Differences in Spatial Physical Activity Patterns between Weekdays and Weekends in Primary School Children: A Cross-Sectional Study Using Accelerometry and Global Positioning System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Participant Recruitment
2.3. Data Collection and Measures
2.4. Data Merging and Processing
2.5. Data Analysis
3. Results
3.1. General Characteristics
3.2. Daily Minutes of Total Time Spent in Settings
3.2.1. Second Graders
3.2.2. Sixth Graders
3.3. Daily Minutes of MVPA Spent in Settings
3.3.1. Second Graders
3.3.2. Sixth Graders
3.4. Proportion of Time Spent in MVPA in Settings
3.4.1. Second Graders
3.4.2. Sixth Graders
4. Discussion
4.1. Differences in General Physical Activity Patterns between Weekdays and Weekends
4.2. Differences in Context-Specific Physical Activity Patterns between Weekdays and Weekends
4.3. Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Andersen, L.B.; Riddoch, C.; Kriemler, S.; Hills, A. Physical activity and cardiovascular risk factors in children. Br. J. Sports Med. 2011, 45, 871–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biddle, S.J.; Asare, M. Physical activity and mental health in children and adolescents: A review of reviews. Br. J. Sports Med. 2011, 45, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; LeBlanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7. [Google Scholar] [CrossRef] [PubMed]
- Kjonniksen, L.; Torsheim, T.; Wold, B. Tracking of leisure-time physical activity during adolescence and young adulthood: A 10-year longitudinal study. Int. J. Behav. Nutr. Phys. Act. 2008, 5. [Google Scholar] [CrossRef] [PubMed]
- Hallal, P.C.; Victora, C.G.; Azevedo, M.R.; Wells, J.C. Adolescent physical activity and health: A systematic review. Sports Med. 2006, 36, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization Press: Geneva, Switzerland, 2010. [Google Scholar]
- Verloigne, M.; Van Lippevelde, W.; Maes, L.; Yildirim, M.; Chinapaw, M.; Manios, Y.; Androutsos, O.; Kovacs, E.; Bringolf-Isler, B.; Brug, J.; et al. Levels of physical activity and sedentary time among 10- to 12-year-old boys and girls across 5 European countries using accelerometers: An observational study within the ENERGY-project. Int. J. Behav. Nutr. Phys. Act. 2012, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currie, C.; Zanotti, C.; Morgan, A.; Currie, D.; de Looze, M.; Roberts, C.; Samdal, O.; Smith, O.; Barnekow, V. Social Determinants of Health and Well-Being Among Young People; Health Behaviour in School-aged Children (HBSC) study: International report from the 2009/2010 survey; WHO Regional Office for Europe: Copenhagen, Danmark, 2012. [Google Scholar]
- Sallis, J.F.; Owen, N.; Fotheringham, M.J. Behavioral epidemiology: A systematic framework to classify phases of research on health promotion and disease prevention. Ann. Behav. Med. 2000, 22, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Craggs, C.; Corder, K.; van Sluijs, E.M.; Griffin, S.J. Determinants of change in physical activity in children and adolescents: A systematic review. Am. J. Prev. Med. 2011, 40, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Ekelund, U.; Tomkinson, G.R.; Armstrong, N. What proportion of youth are physically active? Measurement issues, levels and recent time trends. Br. J. Sports Med. 2011, 45, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Brooke, H.L.; Corder, K.; Atkin, A.J.; van Sluijs, E.M. A systematic literature review with meta-analyses of within- and between-day differences in objectively measured physical activity in school-aged children. Sports Med. 2014, 44, 1427–1438. [Google Scholar] [CrossRef] [PubMed]
