An Evaluation of Heart Rate Variability in Female Youth Soccer Players Following Soccer Heading: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bakhos, L.L.; Lockhart, G.R.; Myers, R.; Linakis, J.G. Emergency department visits for concussion in young child athletes. Pediatrics 2010, 126, e550–e556. [Google Scholar] [CrossRef] [PubMed]
- Stuart, S.; Hickey, A.; Morris, R.; O’Donovan, K.; Godfrey, A. Concussion in contact sport: A challenging area to tackle. J. Sport Health Sci. 2017, 6, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Muise, D.P.; MacKenzie, S.J.; Sutherland, T.M. Frequency and magnitude of head accelerations in a Canadian interuniversity sport football team’s training camp and season. Int. J. Athl. Ther. Train. 2016, 21, 36–41. [Google Scholar] [CrossRef]
- Press, J.N.; Rowson, S. Quantifying head impact exposure in collegiate women’s soccer. Clin. J. Sport Med. 2017, 27, 104–110. [Google Scholar] [CrossRef]
- Bailes, J.E.; Petraglia, A.L.; Omalu, B.I.; Nauman, E.; Talavage, T. Role of subconcussion in repetitive mild traumatic brain injury. J. Neurosurg. 2013, 119, 1235–1245. [Google Scholar] [CrossRef]
- Lipton, M.L.; Kim, N.; Zimmerman, M.E.; Kim, M.; Stewart, W.F.; Branch, C.A.; Lipton, R.B. Soccer heading is associated with white matter microstructural and cognitive abnormalities. Radiology 2013, 268, 850–857. [Google Scholar] [CrossRef]
- Rowson, S.; Duma, S.M. Brain injury prediction: Assessing the combined probability of concussion using linear and rotational head acceleration. Ann. Biomed. Eng. 2013, 41, 873–882. [Google Scholar] [CrossRef]
- Caccese, J.B.; Lamond, L.C.; Buckley, T.A.; Kaminski, T.W. Reducing purposeful headers from goal kicks and punts may reduce cumulative exposure to head acceleration. Res. Sports Med. 2016, 24, 407–415. [Google Scholar] [CrossRef]
- Paus, T. Growth of white matter in the adolescent brain: Myelin or axon? Brain Cogn. 2010, 72, 26–35. [Google Scholar] [CrossRef]
- Chrisman, S.P.D.; Mac Donald, C.L.; Friedman, S.; Andre, J.; Rowhani-Rahbar, A.; Drescher, S.; Stein, E.; Holm, M.; Evans, N.; Poliakov, A.V.; et al. Head impact exposure during a weekend youth soccer tournament. J. Child Neurol. 2016, 31, 971–978. [Google Scholar] [CrossRef]
- Chrisman, S.P.D.; Ebel, B.E.; Stein, E.; Lowry, S.J.; Rivara, F.P. Head impact exposure in youth soccer and variation by age and sex. Clin. J. Sport Med. Off. J. Can. Acad. Sport Med. 2019, 29, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Janda, D.H.; Bir, C.A.; Cheney, A.L. An evaluation of the cumulative concussive effect of soccer heading in the youth population. Inj. Control Saf. Promot. 2002, 9, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.D.; Lepine, J.; Ellemberg, D. The independent influence of concussive and sub-concussive impacts on soccer players’ neurophysiological and neuropsychological function. Int. J. Psychophysiol. 2017, 112, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Di Virgilio, T.G.; Hunter, A.; Wilson, L.; Stewart, W.; Goodall, S.; Howatson, G.; Donaldson, D.I.; Ietswaart, M. Evidence for acute electrophysiological and cognitive changes following routine soccer heading. EBioMedicine 2016, 13, 66–71. [Google Scholar] [CrossRef]
