Effects of Probiotic (Bifidobacterium longum 35624) Supplementation on Exercise Performance, Immune Modulation, and Cognitive Outlook in Division I Female Swimmers
Abstract
:1. Introduction
2. Material and Methods
2.1. General Experimental Design
2.2. Participants
2.3. Nutrition and Supplementation
2.4. Intensified Exercise Training Phase
2.5. General Performance Testing
2.6. Blood and Salivary Collection, Systemic and GI Inflammatory/Immune Markers
2.7. Cognitive Stress-Recovery Assessment
2.8. Statistical Analysis
3. Results
3.1. Study Population, Supplementation, and Nutrition
3.2. Swim and Force Plate Performance Testing
3.3. Systemic Cytokine, GI, and Salivary IgA markers
3.4. RESTQ-52 Sport
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sommer, F.; Backhed, F. The gut microbiota—Masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, R.C.; Cookson, A.L.; McNabb, W.C.; Kelly, W.J.; Roy, N.C. Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol. Lett. 2010, 309, 184–192. [Google Scholar] [PubMed]
- Ghadimi, D.; de Vrese, M.; Heller, K.J.; Schrezenmeir, J. Effect of Natural Commensal-Origin DNA on Toll-like Receptor 9 (TLR9) Signaling Cascade, Chemokine IL-8 Expression, and Barrier Integritiy of Polarized Intestinal Epithelial Cells. Inflamm. Bowel Dis. 2010, 16, 410–427. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, J.; Troost, F.J.; Konings, I.; Dekker, J.; Kleerebezem, M.; Brummer, R.J.M.; Wells, J.M. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am. J. Physiol.-Gastrointest. Liver Physiol. 2010, 298, G851–G859. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.L.; Zhang, Z.W.; Hang, X.M.; Jiang, Y.Q. L. plantarum prevents Enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells. BMC Microbiol. 2009, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Resta-Lenert, S.; Barrett, K.E. Probiotics and commensals reverse TNF-alpha- and IFN-gamma-induced dysfunction in human intestinal epithelial cells. Gastroenterology 2006, 130, 731–746. [Google Scholar] [CrossRef] [PubMed]
- Ukena, S.N.; Singh, A.; Dringenberg, U.; Engelhardt, R.; Seidler, U.; Hansen, W.; Bleich, A.; Bruder, D.; Franzke, A.; Rogler, G.; et al. Probiotic Escherichia coli Nissle 1917 Inhibits Leaky Gut by Enhancing Mucosal Integrity. PLoS ONE 2007, 2, e1308. [Google Scholar] [CrossRef] [PubMed]
- Groeger, D.; O’Mahony, L.; Murphy, E.; Bourke, J.; Dinan, T.; Kiely, B.; Shanahan, F.; Quigley, E. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes 2013, 4, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, P.; Akdis, C.; Quigley, E.; Shanahan, F.; O’Mahony, L. Portrait of an immunoregulatory bifidobacterium. Gut Microbes 2012, 3, 261–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKernan, D.P.; Fitzgerald, P.; Dinan, T.G.; Cryan, J.F. The probiotic Bifidobacterium infantis 35624 displays visceral antinociceptive effects in the rat. Neurogastroenterol. Motil. 2010, 22, 1029-e268. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, P.; Groeger, D.; Ziegler, M.; Frei, R.; Ferstl, R.; Shanahan, F.; Quigley, E.M.M.; Kiely, B.; Akdis, C.A.; O’Mahony, L. Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: Potential role for myeloid and plasmacytoid dendritic cells. Gut 2012, 61, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Bested, A.C.; Beaulne, T.M.; Katzman, M.A.; Iorio, C.; Berardi, J.M.; Logan, A.C. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 2009, 1, 6. [Google Scholar] [CrossRef] [PubMed]
