Characterization of Load Components in Resistance Training Programs for Kidney Transplant Recipients: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search Strategy
2.5. Method for Evidence Source Selection
2.6. Data Charting Process and Items
- General information of the study: year of publication, design, sample size, age, sex and post-transplant time of the participants.
- Characteristics of the RT program: training methodology, exercise selection, sets, repetitions, intensity, load progression, rest interval between sets, execution velocity, weekly frequency, and duration.
2.7. Data Extraction and Analysis Process
3. Results
3.1. Selection of Sources of Evidence
3.2. Characteristics of Sources of Evidence
3.3. Synthesis of Results
4. Discussion
Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RT | Resistance training |
1RM | One-repetition maximum |
OMNI | Perceived Exertion Scale for Resistance Exercise |
MHR | Maximum heart rate |
References
- Rahimzadeh, N.; Otukesh, H.; Seirafianpour, F.; Hoseini, R. Long-Term Outcome of Kidney Transplant Among Iranian Children: A Systematic Review and Meta-Analysis. Exp. Clin. Transplant. 2022, 20, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Burns, T.; Fernandez, R.; Stephens, M. The experiences of adults who are on dialysis and waiting for a renal transplant from a deceased donor: A systematic review. JBI Evid. Synth. 2015, 13, 169–211. [Google Scholar] [CrossRef] [PubMed]
- Keyzer, C.A.; Vermeer, C.; Joosten, M.M.; Knapen, M.H.; Drummen, N.E.; Navis, G.; Bakker, S.J.; de Borst, M.H. Vitamin K status and mortality after kidney transplantation: A cohort study. Am. J. Kidney Dis. 2015, 65, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Jansz, T.T.; Neradova, A.; van Ballegooijen, A.J.; Verhaar, M.C.; Vervloet, M.G.; Schurgers, L.J.; van Jaarsveld, B.C. The role of kidney transplantation and phosphate binder use in vitamin K status. PLoS ONE 2018, 13, e0203157. [Google Scholar] [CrossRef]
- Haasova, M.; Snowsill, T.; Jones-Hughes, T.; Crathorne, L.; Cooper, C.; Varley-Campbell, J.; Mujica-Mota, R.; Coelho, H.; Huxley, N.; Lowe, J.; et al. Immunosuppressive therapy for kidney transplantation in children and adolescents: Systematic review and economic evaluation. Health Technol. Assess. 2016, 20, 1–324. [Google Scholar] [CrossRef]
- Sgambat, K.; Clauss, S.; Lei, K.Y.; Song, J.; Rahaman, S.O.; Lasota, M.; Moudgil, A. Effects of obesity and metabolic syndrome on cardiovascular outcomes in pediatric kidney transplant recipients: A longitudinal study. Pediatr. Nephrol. 2018, 33, 1419–1428. [Google Scholar] [CrossRef]
- Sgambat, K.; Clauss, S.; Moudgil, A. Comparison of BMI, waist circumference, and waist-to-height ratio for identification of subclinical cardiovascular risk in pediatric kidney transplant recipients. Pediatr. Transplant. 2018, 22, e13300. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Mat Daud, Z.A.; Abd Talib, R.; Mohd, R.; Poh, B.K. Metabolic Syndrome and Dietary Intake are Associated With Quality of Life in Kidney Transplant Recipients. Transplant. Proc. 2023, 55, 2176–2182. [Google Scholar] [CrossRef]
- Goldsmith, D.; Pietrangeli, C.E. The metabolic syndrome following kidney transplantation. Kidney Int. 2010, 78, S8–S14. [Google Scholar] [CrossRef]
