Changes in the Infrared Thermographic Response of the Triceps Suralis Muscle During Ankle Flexion–Extension Until Exhaustion in Healthy Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Equipment and Thermographic Protocols
2.4. Maximum Fatigue Protocol
2.5. Statistical Analysis
3. Results
3.1. General Sample Description
3.2. Temperature
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ATM | Atmosphere |
| BMI | Body Mass Index |
| ΔT | Difference in Temperature |
| IRT | Infrared Thermography |
| ROI | Region of Interest |
| TSK | Skin Temperature |
| STARD | Standards for the Reporting of Diagnostic Accuracy Studies |
| TISEM | Thermographic Imaging in Sports and Exercise Medicine |
References
- Côrte, A.C.; Pedrinelli, A.; Marttos, A.; Souza, I.F.G.; Grava, J.; José Hernandez, A. Infrared thermography study as a complementary method of screening and prevention of muscle injuries: Pilot study. BMJ Open Sport Exerc. Med. 2019, 5, e000431. [Google Scholar] [CrossRef]
- Gladden, L.B. Muscle as a consumer of lactate. Med. Sci. Sports Exerc. 2000, 32, 764–771. [Google Scholar] [CrossRef]
- Foster, A.D.; Straight, C.R.; Woods, P.C.; Lee, C.; Kent, J.A.; Chipkin, S.R.; Debold, E.P.; Miller, M.S. Cellular and molecular contractile function in aged human skeletal muscle is altered by phosphate and acidosis and partially reversed with an ATP analog. Am. J. Physiol. Cell Physiol. 2025, 328, C1220–C1233. [Google Scholar] [CrossRef]
- Alburquerque Santana, P.V.; Alvarez, P.D.; Felipe da Costa Sena, A.; Serpa, T.K.; de Assis, M.G.; Pimenta, E.M.; Costa, H.A.; Sevilio de Oliveira Junior, M.N.; Torres Cabido, C.E.; Veneroso, C.E. Relationship between infrared thermography and muscle damage markers in physically active men after plyometric exercise. J. Therm. Biol. 2022, 104, 103187. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Noguera, F.J.; Cabizosu, A.; Marín-Pagán, C.; Alcaraz, P.E. Body surface profile in ambient and hot temperatures during a rectangular test in race walker champions of the World Cup in Oman 2022. J. Therm. Biol. 2023, 114, 103548. [Google Scholar] [CrossRef]
- Priego Quesada, J.I.; Martinez, N.; Salvador-Palmer, R.; Psikuta, A.; Annaheim, S.; Rossi, R.; Corberan, J.; Cibrian, R.; Perez-Soriano, P. Effects of the cycling workload on core and local skin temperatures. Exp. Therm. Fluid Sci. 2016, 77, 91–99. [Google Scholar] [CrossRef]
- Cabizosu, A.; Carboni, N.; Martinez-Almagro Andreo, A.; Vegara-Meseguer, J.M.; Marziliano, N.; Gea Carrasco, G.; Casu, G. Theoretical basis for a new approach of studying Emery-Dreifuss muscular dystrophy by means of thermography. Med. Hypotheses 2018, 118, 103–106. [Google Scholar] [CrossRef]
- Cabizosu, A.; López-López, A.; Grotto, D.; Vegara-Meseguer, J.M. Relationship Between Infrared Thermography and Functional Parameters in the Lower Limbs of Hemiplegic Patients. Life 2025, 15, 542. [Google Scholar] [CrossRef] [PubMed]
- Verstockt, J.; Verspeek, S.; Thiessen, F.; Tjalma, W.A.; Brochez, L.; Steenackers, G. Skin Cancer Detection Using Infrared Thermography: Measurement Setup, Procedure and Equipment. Sensors 2022, 22, 3327. [Google Scholar] [CrossRef]
- Carrière, M.E.; de Haas, L.E.M.; Pijpe, A.; Meij-de Vries, A.; Gardien, K.L.M.; van Zuijlen, P.P.M.; Jaspers, M.E.H. Validity of thermography for measuring burn wound healing potential. Wound Repair Regen. 2020, 28, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Dindorf, C.; Bartaguiz, E.; Janowicz, E.; Fröhlich, M.; Ludwig, O. Effects of Unilateral Muscle Fatigue on Thermographic Skin Surface Temperature of Back and Abdominal Muscles-A Pilot Study. Sports 2022, 10, 41. [Google Scholar] [CrossRef]