- Gutierrez, G.M.; Conte, C.; Lightbourne, K. The relationship between impact force, neck strength, and neurocognitive performance in soccer heading in adolescent females. Pediatr. Exerc. Sci. 2014, 26, 33–40. [Google Scholar] [CrossRef]
- Berntson, G.G.; Thomas Bigger, J.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H.; et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef]
- Su, C.-F.; Kuo, T.B.; Kuo, J.-S.; Lai, H.Y.; Chen, H.I. Sympathetic and parasympathetic activities evaluated by heart-rate variability in head injury of various severities. Clin. Neurophysiol. 2005, 116, 1273–1279. [Google Scholar] [CrossRef]
- Hilz, M.J.; DeFina, P.A.; Anders, S.; Koehn, J.; Lang, C.J.; Pauli, E.; Flanagan, S.R.; Schwab, S.; Marthol, H. Frequency analysis unveils cardiac autonomic dysfunction after mild traumatic brain injury. J. Neurotrauma 2011, 28, 1727–1738. [Google Scholar] [CrossRef]
- Gall, B.; Parkhouse, W.; Goodman, D. Heart rate variability of recently concussed athletes at rest and exercise. Med. Sci. Sports Exerc. 2004, 36, 1269–1274. [Google Scholar] [CrossRef]
- Abaji, J.P.; Curnier, D.; Moore, R.D.; Elemberg, D. Persisting effects of concussion on heart rate variability during physical exertion. J. Neurotrauma 2016, 33, 811–817. [Google Scholar] [CrossRef]
- Marar, M.; McIlvain, N.M.; Fields, S.K.; Comstock, R.D. Epidemiology of concussions among united states high school athletes in 20 sports. Am. J. Sports Med. 2012, 40, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Leon, A.C.; Davis, L.L.; Kraemer, H.C. The role and interpretation of pilot studies in clinical research. J. Psychiatr. Res. 2011, 45, 626–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarvainen, M.P.; Niskanen, J.-P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV—Heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Harriss, A.; Walton, D.M.; Dickey, J.P. Direct player observation is needed to accurately quantify heading frequency in youth soccer. Res. Sports Med. 2018, 26, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, E.M.; Bir, C.A. Real-Time head acceleration measurement in girls’ youth soccer. Med. Sci. Sports Exerc. 2012, 44, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Paniccia, M.; Verweel, L.; Thomas, S.G.; Taha, T.; Keightley, M.; Willson, K.E.; Reed, N. Heart rate variability following youth concussion: how do autonomic regulation and concussion symptoms differ over time postinjury? BMJ Open Sport Exerc. Med. 2018, 4, e000355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Post-Footer Poster Footer | Poster Footer | Pre-Header | Post-Header | ||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | CI | Mean ± SD | CI | Mean ± SD | CI | Mean ± SD | CI | |
Heart Rate (bpm) | 77.2 ± 12.1 | 70.2–84.2 | 76.5 ± 12.0 | 69.5–83.5 | 76.8 ± 5.6 | 73.6–80.1 | 80.3 ± 8.3 | 75.5–85.1 |
SDNN (ms) | 59.5 ± 30.0 | 42.1–76.7 | 91.0 ± 30.3 | 73.5–108.5 | 62.3 ± 22.9 | 49.0–75.5 | 73.5 ± 31.6 | 55.2–61.7 |