- Neto, A.W.G.; Boslooper-Meulenbelt, K.; Geelink, M.; van Vliet, I.M.Y.; Post, A.; Joustra, M.L.; Knoop, H.; Berger, S.P.; Navis, G.J.; Bakker, S.J.L. Protein Intake, Fatigue and Quality of Life in Stable Outpatient Kidney Transplant Recipients. Nutrients 2020, 12, 2451. [Google Scholar] [CrossRef]
- Janaudis-Ferreira, T.; Tansey, C.M.; Mathur, S.; Blydt-Hansen, T.; Lamoureaux, J.; Räkel, A.; de Sousa Maia, N.P.; Bussières, A.; Ahmed, S.; Boruff, J. The effects of exercise training in adult solid organ transplant recipients: A systematic review and meta-analysis. Transpl. Int. 2021, 34, 801–824. [Google Scholar] [CrossRef] [PubMed]
- Kang, A.W.; Garber, C.E.; Eaton, C.B.; Risica, P.M.; Bostom, A.G. Physical Activity and Cardiovascular Risk among Kidney Transplant Patients. Med. Sci. Sports Exerc. 2019, 51, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Kang, A.W.; Bostom, A.G.; Kim, H.; Eaton, C.B.; Gohh, R.; Kusek, J.W.; Pfeffer, M.A.; Risica, P.M.; Garber, C.E. Physical activity and risk of cardiovascular events and all-cause mortality among kidney transplant recipients. Nephrol. Dial. Transplant. 2020, 35, 1436–1443. [Google Scholar] [CrossRef]
- Mosconi, G.; Totti, V.; Sella, G.; Roi, G.S.; Costa, A.N.; Bellis, L.; Cardillo, M. Physical Exercise in Kidney Renal Recipients: Where Have We Come? Kidney Blood Press. Res. 2024, 49, 548–555. [Google Scholar] [CrossRef]
- Wang, W. Optimizing Quality of Life in Kidney Transplant Recipients Through Structured Exercise: A Systematic Review and Evidence-Based Guidelines. Med. Sci. Monit. 2024, 30, e943617. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; Bishop, N.C.; Billany, R.E.; Lightfoot, C.J.; Castle, E.M.; Smith, A.C.; Greenwood, S.A. The effect of exercise training interventions in adult kidney transplant recipients: A systematic review and meta-analysis of randomised control trials. Phys. Ther. Rev. 2022, 27, 114–134. [Google Scholar] [CrossRef]
- Baker, L.A.; March, D.S.; Wilkinson, T.J.; Billany, R.E.; Bishop, N.C.; Castle, E.M.; Chilcot, J.; Davies, M.D.; Graham-Brown, M.P.M.; Greenwood, S.A.; et al. Clinical practice guideline exercise and lifestyle in chronic kidney disease. BMC Nephrol. 2022, 23, 75. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Sánchez-Medina, L.; Ribas-Serna, J.; Rodríguez-Rosell, D. Toward a New Paradigm in Resistance Training by Means of Velocity Monitoring: A Critical and Challenging Narrative. Sports Med. Open 2022, 8, 118. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Gorostiaga, E.M.; González-Badillo, J.J. Effect of movement velocity during resistance training on neuromuscular performance. Int. J. Sports Med. 2014, 35, 916–924. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.D.J.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, L.; McInerney, P.; Godfrey, C.M.; Khalil, H. Updated methodological guidance for the conduct of scoping reviews. JBI Evid. Synth. 2020, 18, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Kraemer, W.J.; Blimkie, C.J.; Jeffreys, I.; Micheli, L.J.; Nitka, M.; Rowland, T.W. Youth resistance training: Updated position statement paper from the national strength and conditioning association. J. Strength Cond. Res. 2009, 23, S60–S79. [Google Scholar] [CrossRef]
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. J. Strength Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Cronin, J.B.; Faigenbaum, A.D.; Haff, G.G.; Howard, R.; Kraemer, W.J.; Micheli, L.J.; Myer, G.D.; Oliver, J.L. National Strength and Conditioning Association Position Statement on Long-Term Athletic Development. J. Strength Cond. Res. 2016, 30, 1491–1509. [Google Scholar] [CrossRef]
