Associations between Thermal and Physiological Responses of Human Body during Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climatic Test Chamber
2.2. Participants
2.3. Protocols
2.4. Thermal Data Measurements
2.5. Statistical Analysis
3. Results
3.1. First Step: PMV-RPE Correlations
3.2. Second Step: PMV-RPE Correlations at Different Oxygen Consumption Rates
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Parsons, K. Human Thermal Environments; Taylor and Francis: London, UK, 2003; ISBN 0203302621. [Google Scholar]
- Kaynaklı, Ö.; Kılıç, M. The effect of vasodilation on human physiology and comparison with sweating. Uludag Univ. J. Fac. Eng. Archit. 2004, 9. [Google Scholar] [CrossRef]
- Resources, R.C. F09 SI: Thermal Comfort. In ASHRAE Handbook Fundamentals; ASHRAE: Atlanta, GA, USA, 2009. [Google Scholar]
- Stamou, A.I.; Katsiris, I.; Schaelin, A. Evaluation of thermal comfort in Galatsi Arena of the Olympics “Athens 2004” using a CFD model. Appl. Therm. Eng. 2008, 28, 1206–1215. [Google Scholar] [CrossRef]
- Butera, F.M. Chapter 3—Principles of thermal comfort. Renew. Sustain. Energy Rev. 1998, 2, 39–66. [Google Scholar] [CrossRef]
- Yang, Y.; Li, B.; Liu, H.; Tan, M.; Yao, R. A study of adaptive thermal comfort in a well-controlled climate chamber. Appl. Therm. Eng. 2015, 76, 283–291. [Google Scholar] [CrossRef]
- Ye, G.; Yang, C.; Chen, Y.; Li, Y. A new approach for measuring predicted mean vote (PMV) and standard effective temperature (SET). Build. Environ. 2003, 38, 33–44. [Google Scholar] [CrossRef]
- Kilic, M.; Kaynakli, O.; Yamankaradeniz, R. Determination of required core temperature for thermal comfort with steady-state energy balance method. Int. Commun. Heat Mass Transf. 2006, 33, 199–210. [Google Scholar] [CrossRef]
- Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [Google Scholar] [PubMed]
- Dishman, R.K.; Patton, R.W.; Smith, J.; Weinberg, R.; Jackson, A. Using perceived exertion to prescribe and monitor exercise training heart rate. Int. J. Sports Med. 1987, 8, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Garcin, M.; Fleury, A.; Mille-Hamard, L.; Billat, V. Sex-Related Differences in Ratings of Perceived Exertion and Estimated Time Limit. Int. J. Sports Med. 2005, 26, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef] [PubMed]
- Crewe, H.; Tucker, R.; Noakes, T.D. The rate of increase in rating of perceived exertion predicts the duration of exercise to fatigue at a fixed power output in different environmental conditions. Eur. J. Appl. Physiol. 2008, 103, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Tucker, R.; Marle, T.; Lambert, E.V.; Noakes, T.D. The rate of heat storage mediates an anticipatory reduction in exercise intensity during cycling at a fixed rating of perceived exertion. J. Physiol. 2006, 574, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Green, J.M.; Yang, Z.; Laurent, C.M.; Davis, J.K.; Kerr, K.; Pritchett, R.C.; Bishop, P.A. Session RPE following interval and constant-resistance cycling in hot and cool environments. Med. Sci. Sports Exerc. 2007, 39, 2051–2057. [Google Scholar] [CrossRef] [PubMed]
- Céline, C.G.-F.; Monnier-Benoit, P.; Groslambert, A.; Tordi, N.; Perrey, S.; Rouillon, J.-D. The Perceived Exertion to Regulate a Training Program in Young Women. J. Strength Cond. Res. 2011, 25, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Kenny, G.P.; Webb, P.; Ducharme, M.B.; Reardon, F.D.; Jay, O. Calorimetric measurement of postexercise net heat loss and residual body heat storage. Med. Sci. Sports Exerc. 2008, 40, 1629–1636. [Google Scholar] [CrossRef] [PubMed]