- Moses, S.; Meyer, U.; Puder, J.; Roth, R.; Zahner, L.; Kriemler, S. Das Bewegungsverhalten von Primarschulkindern in der Schweiz. Schweiz. Z. Sportmed. Sporttraumatol. 2007, 55, 62–68. [Google Scholar]
- Nader, P.R.; Bradley, R.H.; Houts, R.M.; McRitchie, S.L.; O’Brien, M. Moderate-to-vigorous physical activity from ages 9 to 15 years. JAMA 2008, 300, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.L.; Colley, R.; Connor Gorber, S.; Tremblay, M. Actical accelerometer sedentary activity thresholds for adults. J. Phys. Act. Health 2011, 8, 587–591. [Google Scholar] [PubMed]
- Brooke, H.L.; Atkin, A.J.; Corder, K.; Ekelund, U.; van Sluijs, E.M. Changes in time-segment specific physical activity between ages 10 and 14 years: A longitudinal observational study. J. Sci. Med. Sport Sports Med. Aust. 2016, 19, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Treuth, M.S.; Catellier, D.J.; Schmitz, K.H.; Pate, R.R.; Elder, J.P.; McMurray, R.G.; Blew, R.M.; Yang, S.; Webber, L. Weekend and weekday patterns of physical activity in overweight and normal-weight adolescent girls. Obesity (Silver Spring) 2007, 15, 1782–1788. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, S.J.; Ridgers, N.D.; Welk, G. Correlates of children’s moderate and vigorous physical activity during weekdays and weekends. J. Phys. Act. Health 2012, 9, 129–137. [Google Scholar] [PubMed]
- McMinn, A.M.; Griffin, S.J.; Jones, A.P.; van Sluijs, E.M. Family and home influences on children’s after-school and weekend physical activity. Eur. J. Public Health 2013, 23, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Thorleifsdottir, B.; Bjornsson, J.K.; Benediktsdottir, B.; Gislason, T.; Kristbjarnarson, H. Sleep and sleep habits from childhood to young adulthood over a 10-year period. J. Psychosom. Res. 2002, 53, 529–537. [Google Scholar] [CrossRef]
- Fairclough, S.J.; Boddy, L.M.; Mackintosh, K.A.; Valencia-Peris, A.; Ramirez-Rico, E. Weekday and weekend sedentary time and physical activity in differentially active children. J. Sci. Med. Sport Sports Med. Aust. 2015, 18, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Bauman, A.E.; Reis, R.S.; Sallis, J.F.; Wells, J.C.; Loos, R.J.F.; Martin, B.W. Correlates of physical activity: Why are some people physically active and others not? Lancet 2012, 380, 258–271. [Google Scholar] [CrossRef]
- Giles-Corti, B.; Timperio, A.; Bull, F.; Pikora, T. Understanding physical activity environmental correlates: Increased specificity for ecological models. Exerc. Sport Sci. Rev. 2005, 33, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Sallis, J.F.; Kerr, J.; Lee, S.; Rosenberg, D.E. Neighborhood environment and physical activity among youth a review. Am. J. Prev. Med. 2011, 41, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Klinker, C.D.; Schipperijn, J.; Kerr, J.; Ersboll, A.K.; Troelsen, J. Context-specific outdoor time and physical activity among school-children across gender and age: Using accelerometers and GPS to advance methods. Front. Public Health 2014, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, I.; van der Horst, K.; Wendel-Vos, W.; Kremers, S.; van Lenthe, F.J.; Brug, J. Environmental correlates of physical activity in youth—A review and update. Obes. Rev. 2007, 8, 129–154. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, M.M.; Schipperijn, J.; Kerr, J. A framework for using GPS data in physical activity and sedentary behavior studies. Exerc. Sport Sci. Rev. 2015, 43, 48–56. [Google Scholar] [CrossRef] [PubMed]