RMSSD (ms) | 61.1 ± 35.9 | 40.3–81.8 | 67.3 ± 29.2 | 50.5-84.2 | 64.8 ± 34.8 | 44.7–84.8 | 62.0 ± 33.7 | 42.6–81.4 |
pNN50 (%) | 31.4 ± 22.3 | 18.5–44.3 | 35.0 ± 16.6 | 25.4–44.6 | 32.2 ± 23.8 | 18.4–45.9 | 28.6 ± 18.7 | 17.9–39.4 |
Total Power (ms2) | 3486.3 ± 3300.6 | 1580.6–5392.0 | 5659.1 ± 4348.6 | 3148.3–8170.0 | 3594.2 ± 2586.3 | 2100.9–5087.5 | 5358.1 ± 4883.6 | 2538.3–8177.8 |
HF (ms2) | 1708.9 ± 1860.4 | 634.7–2783.0 | 1857.5 ± 2109.3 | 639.6–3075.4 | 1590.4 ± 1561.7 | 688.7–2492.1 | 1481.0 ± 1773.6 | 457.0–2505.0 |
LF (ms2) | 893.6 ± 741.4 | 465.6–1321.7 | 1723.1 ± 1429.5 | 897.7–2548.5 | 969.5 ± 630.9 | 605.2–1333.8 | 1189.1 ± 903.8 | 667.3–1711.0 |
HF (nu) | 58.6 ± 18.8 | 47.7–69.4 | 50.0 ± 15.6 | 40.9–59.0 | 52.3 ± 16.8 | 42.6–62.0 | 47.3 ± 17.5 | 37.2–57.4 |
LF (nu) | 41.0 ± 18.5 | 30.3–51.7 | 49.7 ± 15.6 | 40.7–58.7 | 44.1 ± 15.9 | 34.9–53.3 | 52.3 ± 17.7 | 42.1–62.6 |
LF/HF | 0.9 ± 0.9 | 0.4–1.5 | 1.2 ± 0.7 | 0.8–1.6 | 1.3 ± 1.3 | 0.5–2.0 | 1.4 ± 1.0 | 0.9–2.0 |
Parameter | ∆ Footer | ∆Header | Effect Size (d) | ||
---|---|---|---|---|---|
Mean ± SD | CI | Mean ± SD | CI | ||
ΔHeart Rate | −0.7 ± 8.5 | −5.6–4.3 | 3.4 ± 4.5 | 0.9–6.0 | 0.43 |
ΔSDNN (ms) | 31.6 ± 31.8 | 13.2–49.9 | 11.2 ± 22.1 | −1.6–24.0 | 0.63 |
ΔRMSSD (ms) | 6.2 ± 26.8 | −9.3–21.7 | −2.8 ± 19.8 | −14.2–8.6 | 0.25 |
Δ pNN50 (%) | 3.6 ± 20.7 | −8.4–15.5 | −3.5 ± 11.2 | −10.0–3.0 | 0.31 |
ΔTotal Power (ms2) | 2172.9 ± 4951.2 | −685.9–5031.6 | 1763.9 ± 4310.3 | −724.9–4252.6 | 0.15 |
ΔHF(ms2) | 148.6 ± 2511.6 | −1301.5–1598.8 | −109.4 ± 1331.2 | −878.0–659.2 | 0.14 |
ΔLF(ms2) | 829.5 ± 1186.0 | 144.7–1514.3 | 219.6 ± 875.3 | −285.7–725.0 | 0.61 |
ΔHF (nu) | −8.6 ± 19.89 | −20.1–2.8 | −5.01 ± 13.41 | −12.8–2.7 | 0.15 |
ΔLF (nu) | 8.7 ± 19.5 | −2.6–20.0 | 8.2 ± 16.4 | −1.2–17.7 | 0.02 |
ΔLF/HF | 0.2 ± 0.9 | −0.3–0.8 | 0.2 ± 0.9 | −0.3–0.7 | 0.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harriss, A.B.; Abbott, K.; Kimpinski, K.; Holmes, J.D.; Johnson, A.M.; Walton, D.M.; Dickey, J.P. An Evaluation of Heart Rate Variability in Female Youth Soccer Players Following Soccer Heading: A Pilot Study. Sports 2019, 7, 229. https://doi.org/10.3390/sports7110229
Harriss AB, Abbott K, Kimpinski K, Holmes JD, Johnson AM, Walton DM, Dickey JP. An Evaluation of Heart Rate Variability in Female Youth Soccer Players Following Soccer Heading: A Pilot Study. Sports. 2019; 7(11):229. https://doi.org/10.3390/sports7110229
Chicago/Turabian StyleHarriss, Alexandra B., Kolten Abbott, Kurt Kimpinski, Jeffrey D. Holmes, Andrew M. Johnson, David M. Walton, and James P. Dickey. 2019. "An Evaluation of Heart Rate Variability in Female Youth Soccer Players Following Soccer Heading: A Pilot Study" Sports 7, no. 11: 229. https://doi.org/10.3390/sports7110229
APA StyleHarriss, A. B., Abbott, K., Kimpinski, K., Holmes, J. D., Johnson, A. M., Walton, D. M., & Dickey, J. P. (2019). An Evaluation of Heart Rate Variability in Female Youth Soccer Players Following Soccer Heading: A Pilot Study. Sports, 7(11), 229. https://doi.org/10.3390/sports7110229