- Roi, G.S.; Mosconi, G.; Totti, V.; Angelini, M.L.; Brugin, E.; Sarto, P.; Merlo, L.; Sgarzi, S.; Stancari, M.; Todeschini, P.; et al. Renal function and physical fitness after 12-mo supervised training in kidney transplant recipients. World J. Transplant. 2018, 8, 13–22. [Google Scholar] [CrossRef]
- Hernández Sánchez, S.; Carrero, J.J.; Morales, J.S.; Ruiz, J.R. Effects of a resistance training program in kidney transplant recipients: A randomized controlled trial. Scand. J. Med. Sci. Sports 2021, 31, 473–479. [Google Scholar] [CrossRef]
- Hemmati, N.; Kazemi, S.; Jamshidian-Tehrani, N.; Roozbeh, J.; Koushkie Jahromi, M.; Salesi, M.; Abdollahpour-Alitappeh, M.; Karimi, M.H. Effects of exercise training on immunological factors in kidney transplant recipients; a randomized controlled trial. Res. Sports Med. 2022, 30, 80–91. [Google Scholar] [CrossRef]
- Michou, V.; Nikodimopoulou, M.; Liakopoulos, V.; Anifanti, M.; Papagianni, A.; Zembekakis, P.; Deligiannis, A.; Kouidi, E. Home-Based Exercise Training and Cardiac Autonomic Neuropathy in Kidney Transplant Recipients with Type-II Diabetes Mellitus. Life 2023, 13, 1394. [Google Scholar] [CrossRef]
- Lima, P.S.; de Campos, A.S.; de Faria Neto, O.; Ferreira, T.C.A.; Amorim, C.E.N.; Stone, W.J.; Prestes, J.; Garcia, A.M.C.; Urtado, C.B. Effects of Combined Resistance Plus Aerobic Training on Body Composition, Muscle Strength, Aerobic Capacity, and Renal Function in Kidney Transplantation Subjects. J. Strength Cond. Res. 2021, 35, 3243–3250. [Google Scholar] [CrossRef]
- Michou, V.; Nikodimopoulou, M.; Deligiannis, A.; Kouidi, E. Metabolic and functional effects of exercise training in diabetic kidney transplant recipients. World J. Transplant. 2022, 12, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Eatemadololama, A.; Karimi, M.T.; Rahnama, N.; Rasolzadegan, M.H. Resistance exercise training restores bone mineral density in renal transplant recipients. Clin. Cases Miner. Bone Metab. 2017, 14, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Liu, S.; Zhu, X.; Liu, H.; Zeng, L.; Yan, J.; Liu, J. The effects of a physical exercise program in Chinese kidney transplant recipients: A prospective randomised controlled trial. Clin. Kidney J. 2023, 16, 1316–1329. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, E.M.; Koufaki, P.; Mercer, T.H.; Lindup, H.; Nugent, E.; Goldsmith, D.; Macdougall, I.C.; Greenwood, S.A. Long-term pulse wave velocity outcomes with aerobic and resistance training in kidney transplant recipients—A pilot randomised controlled trial. PLoS ONE 2017, 12, e0171063. [Google Scholar] [CrossRef]
- Senthil Kumar, T.G.; Soundararajan, P.; Maiya, A.G.; Ravi, A. Effects of graded exercise training on functional capacity, muscle strength, and fatigue after renal transplantation: A randomized controlled trial. Saudi J. Kidney Dis. Transplant. 2020, 31, 100–108. [Google Scholar] [CrossRef]
- Riess, K.J.; Haykowsky, M.; Lawrance, R.; Tomczak, C.R.; Welsh, R.; Lewanczuk, R.; Tymchak, W.; Haennel, R.G.; Gourishankar, S. Exercise training improves aerobic capacity, muscle strength, and quality of life in renal transplant recipients. Appl. Physiol. Nutr. Metab. 2014, 39, 566–571. [Google Scholar] [CrossRef]