- McCrorie, P.R.W.; Fenton, C.; Ellaway, A. Combining GPS, GIS, and accelerometry to explore the physical activity and environment relationship in children and young people—A review. Int. J. Behav. Nutr. Phys. Act. 2014, 11. [Google Scholar] [CrossRef] [PubMed]
- Maas, J.; Sterkenburg, R.P.; de Vries, S.I.; Pierik, F. Using GPS to measure the interaction between individuals and their neighbourhood. In Neighbourhood Structure and Health Promotion; Stock, C., Ellaway, A., Eds.; Springer US: Boston, MA, USA, 2013; pp. 153–175. [Google Scholar]
- Kerr, J.; Duncan, S.; Schipperjin, J. Using global positioning systems in health research: A practical approach to data collection and processing. Am. J. Prev. Med. 2011, 41, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, D.A.; Brown, A.L.; Troped, P.J. Portable global positioning units to complement accelerometry-based physical activity monitors. Med. Sci. Sport Exerc. 2005, 37, 572–581. [Google Scholar] [CrossRef]
- Klinker, C.D.; Schipperijn, J.; Toftager, M.; Kerr, J.; Troelsen, J. When cities move children: Development of a new methodology to assess context-specific physical activity behaviour among children and adolescents using accelerometers and GPS. Health Place 2015, 31, 90–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bürgi, R.; Tomatis, L.; Murer, K.; de Bruin, E.D. Localization of physical activity in primary school children using accelerometry and global positioning system. PLoS ONE 2015, 10, e0142223. [Google Scholar] [CrossRef] [PubMed]
- Bürgi, R.; Tomatis, L.; Murer, K.; de Bruin, E.D. Spatial physical activity patterns among primary school children living in neighbourhoods of varying socioeconomic status: A cross-sectional study using accelerometry and Global Positioning System. BMC Public Health 2016, 16. [Google Scholar] [CrossRef] [PubMed]
- Statistik Schweiz. Statistisches Lexikon der Schweiz. Available online: http://www.bfs.admin.ch/bfs/portal/de/index/infothek/lexikon.html (accessed on 3 October 2012).
- Schipperijn, J.; Kerr, J.; Duncan, S.; Madsen, T.; Klinker, C.D.; Troelsen, J. Dynamic accuracy of GPS receivers for use in health research: A novel method to assess GPS accuracy in real-world settings. Front. Public Health 2014, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sports Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.; Ekelund, U.; Yngve, A.; Sjöström, M. Assessing physical activity among children with accelerometers using different time sampling intervals and placements. Pediatr. Exerc. Sci. 2002, 14, 87–96. [Google Scholar]
- Federal Office of Meteorology and Climatology. MeteoSwiss. Available online: http://www.meteoschweiz.admin.ch (accessed on 14 July 2014).
