Stress-Induced “Immediate” Lactate (iBLC) Response Differences in Pubertal and Young Adult Soccer Players
Abstract
1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| VO2max | Absolute aerobic capacity (mL/min) |
| rVO2max | Relative aerobic capacity (mL/kg/min) |
| HRAT | Heart rate at anaerobic threshold (beat/min) |
| RHR | Resting heart rate (beat/min) |
| HRmax | Maximal heart rate (beat/min) |
| rBLC | Resting blood lactate (mmol/L) |
| iBLC | Immediate blood lactate (mmol/L) |
| ΔiBLC | Delta lactate (mmol/L) |
| Time | Time spent on the treadmill (s) |
| Speedmax | Maximum speed achieved during the exercise (km/h) |
| rPO | Relative level of performance (W/kg) |
| BH | Body height (cm) |
| BW | Body weight (kg) |
| M% | Relative muscle mass |
| F% | Relative fat mass |
References
- Hebestreit, H.; Mimura, K.; Bar-Or, O. Recovery of muscle power after high-intensity short-term exercise: Comparing boys and men. J. Appl. Physiol. 1993, 74, 2875–2880. [Google Scholar] [CrossRef] [PubMed]
- Boisseau, N.; Delamarche, P. Metabolic and hormonal responses to exercise in children and adolescents. Sports Med. 2000, 30, 405–422. [Google Scholar] [CrossRef]
- Taylor, D.J.; Kemp, G.J.; Thompson, C.H.; Radda, G.K. Ageing: Effects on oxidative function of skeletal muscle in vivo. Mol. Cell. Biochem. 1997, 174, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Tonson, A.; Ratel, S.; Le Fur, Y.; Cozzone, P.J.; Bendahan, D. Effect of maturation on the relationship between muscle size and force production. Med. Sci. Sports Exerc. 2008, 40, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Ratel, S.; Duché, P.; Williams, C.A. Muscle fatigue during high-intensity exercise in children. Sports Med. 2002, 32, 409–428. [Google Scholar] [CrossRef]
- Dotan, R.; Mitchell, C.; Cohen, R.; Klentrou, P.; Gabriel, D.; Falk, B. Child–adult differences in muscle activation—A review. Pediatr. Exerc. Sci. 2003, 15, 229–249. [Google Scholar] [CrossRef]
- Zafeiridis, A.; Chatziioannou, A.C.; Paraschos, I. Energy system contributions and physiological responses during high-intensity intermittent exercise in prepubertal and pubertal boys. J. Strength. Cond. Res. 2005, 19, 747–754. [Google Scholar]
- Ratel, S.; Blazevich, A.J. Are prepubertal children metabolically comparable to well-trained adult endurance athletes? Sports Med. 2017, 47, 1477–1485. [Google Scholar] [CrossRef]
- Dotan, R.; Falk, B. Children’s repeated sprint ability: Non-metabolic influences on performance. Int. J. Sports Physiol. Perform. 2011, 6, 37–46. [Google Scholar]
- van Praagh, E.; Doré, E. Short-term muscle power during growth and maturation. Sports Med. 2002, 32, 701–728. [Google Scholar] [CrossRef]
- Falk, B.; Dotan, R. Child–adult differences in the recovery from high-intensity exercise. Exerc. Sport Sci. Rev. 2006, 34, 107–112. [Google Scholar] [CrossRef]
- Armstrong, N.; McManus, A.M. Physiology of elite young male athletes. Med. Sport Sci. 2011, 56, 1–22. [Google Scholar]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Mancera-Soto, E.M.; Schmidt, W.F.; Schmidt, W.; Friedmann-Bette, B.; Wachsmuth, N.B. Hemoglobin Mass, Blood Volume, and VO2max of Trained and Untrained Children and Adolescents Living at Different Altitudes. Int. J. Environ. Res. Public Health 2022, 19, 7080. [Google Scholar] [CrossRef]
- Beneke, R. Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescents, and adults. J. Appl. Physiol. 2005, 99, 499–504. [Google Scholar] [CrossRef]
- Engel, F.A.; Sperlich, B.; Stockinger, C.; Hahn, L.; Mester, J. The kinetics of blood lactate in boys during and following a single and repeated all-out sprints of cycling are different than in men. Appl. Physiol. Nutr. Metab. 2015, 40, 1029–1036. [Google Scholar] [CrossRef]