- Greenwood, S.A.; Koufaki, P.; Mercer, T.H.; Rush, R.; O’Connor, E.; Tuffnell, R.; Lindup, H.; Haggis, L.; Dew, T.; Abdulnassir, L.; et al. Aerobic or Resistance Training and Pulse Wave Velocity in Kidney Transplant Recipients: A 12-Week Pilot Randomized Controlled Trial (the Exercise in Renal Transplant [ExeRT] Trial). Am. J. Kidney Dis. 2015, 66, 689–698. [Google Scholar] [CrossRef]
- Karelis, A.D.; Hébert, M.J.; Rabasa-Lhoret, R.; Räkel, A. Impact of Resistance Training on Factors Involved in the Development of New-Onset Diabetes After Transplantation in Renal Transplant Recipients: An Open Randomized Pilot Study. Can. J. Diabetes 2016, 40, 382–388. [Google Scholar] [CrossRef]
- Crepaldi, A.; Piva, G.; Lamberti, N.; Felisatti, M.; Pomidori, L.; Battaglia, Y.; Manfredini, F.; Storari, A.; López-Soto, P.J. Supervised vs. home-based exercise program in kidney transplant recipients: A pilot pragmatic non-randomized study. World J. Transplant. 2024, 14, 96244. [Google Scholar] [CrossRef]
- Billany, R.E.; Macdonald, J.H.; Burns, S.; Chowdhury, R.; Ford, E.C.; Mubaarak, Z.; Sohansoha, G.K.; Vadaszy, N.; Young, H.M.L.; Bishop, N.C.; et al. A structured, home-based exercise programme in kidney transplant recipients (ECSERT): A randomised controlled feasibility study. PLoS ONE 2025, 20, e0316031. [Google Scholar] [CrossRef]
- Schumann, M.; Feuerbacher, J.F.; Sünkeler, M.; Freitag, N.; Rønnestad, B.R.; Doma, K.; Lundberg, T.R. Compatibility of Concurrent Aerobic and Strength Training for Skeletal Muscle Size and Function: An Updated Systematic Review and Meta-Analysis. Sports Med. 2022, 52, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Peña, J.C.; Alemán, W.F.M.; Cardozo, L.A.; Daza, C.C.; Yánez, C.A.; Tinjaca, L.A.T. Efectos de la secuencia de ejercicios intrasesión del entrenamiento concurrente sobre la composición corporal y la aptitud física de las mujeres mayores. Retos Nuevas Tend. Educ. Fís. Deporte Y Recreac. 2022, 45, 760–766. [Google Scholar]
- Shaw, I.; Shaw, B.S.; Brown, G.A. Concurrent training and pulmonary function in smokers. Int. J. Sports Med. 2011, 32, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Dupuit, M.; Rance, M.; Morel, C.; Bouillon, P.; Boscaro, A.; Martin, V.; Vazeille, E.; Barnich, N.; Chassaing, B.; Boisseau, N. Effect of Concurrent Training on Body Composition and Gut Microbiota in Postmenopausal Women with Overweight or Obesity. Med. Sci. Sports Exerc. 2022, 54, 517–529. [Google Scholar] [CrossRef]
- Eklund, D.; Häkkinen, A.; Laukkanen, J.A.; Balandzic, M.; Nyman, K.; Häkkinen, K. Fitness, body composition and blood lipids following 3 concurrent strength and endurance training modes. Appl. Physiol. Nutr. Metab. 2016, 41, 767–774. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. J. Strength Cond. Res. 2017, 31, 3508–3523. [Google Scholar] [CrossRef]
- Jenkins, N.D.; Housh, T.J.; Buckner, S.L.; Bergstrom, H.C.; Cochrane, K.C.; Hill, E.C.; Smith, C.M.; Schmidt, R.J.; Johnson, G.O.; Cramer, J.T. Neuromuscular Adaptations After 2 and 4 Weeks of 80% Versus 30% 1 Repetition Maximum Resistance Training to Failure. J. Strength Cond. Res. 2016, 30, 2174–2185. [Google Scholar] [CrossRef]
- Fisher, S.; Smart, N.A.; Pearson, M.J. Resistance training in heart failure patients: A systematic review and meta-analysis. Heart Fail. Rev. 2022, 27, 1665–1682. [Google Scholar] [CrossRef]