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Masse, L.C.; Tilert, T.; McDowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sport Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Almanza, E.; Jerrett, M.; Dunton, G.; Seto, E.; Pentz, M.A. A study of community design, greenness, and physical activity in children using satellite, GPS and accelerometer data. Health Place 2012, 18, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.; Loprinzi, P.; Moore, R.; Pfeiffer, K. Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sport Exerc. 2011, 43, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Oreskovic, N.M.; Blossom, J.; Field, A.E.; Chiang, S.R.; Winickoff, J.P.; Kleinman, R.E. Combining global positioning system and accelerometer data to determine the locations of physical activity in children. Geospat. Health 2012, 6, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Rainham, D.G.; Bates, C.J.; Blanchard, C.M.; Dummer, T.J.; Kirk, S.F.; Shearer, C.L. Spatial classification of youth physical activity patterns. Am. J. Prev. Med. 2012, 42, e87–e96. [Google Scholar] [CrossRef] [PubMed]
- Klinker, C.D.; Schipperijn, J.; Christian, H.; Kerr, J.; Ersboll, A.K.; Troelsen, J. Using accelerometers and global positioning system devices to assess gender and age differences in children’s school, transport, leisure and home based physical activity. Int. J. Behav. Nutr. Phys. Act. 2014, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dessing, D.; Pierik, F.H.; Sterkenburg, R.P.; van Dommelen, P.; Maas, J.; de Vries, S.I. Schoolyard physical activity of 6–11 year old children assessed by GPS and accelerometry. Int. J. Behav. Nutr. Phys. Act. 2013, 10. [Google Scholar] [CrossRef] [PubMed]
- Cerin, E. Statistical approaches to testing the relationships of the built environment with resident-level physical activity behavior and health outcomes in cross-sectional studies with cluster sampling. J. Plan. Lit. 2011, 26, 151–167. [Google Scholar] [CrossRef]
- Lamprecht, M.; Fischer, A.; Wiegand, D.; Stamm, H.P. Sport Schweiz 2014: Kinder-und Jugendbericht; Bundesamt für Sport BASPO: Magglingen, Switzerland, 2015. [Google Scholar]
- Duncan, J.S.; Hopkins, W.G.; Schofield, G.; Duncan, E.K. Effects of weather on pedometer-determined physical activity in children. Med. Sci. Sports Exerc. 2008, 40, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Pate, R.R.; Freedson, P.S.; Sallis, J.F.; Taylor, W.C. Using objective physical activity measures with youth: How many days of monitoring are needed? Med. Sci. Sports Exerc. 2000, 32, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Maddison, R.; Jiang, Y.; Vander Hoorn, S.; Exeter, D.; Mhurchu, C.N.; Dorey, E. Describing patterns of physical activity in adolescents using global positioning systems and accelerometry. Pediatr. Exerc. Sci. 2010, 22, 392–407. [Google Scholar] [PubMed]
- Kneeshaw-Price, S.; Saelens, B.E.; Sallis, J.F.; Glanz, K.; Frank, L.D.; Kerr, J.; Hannon, P.A.; Grembowski, D.E.; Chan, K.C.; Cain, K.L. Children’s objective physical activity by location: Why the neighborhood matters. Pediatr. Exerc. Sci. 2013, 25, 468–486. [Google Scholar] [PubMed]
- Mackett, R.L.; Paskins, J. Children’s physical activity: The contribution of playing and walking. Child. Soc. 2008, 22, 345–357. [Google Scholar] [CrossRef]
