Transferability of Exercise Intensity Based on Muscle Oxygenation from Normoxia to Hypoxia in Ski-Mountaineering Athletes—Exploratory Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Practical Implications for Endurance Exercise
- Optimize training adaptations. SKIMO athletes could train at more precise and consistent intensities across different altitudes, maximizing physiological adaptations specific to SKIMO performance.
- Individualize training prescription. SKIMO athletes could utilize real-time SmO2 data to tailor training loads, techniques, and recovery strategies based on individual athlete responses to training and environmental conditions.
- Monitor training load and fatigue. SKIMO athletes could track changes in SmO2 over time to assess training adaptations, identify early signs of fatigue, and potentially reduce the risk of overtraining.
4.2. Study Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bortolan, L.; Savoldelli, A.; Pellegrini, B.; Modena, R.; Sacchi, M.; Holmberg, H.-C.; Supej, M. Ski Mountaineering: Perspectives on a Novel Sport to Be Introduced at the 2026 Winter Olympic Games. Front. Physiol. 2021, 12, 737249. [Google Scholar] [CrossRef] [PubMed]
- Faiss, R.; von Orelli, C.; Dériaz, O.; Millet, G.P. Responses to Exercise in Normobaric Hypoxia: Comparison of Elite and Recreational Ski Mountaineers. Int. J. Sports Physiol. Perform. 2014, 9, 978–984. [Google Scholar] [CrossRef]
- Sunde, A.; Christoffersen, F.; Johansen, J.-M.; Støren, Ø. Steeper or Faster? Tactical Dispositions to Minimize Oxygen Cost in Ski Mountaineering. Front. Sports Act. Living 2021, 3, 828389. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.-M.; Röhrs, D.; Sandbakk, Ø.; Katz, A.; Wittke, A.; Keiner, M. Performance-Determining Variables of a Simulated Skimo Sprint Competition in Elite Junior Skimo Athletes. Appl. Sci. 2024, 14, 1882. [Google Scholar] [CrossRef]
- Menz, V.; Niedermeier, M.; Stehle, R.; Mugele, H.; Faulhaber, M. Assessment of Maximal Aerobic Capacity in Ski Mountaineering: A Laboratory-Based Study. Int. J. Environ. Res. Public Health 2021, 18, 7002. [Google Scholar] [CrossRef] [PubMed]
- Duc, S.; Cassirame, J.; Durand, F. Physiology of Ski Mountaineering Racing. Int. J. Sports Med. 2011, 32, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Jamnick, N.A.; Pettitt, R.W.; Granata, C.; Pyne, D.B.; Bishop, D.J. An Examination and Critique of Current Methods to Determine Exercise Intensity. Sports Med. 2020, 50, 1729–1756. [Google Scholar] [CrossRef]
- Koistinen, P.; Takala, T.; Martikkala, V.; Leppäluoto, J. Aerobic Fitness Influences the Response of Maximal Oxygen Uptake and Lactate Threshold in Acute Hypobaric Hypoxia. Int. J. Sports Med. 1995, 16, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Engelen, M.; Porszasz, J.; Riley, M.; Wasserman, K.; Maehara, K.; Barstow, T.J. Effects of Hypoxic Hypoxia on O2 Uptake and Heart Rate Kinetics during Heavy Exercise. J. Appl. Physiol. 1996, 81, 2500–2508. [Google Scholar] [CrossRef]
- Beever, A.T.; Zhuang, A.Y.; Murias, J.M.; Aboodarda, S.J.; MacInnis, M.J. Effects of Acute Simulated Altitude on the Maximal Lactate Steady State in Humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2024, 327, R195–R207. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Rhodes, E.C. Oxygen Uptake Kinetics during Exercise. Sports Med. 1999, 27, 313–327. [Google Scholar] [CrossRef]