- Jenkins, N.D.M.; Miramonti, A.A.; Hill, E.C.; Smith, C.M.; Cochrane-Snyman, K.C.; Housh, T.J.; Cramer, J.T. Mechanomyographic Amplitude Is Sensitive to Load-Dependent Neuromuscular Adaptations in Response to Resistance Training. J. Strength Cond. Res. 2021, 35, 3265–3269. [Google Scholar] [CrossRef]
- De Souza, E.O.; Tricoli, V.; Rauch, J.; Alvarez, M.R.; Laurentino, G.; Aihara, A.Y.; Cardoso, F.N.; Roschel, H.; Ugrinowitsch, C. Different Patterns in Muscular Strength and Hypertrophy Adaptations in Untrained Individuals Undergoing Nonperiodized and Periodized Strength Regimens. J. Strength Cond. Res. 2018, 32, 1238–1244. [Google Scholar] [CrossRef]
- Williams, T.D.; Tolusso, D.V.; Fedewa, M.V.; Esco, M.R. Comparison of Periodized and Non-Periodized Resistance Training on Maximal Strength: A Meta-Analysis. Sports Med. 2017, 47, 2083–2100. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Pope, Z.K.; Benik, F.M.; Hester, G.M.; Sellers, J.; Nooner, J.L.; Schnaiter, J.A.; Bond-Williams, K.E.; Carter, A.S.; Ross, C.L.; et al. Longer Interset Rest Periods Enhance Muscle Strength and Hypertrophy in Resistance-Trained Men. J. Strength Cond. Res. 2016, 30, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.D.; Fernandes, O.; Pereira, A.; Oliveira, R.; Alderete Goñi, F.D.; Leite, N.J.C.; Brito, J.P. The Effects of High-Speed Resistance Training on Health Outcomes in Independent Older Adults: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 5390. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cava, A.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Morán-Navarro, R.; González-Badillo, J.J.; Pallarés, J.G. Reliability of technologies to measure the barbell velocity: Implications for monitoring resistance training. PLoS ONE 2020, 15, e0232465. [Google Scholar] [CrossRef]
- Jukic, I.; García-Ramos, A.; Tufano, J.J. Velocity-Based Resistance Training Monitoring: Influence of Lifting Straps, Reference Repetitions, and Variable Selection in Resistance-Trained Men. Sports Health 2023, 15, 333–341. [Google Scholar] [CrossRef]
- Baena-Marín, M.; Rojas-Jaramillo, A.; González-Santamaría, J.; Rodríguez-Rosell, D.; Petro, J.L.; Kreider, R.B.; Bonilla, D.A. Velocity-Based Resistance Training on 1-RM, Jump and Sprint Performance: A Systematic Review of Clinical Trials. Sports 2022, 10, 8. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; González-Badillo, J.J. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef]
- Petro, J.L.; Ferrari, G.; Cardozo, L.A.; Vargas-Molina, S.; Carbone, L.; Kreider, R.B.; Bonilla, D.A. Validity of Rating of Perceived Exertion Scales in Relation to Movement Velocity and Exercise Intensity During Resistance-Exercise: A Systematic Review. Sports Health 2024, 19417381241260412. [Google Scholar] [CrossRef]
Author | Research Design | Sample Size | Sex | Age Experimental Group (Years) | Post-Transplant Time (Experimental Group) |
---|---|---|---|---|---|
Roi et al., 2018 [26] | NRCT | EG:52 CG:47 | F/M | 47 ± 12 | 5.1 ± 2.1 (years) |
Hernández et al., 2021 [27] | RCT | EG:8 CG:8 | F/M | 49.7 ± 9.6 | 115 ± 54 (months) |
Hemmati et al., 2022 [28] | RCT | EG:13 CG:10 | F/M | 32.9 ± 9.81 | NR |
Michou et al., 2023 [29] | RCT | EG:13 CG:12 | F/M | 54.9 ± 9.9 | NR |
Lima et al., 2019 [30] | RCT | EG:7 CG: 15 | F/M | 54 ± 3 | 4 ± 1.8 (years) |
Michou et al., 2022 [31] | RCT | EG:11 CG:10 | F/M | 52.9 ± 9.5 | 47.4 ± 18.3 (months) |
Eatemadololama et al., 2017 [32] | NRCT | EG:12 CG:12 | NR | 27.4 ± 17.3 | NR |
Zhang et al., 2023 [33] | RCT | EG:53 CG:53 | F/M | 43.16 ± 10.76 | NR |