- Oreskovic, N.M.; Perrin, J.M.; Robinson, A.I.; Locascio, J.J.; Blossom, J.; Chen, M.L.; Winickoff, J.P.; Field, A.E.; Green, C.; Goodman, E. Adolescents’ use of the built environment for physical activity. BMC Public Health 2015, 15, 251. [Google Scholar] [CrossRef] [PubMed]
- Southward, E.F.; Page, A.S.; Wheeler, B.W.; Cooper, A.R. Contribution of the school journey to daily physical activity in children aged 11–12 years. Am. J. Prev. Med. 2012, 43, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Van Sluijs, E.M.; Fearne, V.A.; Mattocks, C.; Riddoch, C.; Griffin, S.J.; Ness, A. The contribution of active travel to children's physical activity levels: Cross-sectional results from the ALSPAC study. Prev. Med. 2009, 48, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Davison, K.K.; Werder, J.L.; Lawson, C.T. Children’s active commuting to school: Current knowledge and future directions. Prev. Chronic Dis. 2008, 5, A100. [Google Scholar] [PubMed]
- Corder, K.; Craggs, C.; Jones, A.P.; Ekelund, U.; Griffin, S.J.; van Sluijs, E.M. Predictors of change differ for moderate and vigorous intensity physical activity and for weekdays and weekends: A longitudinal analysis. Int. J. Behav. Nutr. Phys. Act. 2013, 10. [Google Scholar] [CrossRef] [PubMed]
- Biddle, S.J.; Gorely, T.; Marshall, S.J.; Cameron, N. The prevalence of sedentary behavior and physical activity in leisure time: A study of Scottish adolescents using ecological momentary assessment. Prev. Med. 2009, 48, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Sahlqvist, S.; Ogilvie, D.; Jones, A.; Griffin, S.J.; van Sluijs, E. Is active travel to non-school destinations associated with physical activity in primary school children? Prev. Med. 2012, 54, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.P.; Coombes, E.G.; Griffin, S.J.; van Sluijs, E.M.F. Environmental supportiveness for physical activity in English schoolchildren: A study using Global Positioning Systems. Int. J. Behav. Nutr. Phys. Act. 2009, 6. [Google Scholar] [CrossRef] [PubMed]
- Carver, A.; Timperio, A.; Crawford, D. Playing it safe: The influence of neighbourhood safety on children’s physical activity. A review. Health Place 2008, 14, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Salvy, S.J.; Bowker, J.W.; Roemmich, J.N.; Romero, N.; Kieffer, E.; Paluch, R.; Epstein, L.H. Peer influence on children's physical activity: An experience sampling study. J. Pediatr. Psychol. 2008, 33, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Taylor, W.C.; Dowda, M.; Freedson, P.S.; Pate, R.R. Correlates of vigorous physical activity for children in grades 1 through 12: Comparing parent-reported and objectively measured physical activity. Pediatr. Exerc. Sci. 2002, 14, 30–44. [Google Scholar]
- Dunton, G.F.; Liao, Y.; Almanza, E.; Jerrett, M.; Spruijt-Metz, D.; Chou, C.P.; Pentz, M.A. Joint physical activity and sedentary behavior in parent-child pairs. Med. Sci. Sports Exerc. 2012, 44, 1473–1480. [Google Scholar] [CrossRef] [PubMed]
- Dunton, G.; Liao, Y.; Almanza, E.; Jerrett, M.; Spruijt-Metz, D.; Pentz, M. Locations of joint physical activity in parent–child pairs based on accelerometer and GPS monitoring. Ann. Behav. Med. 2013, 45, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, A.C.; Nickerson, P.; Wright, K.L. Structured leisure activities in middle childhood: Links to well-being. J. Commun. Psychol. 2003, 31, 641–659. [Google Scholar] [CrossRef]