- Desbonnet, L.; Garrett, L.; Clarke, G.; Kiely, B.; Cryan, J.F.; Dinan, T.G. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 2010, 170, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Desbonnet, L.; Garrett, L.; Clarke, G.; Bienenstock, J.; Dinan, T.G. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 2008, 43, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, H. Training and overtraining: An introduction. Med. Sci. Sports Exerc. 1998, 30, 1137–1139. [Google Scholar] [CrossRef] [PubMed]
- Donald, W.; Gleeson, M.; Flanagan, A. Mucosal immunity, respiratory illness and competitive performance in elite swimmers. Med. Sci. Sports Exerc. 2000, 33, 348–353. [Google Scholar]
- Gleeson, M.; Pyne, D. Effects of exercise on the immune system: Exercise effects on mucosal immunity. Immunol. Cell Biol. 2000, 78, 536–554. [Google Scholar] [CrossRef] [PubMed]
- Reid, V.L.; Gleeson, M.; Williams, N.; Clancy, R.L. Clinical investigation of athletes with persistent fatigue and/or recurrent infections. Br. J. Sports Med. 2004, 38, 42–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, N.P.; Pyne, D.B.; Peake, J.M.; Cripps, A.W. Probiotics, immunity and exercise: A review. Exerc. Immunol. Rev. 2009, 15, 107–126. [Google Scholar] [PubMed]
- Gonzalez-Boto, R.; Salguero, A.; Tuero, C.; Gonzalez-Gallego, J.; Marquez, S. Monitoring the effects of training load changes on stress and recovery in swimmers. J. Physiol. Biochem. 2008, 64, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Kellmann, M.; Kallus, K. The Recovery-Stress Questionnaire for Athletes: User Manual; Human Kinetics: Champaign, IL, USA, 2001. [Google Scholar]
- Smith, L.L. Cytokine hypothesis of overtraining: A physiological adaptation to excessive stress? Med. Sci. Sports Exerc. 2000, 32, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Lambert, G.P. Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J. Anim. Sci. 2009, 87, E101–E108. [Google Scholar] [CrossRef] [PubMed]
- Ronsen, O.; Lea, T.; Bahr, R.; Pedersen, B.K. Enhanced plasma IL-6 and IL-1ra responses to repeated vs. single bouts of prolonged cycling in elite athletes. J. Appl. Physiol. 2002, 92, 2547–2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salarkia, N.; Ghadamli, L.; Zeen, F.; Sabaghian Rad, L. Effects of probiotic yogurt on performance, respiratory and digestive systems of young adult female endurance swimmers: A randomized controlled trial. Med. J. Islam. Repub. Iran 2013, 27, 141–146. [Google Scholar] [PubMed]
- Cannon, J.G.; St Pierre, B.A. Cytokines in exertion-induced skeletal muscle injury. Mol. Cell. Biochem. 1998, 179, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, S.; Aikawa, N. Neutrophil-mediated tissue-injury and its modulation. Intensive Care Med. 1995, 21, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Nakaji, S.; Yamada, M.; Totsuka, M.; Sato, K.; Sugawara, K. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc. Immunol. Rev. 2002, 8, 6–48. [Google Scholar] [PubMed]