O’Connor et al., 2017 [34] | RCT | EGRT:13 EGET:13 CG:20 | F/M | 54.6 ± 10.6 | NR |
Senthil et al., 2020 [35] | RCT | EG:53 CG:51 | F/M | 36.2 ± 8.6 | NR |
Riess et al., 2014 [36] | RCT | EG:16 CG:15 | F/M | 56.9 ± 12.2 | NR |
Greenwood et al., 2015 [37] | RCT | EGRT:20 EGET:20 CG:20 | F/M | 54.6 ± 10.6 | NR |
Karelis et al., 2016 [38] | RCT | EG:10 CG:10 | F/M | 45.3 ± 14 | 2 to 18 (months) |
Crepaldi et al., 2024 [39] | RCT | EG:8 CG:7 | F/M | 52 ± 10 | NR |
Billany, 2025 [40] | RCT | EG:25 CG:25 | F/M | 49 ± 13 | NR |
Study | Training Type | Frequency (Days of Week) | Duration (Months) | Session Duration (Minutes) | Number of Exercises | Types of Exercises |
---|---|---|---|---|---|---|
[26] | CT | 3 | 12 | 60 | 5 | NR |
[27] | RT | 2 | 2.5 | 60 | NR | Exercises involving the upper and lower limb such as leg press, rowing pulley, leg curl, flymachine, machine calf raises, knee extension and core work. |
[28] | CT | 3 | 3 | 60 a 90 | NR | Exercises for upper and lower extremities and abdominal muscles using free weights or body weight. |
[29] | CT(SP) | 3 | 6 | 60 a 70 | 3 a 6 | Dynamic muscle-strengthening exercises. |
[30] | CT | 3 | 3 | 35 | 5 | Exercises with free weights. |
[31] | CT (SP) | 3 | 6 | 60 a 90 | 6 | Exercise with body weight. |
[32] | RT | 2 | 3 | 60 | NR | NR |
[33] | CT | 2 | 6 | 30 | 2 a 3 | Exercises with light dumbbells, body weight and elastic bands. |
[34] | ET and RT | 2 | 3 | NR | NR | NR |
[35] | CT | 2 | 3 | NR | NR | Exercises with the use of gravity and own body weight in phase 1 and exercises were performed for quadriceps with external loads for phase 2. |
[36] | CT | 5 | 3 | NR | NR | NR |
[37] | ET and RT | 1 | 3 | 60 | 8 | Bench press, latissimus pulldown, bicep curl, triceps pull down, leg press, knee extension, hamstring curl, and calf raises |
[38] | RS | 3 | 2.5 | 45 a 60 | 7 | Leg press, chest press, lat pulldowns, shoulder press, arm curls, triceps extensions, and sit-ups |
[39] | CT | 3 | 6 | 60 | 5 | Leg extension, pectoral machine, lat machine, leg curl, and abductor machine. |
[40] | CT (SP) | 5 | 3 | 60 | 12 | Squat, hip abduction, lunge, calf-raise, side-lunge, bicep-curl, bent-over row, reverse-fly, lateral-raise, chest-press, side-bends, and standing trunk rotation. |
Study | Intensity | Sets | Repetitions | Rest Time Between Sets (Minutes) | Progressive Load | Velocity |
---|---|---|---|---|---|---|
[26] | 35% 1RM | 2 | 20 | NR | An increase in load is indicated at 6 months but no further information is given. | NR |
[27] | 10 RM | 3 | 10 | 1 | Increased volume was progressively throughout the training program coming to complete four sets of 10-RM. | NR |
[28] | 40 al 65% MHR | NR | NR | NR | An increase in intensity is indicated based on the response of each participant but the way in which it was performed is not mentioned. | NR |
[29] | NR | 2 | 8 a 10 | NR | The load was adjusted with changes in positions during the development of the exercises and including balls, bands, and dumbbells. | NR |
[30] | 6 A 7 (OMNI) | 2 | 10 | 1 | NR | Controlled by self-perception. |
[31] | NR | 8 | 10 | 1 | NR | NR |
[32] | 50% 1RM | NR | 10 a 15 | NR | An increase of 5 to 10% of 1RM is indicated but the moment in which it was performed is not specified. | NR |
[33] | NR | NR | 10 | NR | It is mentioned that first the number of repetitions was increased, then the number of sets was increased from one to two, and finally the resistance levels of dumbbells or elastic bands were increased. | NR |