- Dotan, R. Discussion: The kinetics of blood lactate in boys during and following a single and repeated all-out sprints of cycling are different than in men. Appl. Physiol. Nutr. Metab. 2015, 40, 1054–1056. [Google Scholar] [CrossRef]
- Bangsbo, J. Physiological demands of football. Sports Sci. Exch. 2014, 27, 1–6. [Google Scholar]
- Altmann, S.; Ringhof, S.; Neumann, R.; Woll, A.; Rumpf, M.C. Endurance capacities in professional soccer players: Are there differences between positions? Sports 2020, 8, 121. [Google Scholar]
- Slimani, M.; Nikolaidis, P.T.; Dellal, A.; Chaabene, H. Effects of training programs on physical and physiological aspects in soccer players: A systematic review. Sports 2019, 7, 22. [Google Scholar]
- Buchheit, M.; Mendez-Villanueva, A. Physical capacity–match physical performance relationships in soccer: Simply, more complex. Eur. J. Appl. Physiol. 2014, 114, 2281–2283. [Google Scholar]
- Buchheit, M.; Mendez-Villanueva, A. Changes in repeated-sprint performance in relation to change in locomotor profile in highly trained young soccer players. J. Sports Sci. 2014, 32, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Marfell-Jones, M.; Stewart, A.; de Ridder, J. International Standards for Anthropometric Assessment; ISAK: Potchefstroom, South Africa, 2012. [Google Scholar]
- Sun, G.; French, C.R.; Martin, G.R.; Younghusband, B.; Green, R.C.; Xie, Y.G.; Mathews, M.; Barron, J.R.; Fitzpatrick, D.G.; Gulliver, W.; et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of body composition in a population-based study. Am. J. Clin. Nutr. 2005, 81, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Padulo, J.; Powell, D.; Milia, R.; Ardigò, L.P. A Paradigm of Uphill Running. PLoS ONE 2013, 8, e69006. [Google Scholar] [CrossRef] [PubMed]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef]
- Brink-Elfegoun, T.; Kaijser, L.; Gustafsson, T.; Ekblom, B. Maximal oxygen uptake is not limited by a central nervous system governor. J. Appl. Physiol. 2007, 102, 781–786. [Google Scholar] [CrossRef]
- Åstrand, P.O.; Rodahl, K. Textbook of Work Physiology: Physiological Bases of Exercise, 3rd ed.; McGraw-Hill: New York, NY, USA, 1986. [Google Scholar]
- Ratel, S.; Lazaar, N.; Doré, E.; Baquet, G.; Williams, C.A.; Berthoin, S.; Duché, P. High-intensity intermittent activities at school: Age-related differences in repeated sprint performance in 11- to 15-year-old boys. Eur. J. Appl. Physiol. 2008, 102, 525–532. [Google Scholar]
- Slimani, M.; Nikolaidis, P.T. Anthropometric and physiological characteristics of male soccer players according to their competitive level, playing position and age group: A systematic review. J. Sports Med. Phys. Fitness 2019, 59, 141–163. [Google Scholar] [CrossRef]
- Köklü, Y.; Asçi, A.; Koçak, F.Ü.; Alemdaroglu, U.; Dündar, U. Comparison of the physiological responses to different small-sided games in elite young soccer players. J. Strength. Cond. Res. 2011, 25, 1522–1528. [Google Scholar] [CrossRef]
- Kelly, D.M.; Drust, B. The effect of pitch dimensions on heart rate responses and technical demands of small-sided soccer games in elite players. J. Sci. Med. Sport 2009, 12, 475–479. [Google Scholar] [CrossRef]
- Hill-Haas, S.V.; Dawson, B.T.; Coutts, A.J.; Rowsell, G.J. Physiological responses and time characteristics of various small-sided soccer games in youth players. J. Sports Sci. 2009, 27, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rudarlı, G.; Tutar, M.; Kayitken, B. Effects of various endurance training models on the physical condition of football players during the national break of the season. Acta Kinesiol. 2024, 18, 69–77. [Google Scholar]
- Thom, G.; Kavaliauskas, M.; Babraj, J. Changes in lactate kinetics underpin soccer performance adaptations to cycling-based sprint interval training. Eur. J. Sport Sci. 2020, 20, 486–494. [Google Scholar] [CrossRef]