- Kjonniksen, L.; Anderssen, N.; Wold, B. Organized youth sport as a predictor of physical activity in adulthood. Scand. J. Med. Sci. Sports 2009, 19, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Welk, G.J. Use of accelerometry-based activity monitors to assess physical activity. In Physical Activity Assessments for Health-Related Research; Welk, G.J., Ed.; Human Kinetics: Champaign, IL, USA, 2002; pp. 125–141. [Google Scholar]
- Corder, K.; Ekelund, U.; Steele, R.M.; Wareham, N.J.; Brage, S. Assessment of physical activity in youth. J. Appl. Physiol. 2008, 105, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Dossegger, A.; Ruch, N.; Jimmy, G.; Braun-Fahrlander, C.; Mader, U.; Hanggi, J.; Hofmann, H.; Puder, J.J.; Kriemler, S.; Bringolf-Isler, B. Reactivity to accelerometer measurement of children and adolescents. Med. Sci. Sports Exerc. 2014, 46, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Second Graders | Sixth Graders | p-Value |
---|---|---|---|
Age in years, mean (SD) | 8.5 (0.3) | 12.5 (0.4) | <0.001 ** |
Gender, boys, n (%) | 38 (51.4) | 45 (45.9) | 0.480 * |
Gender, girls, n (%) | 36 (48.6) | 53 (54.1) | – |
Body height in cm, mean (SD) | 133.4 (5.6) | 154.7 (7.7) 1 | <0.001 ** |
Body weight in kg, median (IQR) | 28.4 (25.6–32.1) | 44.2 (38.2–53.8) 1 | <0.001 *** |
BMI in kg/m−2, median (IQR) | 15.9 (15.1–17.5) | 18.3 (16.5–20.7) 1 | <0.001 *** |
Daily wear time in min, median (IQR) | 754.6 (702.6–799.5) | 772.4 (727.1–810.4) | 0.029 *** |
Daily combined data in min, median (IQR) | 575.4 (493.4–621.6) | 579.0 (498.6–659.7) | 0.435 *** |
Availability of GPS data in %, median (IQR) | 76.8 (68.6–84.6) | 78.1 (68.1–86.8) | 0.569 *** |
Wear days, median (IQR) | 7.0 (7.0–7.0) | 7.0 (7.0–7.0) | 0.264 *** |
Valid weekdays, median (IQR) | 5.0 (5.0–5.0) | 5.0 (4.0–5.0) | 0.301 *** |
Valid weekend days, median (IQR) | 2.0 (2.0–2.0) | 2.0 (2.0–2.0) | 0.031 *** |
Setting | Weekday | Weekend Day | p-Value * | ||||
---|---|---|---|---|---|---|---|
n | Median | IQR | n | Median | IQR | ||
Second Graders | |||||||
Total | 74 | 597.2 | 540.2–668.0 | 74 | 554.3 | 464.2–604.2 | 0.047 |
Home | 74 | 134.0 | 71.4–171.9 | 74 | 172.3 | 85.4–302.3 | <0.001 |
Own school | 74 | 244.6 | 204.7–285.0 | 74 | 0.0 | 0.0–0.0 | <0.001 |
Other school | 74 | 19.6 | 4.6–31.8 | 74 | 0.0 | 0.0–4.8 | 0.020 |
Recreation | 74 | 14.5 | 3.4–37.1 | 74 | 18.4 | 0.0–71.8 | <0.001 |
Street | 74 | 83.6 | 63.1–116.3 | 74 | 92.4 | 60.4–137.1 | 0.234 |
Other | 74 | 58.5 | 41.9–79.0 | 74 | 65.9 | 26.9–121.7 | 0.032 |
Outside | 74 | 0.0 | 0.0–2.4 | 74 | 5.7 | 0.0–97.8 | <0.001 |
Sixth Graders | |||||||
Total | 98 | 610.6 | 551.2–695.9 | 98 | 535.0 | 479.0–622.6 | 0.003 |
Home | 98 | 216.3 | 169.4–283.4 | 98 | 293.1 | 164.1–412.8 | <0.001 |
Own school | 98 | 226.7 | 152.9–283.1 | 98 | 0.0 | 0.0–0.0 | <0.001 |
Other school | 98 | 1.6 | 0.0–27.9 | 98 | 0.0 | 0.0–2.6 | 0.355 |
Recreation | 98 | 2.9 | 0.0–18.2 | 98 | 0.0 | 0.0–7.1 | 0.022 |
Street | 98 | 78.0 | 62.8–105.9 | 98 | 81.2 | 47.2–121.0 | 0.490 |
Other | 98 | 51.5 | 37.2–82.0 | 98 | 70.3 | 40.1–99.2 | <0.001 |
Outside | 98 | 0.0 | 0.0–0.0 | 98 | 0.0 | 0.0–51.8 | 0.052 |
Setting | Weekday | Weekend Day | p-Value * | ||||
---|---|---|---|---|---|---|---|
n | Median | IQR | n | Median | IQR | ||
Second Graders | |||||||
Total | 74 | 68.9 | 53.6–83.1 | 74 | 59.6 | 40.3–82.4 | 0.313 |