- Wehrlin, J.P.; Hallén, J. Linear Decrease in VO2max and Performance with Increasing Altitude in Endurance Athletes. Eur. J. Appl. Physiol. 2006, 96, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-Y.; Kim, J.-W.; Nam, S.-S. Metabolic, Cardiac, and Hemorheological Responses to Submaximal Exercise under Light and Moderate Hypobaric Hypoxia in Healthy Men. Biology 2022, 11, 144. [Google Scholar] [CrossRef]
- Hochachka, P.W.; Beatty, C.L.; Burelle, Y.; Trump, M.E.; McKenzie, D.C.; Matheson, G.O. The Lactate Paradox in Human High-Altitude Physiological Performance. News Physiol. Sci. 2002, 17, 122–126. [Google Scholar]
- Perrey, S.; Quaresima, V.; Ferrari, M. Muscle Oximetry in Sports Science: An Updated Systematic Review. Sports Med. 2024, 54, 975–996. [Google Scholar] [CrossRef]
- Bourdillon, N.; Mollard, P.; Letournel, M.; Beaudry, M.; Richalet, J.-P. Interaction between Hypoxia and Training on NIRS Signal during Exercise: Contribution of a Mathematical Model. Respir. Physiol. Neurobiol. 2009, 169, 50–61. [Google Scholar] [CrossRef]
- Scheeren, T.W.L.; Schober, P.; Schwarte, L.A. Monitoring Tissue Oxygenation by near Infrared Spectroscopy (NIRS): Background and Current Applications. J. Clin. Monit. Comput. 2012, 26, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Albertus-Cámara, I.; Paredes-Ruiz, M.-J.; Martínez-González-Moro, I. Analysis of Muscle Oxygenation after a Normobaric Hypoxia Tolerance Test. J. Funct. Morphol. Kinesiol. 2024, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Solsona, R.; Deriaz, R.; Borrani, F.; Sanchez, A.M.J. Muscle Deoxygenation Rates and Reoxygenation Modeling during a Sprint Interval Training Exercise Performed under Different Hypoxic Conditions. Front. Physiol. 2022, 13, 864642. [Google Scholar] [CrossRef] [PubMed]
- Pramkratok, W.; Songsupap, T.; Yimlamai, T. Repeated Sprint Training under Hypoxia Improves Aerobic Performance and Repeated Sprint Ability by Enhancing Muscle Deoxygenation and Markers of Angiogenesis in Rugby Sevens. Eur. J. Appl. Physiol. 2022, 122, 611–622. [Google Scholar] [CrossRef]
- Rodriguez, R.F.; Townsend, N.E.; Aughey, R.J.; Billaut, F. Respiratory Muscle Oxygenation Is Not Impacted by Hypoxia during Repeated-Sprint Exercise. Respir. Physiol. Neurobiol. 2019, 260, 114–121. [Google Scholar] [CrossRef]
- Rębiś, K.; Sadowska, D.; Starczewski, M.; Klusiewicz, A. Usefulness of Portable Device to Establish Differences in Muscle Oxygenation between the Wingate Test and Graded Exercise Test: Effect of Gender on Anaerobic and Aerobic Capacity in Speed Skaters. Front. Physiol. 2022, 13, 809864. [Google Scholar] [CrossRef] [PubMed]
- Sendra-Pérez, C.; Sanchez-Jimenez, J.L.; Marzano-Felisatti, J.M.; Encarnación-Martínez, A.; Salvador-Palmer, R.; Priego-Quesada, J.I. Reliability of Threshold Determination Using Portable Muscle Oxygenation Monitors during Exercise Testing: A Systematic Review and Meta-Analysis. Sci. Rep. 2023, 13, 12649. [Google Scholar] [CrossRef] [PubMed]
- Rębiś, K.; Klusiewicz, A.; Długołęcka, B.; Różański, P.; Kowieski, K.; Kowalski, T. Estimation of Lactate Thresholds, Aerobic Capacity and Recovery Rate from Muscle Oxygen Saturation in Highly Trained Speed Skaters and Healthy Untrained Individuals. J. Clin. Med. 2024, 13, 5340. [Google Scholar] [CrossRef]