- Ostrowski, K.; Rohde, T.; Asp, S.; Schjerling, P.; Pedersen, B.K. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J. Physiol.-Lond. 1999, 515, 287–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilg, H.; Trehu, E.; Atkins, M.B.; Dinarello, C.A.; Mier, J.W. Interleukin-6 (il-6) as an antiinflammatory cytokine—Induction of circulating il-1-receptor antagonist and soluble tumor-necrosis-factor receptor-p55. Blood 1994, 83, 113–118. [Google Scholar] [PubMed]
- Sugama, K.; Suzuki, K.; Yoshitani, K.; Shiraishi, K.; Kometani, T. Urinary excretion of cytokines versus their plasma levels after endurance exercise. Exerc. Immunol. Rev. 2013, 19, 29–48. [Google Scholar] [PubMed]
- Suzuki, K. Cytokine response to exercise and its modulation. Antioxidants 2018, 7, 17. [Google Scholar] [CrossRef]
- Ostrowski, K.; Rohde, T.; Zacho, M.; Asp, S.; Pedersen, B.K. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J. Physiol.-Lond. 1998, 508, 949–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, B.K.; Steensberg, A.; Schjerling, P. Muscle-derived interleukin-6: Possible biological effects. J. Physiol.-Lond. 2001, 536, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, G.; Marcuzzi, A.; Zanin, V.; Monasta, L.; Zauli, G. Cytokine Levels in the Serum of Healthy Subjects. Med. Inflamm. 2013, 2013, 434010. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, A.J.; McCoy, K.D.; Johansen, F.E.; Brandtzaeg, P. The immune geography of IgA induction and function. Mucosal Immunol. 2008, 1, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Peters, E.M. Exercise, immunology and upper respiratory tract infections. Int. J. Sports Med. 1997, 18, S69–S77. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Henson, D.A.; Dumke, C.L.; Lind, R.H.; Shooter, L.R.; Gross, S.J. Relationship between salivary IgA secretion and upper respiratory tract infection following a 160-km race. J. Sports Med. Phys. Fitness 2006, 46, 158–162. [Google Scholar] [PubMed]
- Lira, F.S.; Rosa, J.C.; Pimentel, G.D.; Souza, H.A.; Caperuto, E.C.; Carnevali, L.C.; Seelaender, M.; Damaso, A.R.; Oyama, L.M.; de Mello, M.T.; et al. Endotoxin levels correlate positively with a sedentary lifestyle and negatively with highly trained subjects. Lipids Health Dis. 2010, 9, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blairon, L.; Wittebole, X.; Laterre, P.F. Lipopolysaccharide-binding protein serum levels in patients with severe sepsis due to gram-positive and fungal infections. J. Infect. Dis. 2003, 187, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Haudek, S.B.; Natmessnig, B.E.; Redl, H.; Schlag, G.; Hatlen, L.E.; Tobias, P.S. Isolation, partial characterization, and concentration in experimental sepsis of baboon lipopolysaccharide-binding protein. J. Lab. Clin. Med. 2000, 136, 363–370. [Google Scholar] [CrossRef] [PubMed]
Week 0 | Weeks 1 & 2 | Week 3 | Week 4 | Week 5 | Week 6 | ||
---|---|---|---|---|---|---|---|
Baseline | 8 h | 8 h | 8 h | 20 h | 20 h | ||
Monday | AM | - | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 |
PM | - | Compliance | Compliance | Compliance | Compliance | Compliance | |
Tuesday | AM | - | - | - | - | - | - |
PM | 100 m Swim | - | 100 m Swim | - | - | 100 m Swim | |