- Schlader, Z.J.; Stannard, S.R.; Mündel, T. Human thermoregulatory behavior during rest and exercise—A prospective review. Physiol. Behav. 2010, 99, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Balci, G.A.; Basaran, T.; Colakoglu, M. Analysing visual pattern of skin temperature during submaximal and maximal exercises. Infrared Phys. Technol. 2016, 74, 57–62. [Google Scholar] [CrossRef]
- Revel, G.M.; Arnesano, M. Measuring overall thermal comfort to balance energy use in sports facilities. Meas. J. Int. Meas. Confed. 2014, 55, 382–393. [Google Scholar] [CrossRef]
- Villaseñor-Mora, C.; Sanchez-Marin, F.J.; Calixto-Carrera, S. An indirect skin emissivity measurement in the infrared thermal range through reflection of a CO2 laser beam. Rev. Mex. Fis. 2009, 55, 387–392. [Google Scholar]
- McClave, J.T.; Sincich, T. Statistics; Pearson: London, UK, 2013; ISBN 0321755936. [Google Scholar]
- Kirk, R.E. Statistics: An Introduction, 5th ed.; Thompson/Wadsworth: Belmont, CA, USA, 2008; ISBN 053456478X. [Google Scholar]
- Weaver, B.; Koopman, R. An SPSS Macro to Compute Confidence Intervals for Pearson’s Correlation. Tutor. Quant. Methods Psychol. 2014, 10, 29–39. [Google Scholar] [CrossRef]
- Vanos, J.K.; Warland, J.S.; Gillespie, T.J.; Kenny, N.A. Thermal comfort modelling of body temperature and psychological variations of a human exercising in an outdoor environment. Int. J. Biometeorol. 2012, 56, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Casa, D.J.; DeMartini, J.K.; Bergeron, M.F.; Csillan, D.; Eichner, E.R.; Lopez, R.M.; Ferrara, M.S.; Miller, K.C.; O’Connor, F.; Sawka, M.N.; et al. National athletic trainers’ association position statement: Exertional heat illnesses. J. Athl. Train. 2015, 50, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Wendt, D.; Van Loon, L.J.C.; Van Marken Lichtenbelt, W.D. Thermoregulation during exercise in the heat: Strategies for maintaining health and performance. Sports Med. 2007, 37, 669–682. [Google Scholar] [CrossRef] [PubMed]
Time Interval | Corr. Coefficients | Level of Corr. Coefficients | p Values |
---|---|---|---|
04.00–06.00 | −0.27 | Weak | 0.42 |
06.00–08.00 | −0.26 | Weak | 0.44 |
08.00–10.00 | −0.50 | Moderate | 0.12 |
10.00–12.00 | −0.59 | Moderate | 0.06 |
12.00–14.00 | −0.66 | moderately strong | 0.03 |
14.00–16.00 | −0.65 | moderately strong | 0.03 |
16.00–18.00 | −0.57 | Moderate | 0.07 |
18.00–20.00 | −0.62 | moderately strong | 0.04 |
Average | −0.51 | Moderate |
Time Interval | High VO2max Group Corr. Coefficients | Low VO2max Group Corr. Coefficients |
---|---|---|
04.00–06.00 | 0.00 | −0.49 |
06.00–08.00 | 0.40 | −0.70 |
08.00–10.00 | 0.11 | −0.84 |
10.00–12.00 | −0.20 | −0.75 |
12.00–14.00 | −0.63 | −0.95 |
14.00–16.00 | −0.63 | −0.81 |
16.00–18.00 | −0.11 | −0.82 |
18.00–20.00 | −0.63 | −0.77 |
Average | −0.21 | −0.77 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zora, S.; Balci, G.A.; Colakoglu, M.; Basaran, T. Associations between Thermal and Physiological Responses of Human Body during Exercise. Sports 2017, 5, 97. https://doi.org/10.3390/sports5040097
Zora S, Balci GA, Colakoglu M, Basaran T. Associations between Thermal and Physiological Responses of Human Body during Exercise. Sports. 2017; 5(4):97. https://doi.org/10.3390/sports5040097
Chicago/Turabian StyleZora, Suleyman, Gorkem Aybars Balci, Muzaffer Colakoglu, and Tahsin Basaran. 2017. "Associations between Thermal and Physiological Responses of Human Body during Exercise" Sports 5, no. 4: 97. https://doi.org/10.3390/sports5040097
APA StyleZora, S., Balci, G. A., Colakoglu, M., & Basaran, T. (2017). Associations between Thermal and Physiological Responses of Human Body during Exercise. Sports, 5(4), 97. https://doi.org/10.3390/sports5040097