | 11 to 240 | |
CV (%) | - | 45% |
VO2 at the end (mL·kg−1·min−1) | 55.1 ± 6.4 | 55.1 ± 6.4 |
VO2 at the end (mL·min−1) | 3303 ± 384 | 3303 ± 384 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zacca, R.; Azevedo, R.; Figueiredo, P.; Vilas-Boas, J.P.; Castro, F.A.d.S.; Pyne, D.B.; Fernandes, R.J. VO2FITTING: A Free and Open-Source Software for Modelling Oxygen Uptake Kinetics in Swimming and other Exercise Modalities. Sports 2019, 7, 31. https://doi.org/10.3390/sports7020031
Zacca R, Azevedo R, Figueiredo P, Vilas-Boas JP, Castro FAdS, Pyne DB, Fernandes RJ. VO2FITTING: A Free and Open-Source Software for Modelling Oxygen Uptake Kinetics in Swimming and other Exercise Modalities. Sports. 2019; 7(2):31. https://doi.org/10.3390/sports7020031
Chicago/Turabian StyleZacca, Rodrigo, Rui Azevedo, Pedro Figueiredo, João Paulo Vilas-Boas, Flávio A. de S. Castro, David B. Pyne, and Ricardo J. Fernandes. 2019. "VO2FITTING: A Free and Open-Source Software for Modelling Oxygen Uptake Kinetics in Swimming and other Exercise Modalities" Sports 7, no. 2: 31. https://doi.org/10.3390/sports7020031
APA StyleZacca, R., Azevedo, R., Figueiredo, P., Vilas-Boas, J. P., Castro, F. A. d. S., Pyne, D. B., & Fernandes, R. J. (2019). VO2FITTING: A Free and Open-Source Software for Modelling Oxygen Uptake Kinetics in Swimming and other Exercise Modalities. Sports, 7(2), 31. https://doi.org/10.3390/sports7020031