Wednesday | AM | Force Plate | - | Force Plate | - | - | Force Plate |
PM | Blood sample | - | Blood sample | - | - | Blood sample | |
Thursday | AM | - | - | - | - | - | - |
PM | 500 m Swim | - | 500 m Swim | - | - | 500 m Swim | |
Friday | AM | Return Logs | - | Return Logs | - | - | Return Logs |
PM | RESTQ52 | RESTQ52 | RESTQ52 | RESTQ52 | RESTQ52 | RESTQ52 |
Performance | Week 0 | Week 3 | Week 6 | |||
---|---|---|---|---|---|---|
Test | Probiotic | Placebo | Probiotic | Placebo | Probiotic | Placebo |
500 m Freestyle Aerobic | 447 ± 21.9 | 457 ± 23.9 | 439 ± 15.8 | 443 ± 23.8 | 437 ± 18.6 | 443 ± 18.5 |
Swim Time Trial (sec) | (415–486) | (423–503) | (414–460) | (417–497) | (413–473) | (420–480) |
100 m Freestyle Anaerobic | 61.2 ± 2.2 | 64.8 ± 2.2 | 61.7 ± 1.8 | 63.1 ± 2.1 | 61.3 ± 2.2 | 63.8 ± 2.1 |
Swim Time Trial (sec) | (58.9–64.5) | (60.5–67.2) | (59.3–64.1) | (60.1–65.3) | (58.3–64.2) | (60.6–68) |
Eccentric Force Production | 4196.8 ± 1694.1 | 2842.8 ± 1298.2 | 4034.8 ± 1671.4 | 2565.3 ± 1458.5 | 3669.4 ± 1349.1 | 2619.4 ± 1500.7 |
(N/s) | (2130.7–6402.4) | (900–4732.5) | (1520.6–6148.1) | (870.7–5724.6) | (1642.9–5411.2) | (749.6–5282) |
Concentric Force Production | 18.15 ± 1.1 | 17.56 ± 1.79 | 17.96 ± 1.44 | 17.01 ± 1.7 | 17.83 ± 1.1 | 17.08 ± 1.79 |
(N/kg) | (16.68–20.13) | (15.53–20.65) | (15.71–20.09) | (15.24–20.71) | (16.3–19.69) | (15.33–21.35) |
Vertical Jump Height | 0.35 ± 0.05 | 0.34 ± 0.08 | 0.35 ± 0.06 | 0.32 ± 0.06 | 0.35 ± 0.05 | 0.32 ± 0.05 |
(m) | (0.25–0.43) | (0.28–0.54) | (0.26–0.41) | (0.29–0.48) | (0.28–0.42) | (0.29–0.44) |
RESTQ-Sport | Week 0 | Week 3 | Week 4 | Week 5 | Week 6 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Scale | Probiotic | Placebo | Probiotic | Placebo | Probiotic | Placebo | Probiotic | Placebo | Probiotic | Placebo |
General Stress | - | - | - | - | - | - | - | - | - | - |
1. General Stress | 1.71 ± 0.48 | 1.61 ± 0.82 | 1.71 ± 1.1 | 1.72 ± 0.90 | 0.93 ± 0.67 | 1.28 ± 0.76 | 1.64 ± 1.3 | 1.94 ± 1.4 | 2.29 ± 0.99 | 2.44 ± 1.1 |
2. Emotional Stress | 1.58 ± 0.58 | 1.78 ± 0.67 | 1.83 ± 0.93 | 2.00 ± 1.1 | 1.08 ± 0.66 | 1.78 ± 0.62 | 1.75 ± 0.94 | 2.1 ± 1.11 | 2.5 ± 1.1 | 2.44 ± 0.68 |
3. Social Stress | 1.50 ± 0.87 | 1.61 ± 0.55 | 1.64 ± 0.85 | 1.67 ± 0.61 | 1.00 ± 0.65 * | 1.72 ± 0.51 | 1.86 ± 0.99 | 2.00 ± 1.2 | 2.43 ± 1.1 | 2.33 ± 1.0 |
4. Conflicts/pressure | 1.75 ± 0.82 | 2.44 ± 1.1 | 2.08 ± 0.97 * | 1.67 ± 1.1 | 1.75 ± 0.99 | 2.05 ± 1.3 | 2.25 ± 1.4 | 2.22 ± 1.0 | 3.00 ± 1.1 | 2.56 ± 1.3 |
5. Fatigue | 2.00 ± 1.0 | 1.89 ± 1.3 | 2.17 ± 0.93 | 1.94 ± 1.4 | 1.42 ± 1.7 | 1.72 ± 0.44 | 2.25 ± 1.7 | 2.33 ± 0.75 | 3.33 ± 1.6 | 2.44 ± 1.1 |
6. Lack of energy | 1.92 ± 0.92 | 2.22 ± 0.91 | 2.50 ± 1.2 | 1.67 ± 0.90 | 1.58 ± 1.1 | 1.83 ± 0.50 | 1.25 ± 1.0 | 1.78 ± 0.83 | 2.25 ± 1.2 | 2.28 ± 0.87 |
7. Physical complaints | 0.75 ± 0.52 | 1.39 ± 0.60 | 1.42 ± 1.1 | 1.56 ± 0.53 | 0.83 ± 0.82 | 1.22 ± 0.67 | 1.67 ± 1.3 | 1.50 ± 0.79 | 2.00 ± 0.89 | 1.55 ± 0.77 |
General Recovery | - | - | - | - | - | - | - | - | - | - |
8. Success | 2.00 ± 0.63 | 3.28 ± 0.83 | 2.17 ± 0.75 | 2.61 ± 0.74 | 2.67 ± 0.93 | 3.17 ± 1.1 | 3.25 ± 1.5 | 2.78 ± 1.1 | 2.75 ± 1.1 | 3.11 ± 1.1 |
