Body Mass Index and Sedentary Behaviour Affect Hamstring Extensibility in Primary Education Students
Abstract
:1. Introduction
2. Material and Method
2.1. Participants
2.2. Measures
2.3. Procedure
2.4. Sample Size Estimation
2.5. Data Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Hamstring Flexibility
3.3. Physical Activity
4. Discussion
5. Potential Interventions to Improve Flexibility
6. Limitations and Future Research Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Li, S.; Best, T.M.; Liu, H.; Li, H.; Yu, B. Effects of flexibility and strength training on peak hamstring musculotendinous strains during sprinting. J. Sport Health Sci. 2021, 10, 222–229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hartig, D.E.; Henderson, J.M. Increasing hamstring flexibility decreases lower extremity overuse injuries in military basic trainees. Am. J. Sports Med. 1999, 27 , 173–176. (In English) [Google Scholar] [CrossRef] [PubMed]
- Ayala, F.; De Baranda, P.S.; De Ste Croix, M.; Santonja, F. Criterion-related validity of four clinical tests used to measure hamstring flexibility in professional futsal players. Phys. Ther. Sports 2013, 8, 365–372. [Google Scholar] [PubMed]
- Barnett, L.M.; van Beurden, E.; Morgan, P.J.; Brooks, L.O.; Beard, J.R. Childhood motor skill proficiency as a predictor of adolescent physical activity. J. Adolesc. Health 2009, 44, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Iverson, D.C.; Fielding, J.E.; Crow, R.S.; Christenson, G.M. The promotion of physical activity in the United States population: The status of programs in medical, worksite, community, and school settings. Public Health Rep. 1985, 100, 212–224. [Google Scholar] [PubMed] [PubMed Central]
- Fletcher, G.F.; Balady, G.; Blair, S.N.; Blumenthal, J.; Caspersen, C.; Chaitman, B.; Epstein, S.; Sivarajan Froelicher, E.S.; Froelicher, V.F.; Pina, I.L.; et al. Statement on exercise: Benefits and recommendations for physical activity programs for all Americans. A statement for health professionals by the Committee on Exercise and Cardiac Rehabilitation of the Council on Clinical Cardiology, American Heart Association. Circulation 1996, 94, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef] [PubMed]
- Cohen, K.E.; Morgan, P.J.; Plotnikoff, R.C.; Callister, R.; Lubans, D.R. Fundamental movement skills and physical activity among children living in low-income communities: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [PubMed]
- Hills, A.P.; Andersen, L.B.; Byrne, N.M. Physical activity and obesity in children. Br. J. Sports Med. 2011, 45, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Wearing, S.C.; Hennig, E.M.; Byrne, N.M.; Steele, J.R.; Hills, A.P. The biomechanics of restricted movement in adult obesity. Obes. Rev. 2006, 7, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 16 million participants. Lancet Child. Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Arntz, F.; Markov, A.; Behm, D.G.; Behrens, M.; Negra, Y.; Nakamura, M.; Moran, J.; Chaabene, H. Chronic effects of static stretching exercises on muscle strength and power in healthy individuals across the lifespan: A systematic review with multi-level meta-analysis. Sports Med. 2023, 53, 723–745. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A.A. Body mass index cut offs to define thinness in children and adolescents: International survey. BMJ 2007, 335, 194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ayala, F.; Sainz de Baranda, P.; De Ste Croix, M.; Santonja, F. Reproducibility and criterion-related validity of the sit and reach test and toe touch test for estimating hamstring flexibility in recreationally active young adults. Phys. Ther. Sport 2012, 13, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Castro-Piñero, J.; Artero, E.G.; España-Romero, V.; Ortega, F.B.; Sjöström, M.; Suni, J.; Ruiz, J.R. Criterion-related validity of field-based fitness tests in youth: A systematic review. Br. J. Sports Med. 2009, 44, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.; Langford, N.J. The criterion-related validity of the sit and reach test: Replication and extension of previous findings. Res. Q. Exerc. Sport 1989, 60, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Vega, D.; Merino-Marban, R.; Viciana, J. Criterion-related validity of sit-and-reach tests for estimating hamstring and lumbar extensibility: A meta-analysis. J. Sports Sci. Med. 2014, 13, 1–14. [Google Scholar] [PubMed] [PubMed Central]
- Wells, K.F.; Dillon, E.K. The sit and reach—A test of back and leg flexibility. Res. Q. 1952, 23, 115–118. [Google Scholar] [CrossRef]
- Marsigliante, S.; Gómez-López, M.; Muscella, A. Effects on children’s physical and mental well-being of a physical-activity-based school intervention program: A randomized study. Int. J. Env. Res. Public Health 2023, 20, 1927. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chillón, P.; Castro-Piñero, J.; Ruiz, J.R.; Soto, V.M.; Carbonell-Baeza, A.; Dafos, J.; Vicente-Rodríguez, G.; Castillo, M.J.; Ortega, F.B. Hip flexibility is the main determinant of the back-saver sit-and-reach test in adolescents. J. Sports Sci. 2010, 28, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Ponce-González, J.G.; Gutiérrez-Manzanedo, J.V.; De Castro-Maqueda, G.; Fernández-Torres, V.J.; Fernández-Santos, J.R. The federated practice of soccer influences hamstring flexibility in healthy adolescents: Role of age and weight status. Sports 2020, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Manzanedo, J.V.; Fernández-Santos, J.R.; Ponce-González, J.G.; Lagares-Franco, C.; De Castro-Maqueda, G. Hamstring extensibility in female elite soccer players. Retos. Nuevas Tend. Educ. Fís. Deporte Recreac. 2018, 33, 175–178. [Google Scholar]
- Zurita, F. The importance of flexor capacity and ligament hiperlaxity in the detection of school athletes. J. Sport Health Res. 2011, 3, 47–58. [Google Scholar]
- Arregui Eraña, J.; Martínez de Haro, V. Current state of the investigations on the flexibility in the adolescence. Rev. Int. Med. Cienc. Act. Fís. Deporte 2001, 1, 127–135. [Google Scholar]
- Cejudo, A.; Sainz de Baranda, P.; Ayala, F.; Santonja, F. Perfil de flexibilidad de la extremidad inferior en jugadores de fútbol sala. Rev. Int. Med. Cienc. Act. Fís. Deporte 2014, 14, 509–525. [Google Scholar]
- Hallal, P.C.; Victora, C.G. Reliability and validity of the International Physical Activity Questionnaire (IPAQ). Med. Sci. Sports Exerc. 2004, 36, 556. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Castro-Piñero, J.; Artero, E.G.; Ortega, F.B.; Sjöström, M.; Suni, J.; Castillo, M.J. Predictive validity of health-related fitness in youth: A systematic review. Br. J. Sports Med. 2009, 43, 909–923. [Google Scholar] [CrossRef] [PubMed]
- Matina, R.M.; Rogol, A.D. Sport training and the growth and pubertal maturation of young athletes. Pediatr Endocrinol. Rev. 2011, 9, 441–455. [Google Scholar] [PubMed]
- Pate, R.R.; Davis, M.G.; Robinson, T.N.; Stone, E.J.; McKenzie, T.L.; Young, J.C. Promoting physical activity in children and youth. A leadership role for schools: A scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006, 114, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, K.T.; Sigurgeirsson, I.; Sveinsson, T.; Johannsson, E. Assessment of a two-year school-based physical activity intervention among 7-9-year-old children. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tomporowski, P.D.; Lambourne, K.; Okumura, M.S. Physical activity interventions and children’s mental function: An introduction and overview. Prev. Med. 2011, 52 (Suppl. S1), S3–S9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bloemers, F.; Collard, D.; Paw, M.C.; Van Mechelen, W.; Twisk, J.; Verhagen, E. Physical inactivity is a risk factor for physical activity-related injuries in children. Br. J. Sports Med. 2012, 46, 669–674. [Google Scholar] [CrossRef] [PubMed]