- Possamai, L.T.; Borszcz, F.K.; de Aguiar, R.A.; de Lucas, R.D.; Turnes, T. Comparison of NIRS Exercise Intensity Thresholds with Maximal Lactate Steady State, Critical Power and Rowing Performance. Biol. Sport 2024, 41, 123–130. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Poole, D.C.; Jones, A.M. Measurement of the Maximum Oxygen Uptake Vo2max: Vo2peak Is No Longer Acceptable. J. Appl. Physiol. 2017, 122, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Fabre, N.; Balestreri, F.; Pellegrini, B.; Schena, F. The Modified Dmax Method Is Reliable to Predict the Second Ventilatory Threshold in Elite Cross-Country Skiers. J. Strength Cond. Res. 2010, 24, 1546–1552. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, A.; Schmitz, R.; Erlacher, D. Near-Infrared Spectroscopy-Derived Muscle Oxygen Saturation on a 0% to 100% Scale: Reliability and Validity of the Moxy Monitor. J. Biomed. Opt. 2019, 24, 115001. [Google Scholar] [CrossRef]
- McManus, C.J.; Collison, J.; Cooper, C.E. Performance Comparison of the MOXY and PortaMon near-Infrared Spectroscopy Muscle Oximeters at Rest and during Exercise. J. Biomed. Opt. 2018, 23, 015007. [Google Scholar] [CrossRef] [PubMed]
- Heck, H.; Mader, A.; Hess, G.; Mücke, S.; Müller, R.; Hollmann, W. Justification of the 4-Mmol/L Lactate Threshold. Int. J. Sports Med. 1985, 6, 117–130. [Google Scholar] [CrossRef]
- Smekal, G.; von Duvillard, S.P.; Pokan, R.; Hofmann, P.; Braun, W.A.; Arciero, P.J.; Tschan, H.; Wonisch, M.; Baron, R.; Bachl, N. Blood Lactate Concentration at the Maximal Lactate Steady State Is Not Dependent on Endurance Capacity in Healthy Recreationally Trained Individuals. Eur. J. Appl. Physiol. 2012, 112, 3079–3086. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Kindermann, W.; Meyer, T. Lactate Threshold Concepts: How Valid Are They? Sports Med. 2009, 39, 469–490. [Google Scholar] [CrossRef]
- De Souza, K.M.; Grossl, T.; Babel Junior, R.J.; De Lucas, R.D.; Costa, V.P.; Guglielmo, L.G.A. Máximo Estado Estável de Lactato Estimado Por Diferentes Métodos de Determinação. Braz. J. Kinanthropometry Hum. Perform. 2012, 14. [Google Scholar] [CrossRef]
- Urhausen, A.; Coen, B.; Weiler, B.; Kindermann, W. Individual Anaerobic Threshold and Maximum Lactate Steady State. Int. J. Sports Med. 1993, 14, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Aunola, S.; Rusko, H. Does Anaerobic Threshold Correlate with Maximal Lactate Steady-State? J. Sports Sci. 1992, 10, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.G.; Jones, A.M. The Relationship between Critical Velocity, Maximal Lactate Steady-State Velocity and Lactate Turnpoint Velocity in Runners. Eur. J. Appl. Physiol. 2001, 85, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Hoogeveen, A.R.; Hoogsteen, J.; Schep, G. The Maximal Lactate Steady State in Elite Endurance Athletes. Jpn. J. Physiol. 1997, 47, 481–485. [Google Scholar] [CrossRef]
- Sandbakk, Ø.; Pyne, D.B.; McGawley, K.; Foster, C.; Talsnes, R.K.; Solli, G.S.; Millet, G.P.; Seiler, S.; Laursen, P.B.; Haugen, T.; et al. The Evolution of World-Class Endurance Training: The Scientist’s View on Current and Future Trends. Int. J. Sports Physiol. Perform. 2023, 18, 885–889. [Google Scholar] [CrossRef]