- Escamilla-Galindo, V.-L.; Luis Felipe, J.; Alonso-Callejo, A.; Van-der-Horst, R.; de la Torre-Combarros, A.; Minafra, P.; Fernández-Muñoz, D.; Fernández-Cuevas, I. Return-to-play criteria based on infrared thermography during anterior cruciate ligament rehabilitation in football players. Biol. Sport 2025, 42, 161–167. [Google Scholar] [CrossRef]
- De Andrade Fernandes, A.; dos Santos Amorim, P.R.; Brito, C.J.; Sillero-Quintana, M.; Bouzas Marins, J.C. Regional Skin Temperature Response to Moderate Aerobic Exercise Measured by Infrared Thermography. Asian J. Sports Med. 2016, 7, e29243. [Google Scholar] [CrossRef]
- Cabizosu, A.; Marín-Pagán, C.; Martínez-Serrano, A.; Alcaraz, P.E.; Martínez-Noguera, F.J. Myotendinous Thermoregulation in National Level Sprinters After a Unilateral Fatigue Acute Bout-A Descriptive Study. Sensors 2023, 23, 9330. [Google Scholar] [CrossRef]
- Priego Quesada, J.I.; Lucas-Cuevas, A.G.; Gil-Calvo, M.; Giménez, J.V.; Aparicio, I.; Cibrián Ortiz de Anda, R.M.; Salvador Palmer, R.; Llana-Belloch, S.; Pérez-Soriano, P. Effects of graduated compression stockings on skin temperature after running. J. Therm. Biol. 2015, 52, 130–136. [Google Scholar] [CrossRef]
- Fernández Cuevas, I.; Torres-Márquez, G.; Quintana, M.; Navandar, A. Thermographic assessment of skin response to strength training in young participants. J. Therm. Anal. Calorim. 2023, 148, 3407–3415. [Google Scholar] [CrossRef]
- Luo, Y.; Tong, Y.J.; Hu, Y.Y. Thermal Increasing Information for Foot Surface during Jogging. J. Biomim. Biomater. Biomed. Eng. 2015, 24, 70–76. [Google Scholar] [CrossRef]
- Robles Dorado, V. Variaciones termométricas en la planta del pie y piernas valorada en corredores antes y después de correr 30 km. Rev. Int. Cienc. Podol. Internet 2016, 10, 31–40. [Google Scholar] [CrossRef]
- Fink, N.; Bogomilsky, S.; Raz, A.; Hoffer, O.; Scheinowitz, M. Thermographic Changes following Short-Term High-Intensity Anaerobic Exercise. Life 2023, 13, 2175. [Google Scholar] [CrossRef]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13 (Suppl. S1), S31–S34. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Bernard, V.; Staffa, E.; Mornstein, V.; Bourek, A. Infrared camera assessment of skin surface temperature—Effect of emissivity. Phys. Medica Eur. J. Med. Phys. 2013, 29, 583–591. [Google Scholar] [CrossRef]
- Yosipovitch, G.; Xiong, G.L.; Haus, E.; Sackett-Lundeen, L.; Ashkenazi, I.; Maibach, H.I. Time-Dependent Variations of the Skin Barrier Function in Humans: Transepidermal Water Loss, Stratum Corneum Hydration, Skin Surface pH, and Skin Temperature. J. Investig. Dermatol. 1998, 110, 20–23. [Google Scholar] [CrossRef]
- Cuesta, M.; Boudreau, P.; Cermakian, N.; Boivin, D.B. Skin Temperature Rhythms in Humans Respond to Changes in the Timing of Sleep and Light. J. Biol. Rhythms 2017, 32, 257–273. [Google Scholar] [CrossRef]
- Feldman, F.; Nickoloff, E.L. Normal thermographic standards for the cervical spine and upper extremities. Skelet. Radiol. 1984, 12, 235–249. [Google Scholar] [CrossRef]