- RSánchez Rivas, E.; Mayorga-Vega, D.; Fernandez-Rodriguez, E.F.; Merino-Marban, R. Efecto de un programa de estiramiento de la musculatura isquiosural en las clases de educación física en educación primaria. J. Sport Health Res. 2014, 6, 159–168. [Google Scholar]
- Diamond, A.; Lee, K. Interventions shown to aid executive function development in children 4 to 12 years old. Science 2011, 333, 959–964. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cibinello, F.U.; Caroliny de Jesus Neves, J.; Janeiro Valenciano, P.; Shizuko Fujisawa, D.; Augusto Marçal Camillo, C. Effects of Pilates in children and adolescents—A systematic review and meta-analysis. J. Bodyw. Mov. Ther. 2023, 35, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Neil-Sztramko, S.E.; Caldwell, H.; Dobbins, M. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst. Rev. 2021, 9, CD007651. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J. Physical activity, physical fitness, and overweight in children and adolescents: Evidence from epidemiologic studies. Endocrinol. Nutr. 2013, 60, 458–469. [Google Scholar] [CrossRef] [PubMed]
All (n = 265) | Girls (n = 136) | Boys (n = 129) | |
---|---|---|---|
Height (cm) | 137.3 ± 11.2 | 137.1 ± 11.0 | 137.5 ± 11.9 |
Weight (kg) | 35.7 ± 11.4 | 35.6 ± 11.1 | 35.6 ± 11.3 |
BMI (kg/m2) | 18.5 ± 3.4 | 18.6 ± 3.5 | 18.4 ± 3.3 |
DTF (cm) | 26.6 ± 5.1 | 28.2 ± 4.8 | 24.8 ± 4.8 *** |
SR (cm) | 2.6 ± 7.2 | 5.5 ± 6.5 | −0.5 ± 6.6 *** |
Physically active (n [%]) | |||
Yes | 136 [51%] | 60 [44%] | 76 [59%] * |
No | 129 [49%] | 76 [66%] | 53 [41%] |
DTF | |||
---|---|---|---|
Variables | F | P | (90% CI) |
BMI | 37.641 | <0.001 | 0.130 (0.072–0.196) |
Physically active | 24.864 | <0.001 | 0.090 (0.041–0.150) |
Grade | 6.269 | <0.001 | 0.111 (0.045–0.162) |
Gender | 53.875 | <0.001 | 0.177 (0.111–0.247) |
Grade × Gender | 1.320 | 0.256 | 0.026 (0.000–0.048) |
SR | |||
Variables | F | P | (90% CI) |
BMI | 2.593 | 0.109 | 0.010 (0.000–0.041) |
Physically active | 154.316 | <0.001 | 0.381 (0.306–0.449) |
Grade | 2.553 | <0.05 | 0.048 (0.003–0.082) |
Gender | 121.795 | <0.001 | 0.327 (0.252–0.397) |
Grade × Gender | 1.069 | 0.378 | 0.021 (0.000–0.040) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Castro-Maqueda, G.; Rosety-Rodríguez, M.Á.; Fernández-Santos, J.R. Body Mass Index and Sedentary Behaviour Affect Hamstring Extensibility in Primary Education Students. Sports 2025, 13, 109. https://doi.org/10.3390/sports13040109
De Castro-Maqueda G, Rosety-Rodríguez MÁ, Fernández-Santos JR. Body Mass Index and Sedentary Behaviour Affect Hamstring Extensibility in Primary Education Students. Sports. 2025; 13(4):109. https://doi.org/10.3390/sports13040109
Chicago/Turabian StyleDe Castro-Maqueda, Guillermo, Miguel Ángel Rosety-Rodríguez, and Jorge R. Fernández-Santos. 2025. "Body Mass Index and Sedentary Behaviour Affect Hamstring Extensibility in Primary Education Students" Sports 13, no. 4: 109. https://doi.org/10.3390/sports13040109
APA StyleDe Castro-Maqueda, G., Rosety-Rodríguez, M. Á., & Fernández-Santos, J. R. (2025). Body Mass Index and Sedentary Behaviour Affect Hamstring Extensibility in Primary Education Students. Sports, 13(4), 109. https://doi.org/10.3390/sports13040109