Home | 74 | 7.7 | 4.4–12.3 | 74 | 10.8 | 4.2–21.8 | <0.001 |
Own school | 74 | 24.6 | 17.3–37.8 | 74 | 0.0 | 0.0–0.3 | <0.001 |
Other school | 74 | 2.6 | 0.8–5.0 | 74 | 0.0 | 0.0–0.5 | <0.001 |
Recreation | 74 | 2.5 | 0.6–7.4 | 74 | 2.6 | 0.0–13.3 | <0.001 |
Street | 74 | 13.6 | 9.6–18.7 | 74 | 10.9 | 3.7–18.3 | <0.001 |
Other | 74 | 6.1 | 3.4–9.4 | 74 | 7.5 | 1.9–15.8 | 0.573 |
Outside | 74 | 0.0 | 0.0–0.1 | 74 | 0.1 | 0.0–11.5 | <0.001 |
Sixth Graders | |||||||
Total | 98 | 52.7 | 44.6–65.1 | 98 | 27.2 | 18.2–48.2 | <0.001 |
Home | 98 | 5.8 | 4.0–9.2 | 98 | 6.4 | 4.5–11.2 | 0.063 |
Own school | 98 | 17.1 | 13.7–23.1 | 98 | 0.0 | 0.0–0.0 | <0.001 |
Other school | 98 | 0.3 | 0.0–5.2 | 98 | 0.0 | 0.0–0.1 | 0.482 |
Recreation | 98 | 0.4 | 0.0–3.0 | 98 | 0.1 | 0.0–1.2 | 0.812 |
Street | 98 | 16.4 | 12.2–23.3 | 98 | 8.3 | 2.4–16.0 | <0.001 |
Other | 98 | 4.1 | 2.2–5.8 | 98 | 3.5 | 1.6–6.5 | 0.977 |
Outside | 98 | 0.0 | 0.0–0.0 | 98 | 0.0 | 0.0–1.5 | 0.825 |
Setting | Weekday | Weekend Day | p-Value * | ||||
---|---|---|---|---|---|---|---|
n | Median | IQR | n | Median | IQR | ||
Second Graders | |||||||
Total | 74 | 11.3 | 9.1–13.6 | 74 | 10.8 | 7.5–15.5 | 0.852 |
Home | 74 | 6.0 | 4.7–9.1 | 69 | 5.5 | 4.1–8.8 | 0.438 |
Own school | 74 | 10.0 | 8.2–13.2 | 19 | 39.4 | 17.6–48.3 | <0.001 |
Other school | 64 | 17.2 | 10.2–23.8 | 29 | 12.6 | 5.7–24.3 | 0.025 |
Recreation | 67 | 17.4 | 9.3–27.7 | 56 | 16.1 | 7.2–27.0 | 0.272 |
Street | 74 | 17.6 | 11.9–22.7 | 73 | 10.7 | 7.5–15.8 | <0.001 |
Other | 74 | 11.2 | 7.3–14.7 | 72 | 9.3 | 6.4–15.5 | 0.043 |
Outside | 24 | 8.6 | 3.4–12.6 | 37 | 8.4 | 2.8–16.3 | 0.871 |
Sixth Graders | |||||||
Total | 98 | 8.6 | 7.2–10.4 | 98 | 5.3 | 3.4–9.4 | <0.001 |
Home | 98 | 3.0 | 2.1–4.1 | 98 | 2.6 | 1.6–4.4 | 0.747 |
Own school | 98 | 8.8 | 5.9–11.7 | 21 | 16.3 | 8.0–38.7 | 0.437 |
Other school | 65 | 21.9 | 9.5–30.0 | 32 | 13.6 | 4.5–35.3 | <0.001 |
Recreation | 70 | 19.8 | 8.5–36.3 | 54 | 9.2 | 3.3–30.8 | 0.003 |
Street | 98 | 20.5 | 14.0–28.9 | 97 | 9.7 | 3.4–16.6 | <0.001 |
Other | 98 | 7.4 | 4.8–10.1 | 96 | 5.1 | 2.6–8.8 | <0.001 |
Outside | 17 | 5.1 | 2.8–11.8 | 31 | 5.3 | 1.9–12.3 | 0.035 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bürgi, R.; De Bruin, E.D. Differences in Spatial Physical Activity Patterns between Weekdays and Weekends in Primary School Children: A Cross-Sectional Study Using Accelerometry and Global Positioning System. Sports 2016, 4, 36. https://doi.org/10.3390/sports4030036
Bürgi R, De Bruin ED. Differences in Spatial Physical Activity Patterns between Weekdays and Weekends in Primary School Children: A Cross-Sectional Study Using Accelerometry and Global Positioning System. Sports. 2016; 4(3):36. https://doi.org/10.3390/sports4030036
Chicago/Turabian StyleBürgi, Rahel, and Eling D. De Bruin. 2016. "Differences in Spatial Physical Activity Patterns between Weekdays and Weekends in Primary School Children: A Cross-Sectional Study Using Accelerometry and Global Positioning System" Sports 4, no. 3: 36. https://doi.org/10.3390/sports4030036
APA StyleBürgi, R., & De Bruin, E. D. (2016). Differences in Spatial Physical Activity Patterns between Weekdays and Weekends in Primary School Children: A Cross-Sectional Study Using Accelerometry and Global Positioning System. Sports, 4(3), 36. https://doi.org/10.3390/sports4030036