- Son, S.; Yoo, B.R.; Zhang, H.Y. Reference Standards for Digital Infrared Thermography Measuring Surface Temperature of the Upper Limbs. Bioengineering 2023, 10, 671. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Son, S.; Yoo, B.R.; Youk, T.-M. Reference Standard for Digital Infrared Thermography of the Surface Temperature of the Lower Limbs. Bioengineering 2023, 10, 283. [Google Scholar] [CrossRef]
- Reis, H.H.T.; Brito, C.J.; Sillero-Quintana, M.; da Silva, A.G.; Fernández-Cuevas, I.; Cerqueira, M.S.; Werneck, F.Z.; Marins, J.C.B. Can the body mass index influence the skin temperature of adolescents assessed by infrared thermography? J. Therm. Biol. 2023, 111, 103424. [Google Scholar] [CrossRef]
- Chudecka, M.; Lubkowska, A. Thermal maps of young women and men. Infrared Phys. Technol. 2015, 69, 81–87. [Google Scholar] [CrossRef]
- Lahiri, B.B.; Bagavathiappan, S.; Nishanthi, K.; Mohanalakshmi, K.; Veni, L.; Saumya; Yacin, S.M.; Philip, J. Infrared thermography based studies on the effect of age on localized cold stress induced thermoregulation in human. Infrared Phys. Technol. 2016, 76, 592–602. [Google Scholar] [CrossRef]
- Binek, M.; Drzazga, Z.; Teresa, S.; Pokora, I. (PDF) Do Exist Gender Differences in Skin Temperature of Lower Limbs Following Exercise Test in Male and Female Cross-Country Skiers? Available online: https://www.researchgate.net/publication/354682574_Do_exist_gender_differences_in_skin_temperature_of_lower_limbs_following_exercise_test_in_male_and_female_cross-country_skiers (accessed on 18 May 2023).
- Christensen, J.; Vaeth, M.; Wenzel, A. Thermographic imaging of facial skin—Gender differences and temperature changes over time in healthy subjects. Dentomaxillofacial Radiol. 2012, 41, 662–667. [Google Scholar] [CrossRef]
- Marins, J.C.B.; Formenti, D.; Costa, C.M.A.; de Andrade Fernandes, A.; Sillero-Quintana, M. Circadian and gender differences in skin temperature in militaries by thermography. Infrared Phys. Technol. 2015, 71, 322–328. [Google Scholar] [CrossRef]
- Canda, A. Study of differences in subcutaneous fat distribution based on ethnicity and sex in high-level competitive athletes. Anthropol. Anz. Ber. Uber Biol. Anthropol. Lit. 2025, 82, 147–159. [Google Scholar] [CrossRef]
- Cignarella, A.; Bolego, C.; Barton, M. Sex and sex steroids as determinants of cardiovascular risk. Steroids 2024, 206, 109423. [Google Scholar] [CrossRef]
- Gagnon, D.; Kenny, G.P. Sex differences in thermoeffector responses during exercise at fixed requirements for heat loss. J. Appl. Physiol. (1985) 2012, 113, 746–757. [Google Scholar] [CrossRef]
- Keatisuwan, W.; Ohnaka, T.; Tochihara, Y. Physiological responses of men and women during exercise in hot environments with equivalent WBGT. Appl. Hum. Sci. J. Physiol. Anthropol. 1996, 15, 249–258. [Google Scholar] [CrossRef]
- Ludwig, N.; Trecroci, A.; Gargano, M.; Formenti, D.; Bosio, A.; Rampinini, E.; Alberti, G. Thermography for skin temperature evaluation during dynamic exercise: A case study on an incremental maximal test in elite male cyclists. Appl. Opt. 2016, 55, D126–D130. [Google Scholar] [CrossRef]
- Drzazga, Z.; Binek, M.; Pokora, I.; Sadowska-Krępa, E. A preliminary study on infrared thermal imaging of cross-country skiers and swimmers subjected to endurance exercise. J. Therm. Anal. Calorim. 2018, 134, 701–710. [Google Scholar] [CrossRef]
- Akimov, E.B.; Son’kin, V.D. Skin temperature and lactate threshold during muscle work in athletes. Hum. Physiol. 2011, 37, 621–628. [Google Scholar] [CrossRef]
- Novotny, J.; Rybarova, S.; Zacha, D.; Bernacikova, M.; Ramadan, W.A. The influence of breast-stroke swimming on the muscle activity of young men in thermographic imaging. Acta Bioeng. Biomech. 2015, 17, 022015. [Google Scholar]