- Granacher, U.; Lesinski, M.; Büsch, D.; Muehlbauer, T.; Prieske, O.; Puta, C.; Behm, D.G. Effects of resistance training in youth athletes on muscular fitness and athletic performance: A conceptual model for long-term athlete development. Front. Physiol. 2016, 7, 164. [Google Scholar] [CrossRef] [PubMed]

| Age Groups | n | % |
| U15 | 49 | 33.3 |
| U16 | 45 | 30.6 |
| U17 | 30 | 20.4 |
| U18/U19 | 23 | 15.7 |
| Positions | n | % |
| defenders | 49 | 33.3 |
| midfielders | 40 | 27.2 |
| forwards | 41 | 27.9 |
| goalkeepers | 17 | 11.6 |
| U15 | U16 | U17 | U18/U19 | Post Hoc | |||||
|---|---|---|---|---|---|---|---|---|---|
| M | SD | M | SD | M | SD | M | SD | ||
| BH (cm) | 175.16 | 9.86 | 177.28 | 7.30 | 179.29 | 8.32 | 182.58 | 5.46 | U15 = U16 < U18/U19 |
| BW (kg) | 61.86 | 10.87 | 64.13 | 8.46 | 68.49 | 8.84 | 72.03 | 7.08 | U15 = U16 < U17 = U18/U19 |
| M% | 44.02 | 3.72 | 43.55 | 1.85 | 43.96 | 1.75 | 43.39 | 1.96 | ns |
| F% | 8.10 | 3.2 | 8.65 | 3.28 | 9.11 | 3.48 | 10.86 | 3.64 | U15 = U16 < U18/U19 |
| U15 | U16 | U17 | U18/U19 | F | p * | ω2 | Post Hoc | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| M | SD | M | SD | M | SD | M | SD | |||||
| VO2max (mL/min) | 3264.53 | 583.00 | 3490.76 | 557.87 | 3894.90 | 472.25 | 4136.87 | 504.98 | 17.833 | <0.001 | 0.25 | U18/U19 = U17 > U15 = U16 |
| HRAT (beat/min) | 180.86 | 12.46 | 181.18 | 10.63 | 170.83 | 13.51 | 174.78 | 9.74 | 5.722 | 0.001 | 0.10 | U15 = U16 > U17, U18/U19 * |
| rVO2max (mL/kg/min) | 57.05 | 6.64 | 56.41 | 6.80 | 58.02 | 4.39 | 58.54 | 5.79 | 0.830 | 0.482 | 0.00 | ns |
| rBLC (mmol/L) | 1.13 | 0.32 | 1.14 | 0.30 | 1.46 | 0.67 | 1.43 | 0.42 | 4.975 | 0.004 | 0.09 | U18/U19 > U15 = U16, U17 * |
| IBLC (mmol/L) | 17.92 | 2.85 | 16.30 | 3.36 | 15.95 | 3.26 | 13.91 | 2.96 | 10.007 | <0.001 | 0.14 | U15 = U16 > U18/U19, U17 * |
| ΔIBLC (mmol/L) | 16.78 | 2.86 | 15.16 | 3.28 | 14.49 | 3.62 | 12.48 | 3.02 | 11.348 | <0.001 | 0.16 | U15 = U16 > U17 = U18/U19 |
| RHR (beat/min) | 76.39 | 7.31 | 74.58 | 8.78 | 78.20 | 6.62 | 71.74 | 10.27 | 2.805 | 0.046 | 0.04 | ns |
| HRmax (beat/min) | 196.42 | 6.79 | 196.78 | 7.65 | 195.63 | 7.39 | 191.09 | 6.05 | 4.654 | 0.005 | 0.05 | U15 = U16 > U18/U19, U17 * |
| Time (s) | 666.0 | 51.2 | 704.2 | 67.7 | 714.0 | 78.5 | 646.0 | 40.8 | 0.902 | 0.46 | 0.02 | ns |
| Speedmax (km/h) | 16.8 | 0.7 | 17.1 | 0.9 | 18.1 | 1.7 | 16.6 | 1.0 | 1.103 | 0.374 | 0.17 | ns |
| rPO (W/kg) | 4.9 | 0.3 | 4.9 | 0.1 | 4.7 | 0.1 | 4.9 | 0.1 | 1.245 | 0.331 | 0.08 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ihász, F.; Vincze, O.; Soós, I.; Barthalos, I.; Alföldi, Z.; Pápai, A.H.; Balog, Á.; Suszter, L. Stress-Induced “Immediate” Lactate (iBLC) Response Differences in Pubertal and Young Adult Soccer Players. Sports 2025, 13, 384. https://doi.org/10.3390/sports13110384
Ihász F, Vincze O, Soós I, Barthalos I, Alföldi Z, Pápai AH, Balog Á, Suszter L. Stress-Induced “Immediate” Lactate (iBLC) Response Differences in Pubertal and Young Adult Soccer Players. Sports. 2025; 13(11):384. https://doi.org/10.3390/sports13110384
Chicago/Turabian StyleIhász, Ferenc, Ottó Vincze, Imre Soós, István Barthalos, Zoltán Alföldi, Anna Horváth Pápai, Ádám Balog, and László Suszter. 2025. "Stress-Induced “Immediate” Lactate (iBLC) Response Differences in Pubertal and Young Adult Soccer Players" Sports 13, no. 11: 384. https://doi.org/10.3390/sports13110384
APA StyleIhász, F., Vincze, O., Soós, I., Barthalos, I., Alföldi, Z., Pápai, A. H., Balog, Á., & Suszter, L. (2025). Stress-Induced “Immediate” Lactate (iBLC) Response Differences in Pubertal and Young Adult Soccer Players. Sports, 13(11), 384. https://doi.org/10.3390/sports13110384