[34] | NR | NR | NR | NR | NR | NR |
[35] | 50 al 85% 1RM | NR | 10 | NR | Resistance was increased in a graded manner at a rate of 5% to 10% of the previous load. | NR |
[36] | 50% 1RM | 2 | 10 | NR | The intensity increased by 5–10% when two sets of 15 repetitions were performed while adhering to strict technique. | NR |
[37] | 80% 1RM | 1 a 3 | 8 a 10 | 3 | The one-repetition maximum was reassessed monthly, and the program was adjusted accordingly. | NR |
[38] | 80% 1RM | 3 | 10 | 1 a 5 | Weekly increase based on ability to maintain prescribed number of repetitions | NR |
[39] | NR | NR | NR | NR | It is indicated that the progression ranged between 40 and 50% and 65–75% of a person’s maximum exercise capacity, but it is not indicated with which load component these percentages were estimated. | NR |
[40] | 60%1RM | 2 | 10 | 1 | The progression of the load was achieved by increasing the number of series per session. | NR |
Load Component | Recommendation for This Component |
---|---|
Training Type | RT might be complemented with concurrent training. Adherence is crucial. |
Frecuency and session duration | The recommended frequency is at least twice per week. Each session should last a minimum of 30 min. |
Types of Exercises | Bodyweight exercises and light dumbbells are the most recommended modalities. |
Number of exercises | The number of exercises per session ranges from five to eight. |
Intensity of load | Intensity can be regulated as a percentage of 1RM, with work ranges varying between 30% and 80% of 1RM. |
Training volume | Training volume includes two to eight sets per exercise, with repetitions ranging from 10 to 20 per set. |
Rest time between sets | Rest intervals between sets vary between one and five minutes. |
Progressive load | Load progression is achieved by increasing the intensity, volume, or technical difficulty of the exercises. |
Execution velocity | Execution velocity of movements has not been extensively reported in this patient population. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña, J.C.; Sánchez-Guette, L.; Lombo, C.; Pinto, E.; Collazos, C.; Tovar, B.; Bonilla, D.A.; Cardozo, L.A.; Tellez, L.A. Characterization of Load Components in Resistance Training Programs for Kidney Transplant Recipients: A Scoping Review. Sports 2025, 13, 153. https://doi.org/10.3390/sports13050153
Peña JC, Sánchez-Guette L, Lombo C, Pinto E, Collazos C, Tovar B, Bonilla DA, Cardozo LA, Tellez LA. Characterization of Load Components in Resistance Training Programs for Kidney Transplant Recipients: A Scoping Review. Sports. 2025; 13(5):153. https://doi.org/10.3390/sports13050153
Chicago/Turabian StylePeña, Jhonatan C., Lilibeth Sánchez-Guette, Camilo Lombo, Edith Pinto, Carlos Collazos, Blanca Tovar, Diego A. Bonilla, Luis A. Cardozo, and Luis Andres Tellez. 2025. "Characterization of Load Components in Resistance Training Programs for Kidney Transplant Recipients: A Scoping Review" Sports 13, no. 5: 153. https://doi.org/10.3390/sports13050153
APA StylePeña, J. C., Sánchez-Guette, L., Lombo, C., Pinto, E., Collazos, C., Tovar, B., Bonilla, D. A., Cardozo, L. A., & Tellez, L. A. (2025). Characterization of Load Components in Resistance Training Programs for Kidney Transplant Recipients: A Scoping Review. Sports, 13(5), 153. https://doi.org/10.3390/sports13050153