- Kaminsky, L.A.; Myers, J.; Arena, R. Determining Cardiorespiratory Fitness with Precision: Compendium of Findings from the FRIEND Registry. Prog. Cardiovasc. Dis. 2019, 62, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Pollock, M.L.; Feigenbaum, M.S.; Brechue, W.F. Exercise Prescription for Physical Fitness. Quest 1995, 47, 320–337. [Google Scholar] [CrossRef]
- Roach, R.C.; Maes, D.; Sandoval, D.; Robergs, R.A.; Icenogle, M.; Hinghofer-Szalkay, H.; Lium, D.; Loeppky, J.A. Exercise Exacerbates Acute Mountain Sickness at Simulated High Altitude. J. Appl. Physiol. 2000, 88, 581–585. [Google Scholar] [CrossRef]
- Michalik, K.; Smolarek, M.; Nowak, M.; Pueo, B.; Żmijewski, P. Intra-Reliability of a Wearable near-Infrared Sensor for Monitoring the Intensity of Exercise. Appl. Sci. 2024, 14, 5856. [Google Scholar] [CrossRef]
- Tuesta, M.; Yáñez-Sepúlveda, R.; Verdugo-Marchese, H.; Mateluna, C.; Alvear-Ordenes, I. Near-Infrared Spectroscopy Used to Assess Physiological Muscle Adaptations in Exercise Clinical Trials: A Systematic Review. Biology 2022, 11, 1073. [Google Scholar] [CrossRef] [PubMed]
- Yogev, A.; Arnold, J.; Clarke, D.; Guenette, J.A.; Sporer, B.C.; Koehle, M.S. Comparing the Respiratory Compensation Point with Muscle Oxygen Saturation in Locomotor and Non-Locomotor Muscles Using Wearable NIRS Spectroscopy during Whole-Body Exercise. Front. Physiol. 2022, 13, 818733. [Google Scholar] [CrossRef] [PubMed]
- Price, S.; Wiecha, S.; Cieśliński, I.; Śliż, D.; Kasiak, P.S.; Lach, J.; Gruba, G.; Kowalski, T.; Mamcarz, A. Differences between Treadmill and Cycle Ergometer Cardiopulmonary Exercise Testing Results in Triathletes and Their Association with Body Composition and Body Mass Index. Int. J. Environ. Res. Public Health 2022, 19, 3557. [Google Scholar] [CrossRef]
- Kowalski, T.; Sadowska, D.; Wiecha, S. Differences between Indoor and Outdoor Field Cycling Tests in Triathletes Are Associated with Training Environment History and BMI: Analysis and Prediction Formula. J. Sports Med. Phys. Fitness 2024, 64, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
Variable | Value (Mean ± Standard Deviation) |
---|---|
Age (years) | 29.7 ± 11.5 |
Body mass (kg) | 71.4 ± 4.3 |
Body height (cm) | 179.1 ± 7.5 |
VO2max (mL·min−1·kg−1) 1 | 60.9 ± 8.1 |
Body mass (kg) | 71.4 ± 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rębiś, K.; Kowalski, T.; Michalik, K.; Klusiewicz, A. Transferability of Exercise Intensity Based on Muscle Oxygenation from Normoxia to Hypoxia in Ski-Mountaineering Athletes—Exploratory Study. Sports 2024, 12, 351. https://doi.org/10.3390/sports12120351
Rębiś K, Kowalski T, Michalik K, Klusiewicz A. Transferability of Exercise Intensity Based on Muscle Oxygenation from Normoxia to Hypoxia in Ski-Mountaineering Athletes—Exploratory Study. Sports. 2024; 12(12):351. https://doi.org/10.3390/sports12120351
Chicago/Turabian StyleRębiś, Kinga, Tomasz Kowalski, Kamil Michalik, and Andrzej Klusiewicz. 2024. "Transferability of Exercise Intensity Based on Muscle Oxygenation from Normoxia to Hypoxia in Ski-Mountaineering Athletes—Exploratory Study" Sports 12, no. 12: 351. https://doi.org/10.3390/sports12120351
APA StyleRębiś, K., Kowalski, T., Michalik, K., & Klusiewicz, A. (2024). Transferability of Exercise Intensity Based on Muscle Oxygenation from Normoxia to Hypoxia in Ski-Mountaineering Athletes—Exploratory Study. Sports, 12(12), 351. https://doi.org/10.3390/sports12120351