9. Social recovery | 3.42 ± 0.66 | 4.28 ± 0.67 | 2.67 ± 0.93 | 3.67 ± 1.0 | 3.50 ± 0.32 | 3.89 ± 0.70 | 3.50 ± 0.89 | 3.56 ± 1.2 | 3.33 ± 1.2 | 3.50 ± 1.3 |
10. Physical recovery | 1.67 ± 0.82 | 2.44 ± 1.0 | 2.00 ± 0.77 | 2.33 ± 0.79 | 2.42 ± 0.97 | 2.61 ± 0.89 | 2.75 ± 1.2 | 2.50 ± 0.75 | 1.83 ± 0.93 | 2.39 ± 0.82 |
11. General well-being | 2.75 ± 1.3 | 3.94 ± 0.68 | 2.83 ± 1.6 | 3.17 ± 1.2 | 3.75 ± 0.42 | 3.67 ± 0.97 | 3.00 ± 1.4 | 3.22 ± 1.1 | 2.83 ± 1.1 | 3.17 ± 1.3 |
12. Sleep quality | 3.50 ± 1.3 | 3.78 ± 0.67 | 3.86 ± 0.56 | 3.89 ± 0.65 | 4.07 ± 0.89 | 3.72 ± 0.75 | 4.14 ± 0.75 | 3.67 ± 0.79 | 3.36 ± 0.99 | 3.50 ± 1.0 |
Sport Stress | - | - | - | - | - | - | - | - | - | - |
13. Disturbed breaks | 0.96 ± 0.39 | 1.25 ± 0.80 | 1.04 ± 0.57 | 1.25 ± 0.73 | 1.04 ± 0.83 | 1.25 ± 0.72 | 1.07 ± 0.66 | 1.56 ± 0.60 | 2.04 ± 1.3 | 1.86 ± 1.1 |
14. Emotional exhaustion | 1.64 ± 0.91 | 1.75 ± 0.94 | 1.64 ± 0.35 | 1.78 ± 1.3 | 1.14 ± 0.75 | 1.47 ± 1.1 | 1.69 ± 1.3 | 1.81 ± 0.93 | 1.68 ± 1.3 | 2.25 ± 0.93 |
15. Injury | 2.32 ± 0.88 | 1.86 ± 1.2 | 2.89 ± 0.93 | 2.56 ± 1.4 | 2.14 ± 0.75 | 2.19 ± 1.1 | 3.04 ± 1.2 | 2.64 ± 0.82 | 3.29 ± 1.2 | 2.19 ± 0.87 |
Sport Recovery | - | - | - | - | - | - | - | - | - | - |
16. Being in shape | 1.75 ± 1.1 | 2.58 ± 0.94 | 2.14 ± 0.63 | 2.92 ± 1.4 | 2.75 ± 0.60 | 3.39 ± 1.0 | 2.68 ± 1.1 | 2.92 ± 0.94 | 2.54 ± 1.1 | 2.78 ± 1.1 |
17. Personal accomplishment | 2.54 ± 1.0 | 3.14 ± 0.49 | 2.57 ± 1.1 | 3.31 ± 0.99 | 3.32 ± 0.93 | 3.14 ± 0.95 | 3.43 ± 0.93 * | 2.75 ± 0.87 | 2.79 ± 1.2 | 2.72 ± 1.1 |
18. Self-efficacy | 1.89 ± 1.1 | 2.64 ± 0.87 | 2.43 ± 0.70 | 3.47 ± 1.1 | 3.07 ± 0.79 | 3.44 ± 0.92 | 3.25 ± 1.1 | 3.00 ± 1.0 | 3.08 ± 1.2 | 3.08 ± 1.2 |
19. Self-regulation | 2.35 ± 1.3 | 3.03 ± 0.81 | 2.68 ± 1.0 | 3.17 ± 0.98 | 3.11 ± 1.2 | 3.17 ± 1.1 | 3.54 ± 1.1 * | 3.11 ± 0.94 | 3.46 ± 0.92 * | 2.89 ± 1.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbuhn, A.F.; Reynolds, S.M.; Campbell, C.W.; Bradford, L.A.; Deckert, J.A.; Kreutzer, A.; Fry, A.C. Effects of Probiotic (Bifidobacterium longum 35624) Supplementation on Exercise Performance, Immune Modulation, and Cognitive Outlook in Division I Female Swimmers. Sports 2018, 6, 116. https://doi.org/10.3390/sports6040116
Carbuhn AF, Reynolds SM, Campbell CW, Bradford LA, Deckert JA, Kreutzer A, Fry AC. Effects of Probiotic (Bifidobacterium longum 35624) Supplementation on Exercise Performance, Immune Modulation, and Cognitive Outlook in Division I Female Swimmers. Sports. 2018; 6(4):116. https://doi.org/10.3390/sports6040116
Chicago/Turabian StyleCarbuhn, Aaron F., Shelby M. Reynolds, Clark W. Campbell, Luke A. Bradford, Jake A. Deckert, Andreas Kreutzer, and Andrew C. Fry. 2018. "Effects of Probiotic (Bifidobacterium longum 35624) Supplementation on Exercise Performance, Immune Modulation, and Cognitive Outlook in Division I Female Swimmers" Sports 6, no. 4: 116. https://doi.org/10.3390/sports6040116
APA StyleCarbuhn, A. F., Reynolds, S. M., Campbell, C. W., Bradford, L. A., Deckert, J. A., Kreutzer, A., & Fry, A. C. (2018). Effects of Probiotic (Bifidobacterium longum 35624) Supplementation on Exercise Performance, Immune Modulation, and Cognitive Outlook in Division I Female Swimmers. Sports, 6(4), 116. https://doi.org/10.3390/sports6040116