- Barboza, J.A.M.; de Almeida Ferreira, J.J.; Cerqueira, M.S.; Maciel, D.G.; de Barros, A.C.M.; Leite, E.C.; Matias, M.G.; Lemos, T.M.; Nonato, R.D.; de Brito Vieira, W.H. Can Skin Temperature Be Altered After Different Magnitudes of Eccentric Exercise-Induced Muscle Damage? Res. Q. Exerc. Sport 2022, 93, 702–709. [Google Scholar] [CrossRef]
- Tanda, G. Total body skin temperature of runners during treadmill exercise. J. Therm. Anal. Calorim. 2018, 131, 1967–1977. [Google Scholar] [CrossRef]
- Crenna, F.; Tanda, G. Design of an experiment for the biomechanical and thermal analysis of athletes during prolonged running exercise. J. Hum. Sport Exerc. 2021, 16, 773–794. [Google Scholar] [CrossRef]
- Cholewka, A.; Kasprzyk, T.; Stanek, A.; Sieroń-Stołtny, K.; Drzazga, Z. May thermal imaging be useful in cyclist endurance tests? J. Therm. Anal. Calorim. 2016, 123, 1973–1979. [Google Scholar] [CrossRef]
- da Silva, W.; Machado, Á.S.; Lemos, A.L.; de Andrade, C.F.; Priego-Quesada, J.I.; Carpes, F.P. Relationship between exercise-induced muscle soreness, pain thresholds, and skin temperature in men and women. J. Therm. Biol. 2021, 100, 103051. [Google Scholar] [CrossRef] [PubMed]
- Merla, A.; Mattei, P.A.; Di Donato, L.; Romani, G.L. Thermal imaging of cutaneous temperature modifications in runners during graded exercise. Ann. Biomed. Eng. 2010, 38, 158–163. [Google Scholar] [CrossRef] [PubMed]



| Men (n = 48) | Women (n = 50) | |
|---|---|---|
| Age (years) | 22.7 (3.22) | 21.0 (2.47) |
| Body mass | 79.3 (13.1) | 64.2 (8.20) |
| Height | 178.5 (4.1) | 168.1 (3.60) |
| BMI | 24.9 (4.02) | 22.7 (2.80) |
| Tsk basal right (°C) | 31.2 (1.05) | 29.5 (1.19) |
| Tsk basal left (°C) | 31.1 (1.05) | 29.4 (1.16) |
| Tsk 25% right (°C) | 30.9 (1.08) | 29.5 (1.01) |
| Tsk 25% left (°C) | 30.9 (1.040) | 29.4 (0.980) |
| Tsk 50% right (°C) | 31.0 (1.090) | 29.5 (0.992) |
| Tsk 50% left (°C) | 31.0 (1.070) | 29.4 (0.970) |
| Tsk 75% right (°C) | 31.1 (1.130) | 29.5 (0.991) |
| Tsk 75% left (°C) | 31.0 (1.090) | 29.3 (0.971) |
| Tsk 100% right (°C) | 31.1 (1.180) | 29.4 (0.998) |
| Tsk 100% left (°C) | 31.1 (1.140) | 29.3 (0.954) |
| Total number of repetitions | 83.8 (49.4) | 76.3 (64.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabizosu, A.; Zoffoli, A.; Martínez-Noguera, F.J. Changes in the Infrared Thermographic Response of the Triceps Suralis Muscle During Ankle Flexion–Extension Until Exhaustion in Healthy Adults. Sports 2025, 13, 383. https://doi.org/10.3390/sports13110383
Cabizosu A, Zoffoli A, Martínez-Noguera FJ. Changes in the Infrared Thermographic Response of the Triceps Suralis Muscle During Ankle Flexion–Extension Until Exhaustion in Healthy Adults. Sports. 2025; 13(11):383. https://doi.org/10.3390/sports13110383
Chicago/Turabian StyleCabizosu, Alessio, Alessandro Zoffoli, and Francisco Javier Martínez-Noguera. 2025. "Changes in the Infrared Thermographic Response of the Triceps Suralis Muscle During Ankle Flexion–Extension Until Exhaustion in Healthy Adults" Sports 13, no. 11: 383. https://doi.org/10.3390/sports13110383
APA StyleCabizosu, A., Zoffoli, A., & Martínez-Noguera, F. J. (2025). Changes in the Infrared Thermographic Response of the Triceps Suralis Muscle During Ankle Flexion–Extension Until Exhaustion in Healthy Adults. Sports, 13(11), 383. https://doi.org/10.3390/sports13110383

