Fatigue-Induced Neuromuscular Performance Changes in Professional Male Volleyball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Testing Protocol
2.3. Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cabarkapa, D.V.; Cabarkapa, D.; Fry, A.C.; Whiting, S.M.; Downey, G.G. Kinetic and kinematic characteristics of setting motions in female volleyball players. Biomechanics 2022, 2, 538–546. [Google Scholar] [CrossRef]
- Gabbett, T.; Georgieff, B.; Anderson, S.; Cotton, B.; Savovic, D.; Nicholson, L. Changes in skill and physical fitness following training in talent-identified volleyball players. J. Strength Cond. Res. 2006, 20, 29–35. [Google Scholar] [PubMed]
- Lidor, R.; Ziv, G. Physical and physiological attributes of female volleyball players–A review. J. Strength Cond. Res. 2010, 24, 1963–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polglaze, T.; Dawson, B. The physiological requirements of the positions in state league volleyball. Sports Coach 1992, 15, 32. [Google Scholar]
- Vlantes, T.G.; Readdy, T. Using microsensor technology to quantify match demands in collegiate women’s volleyball. J. Strength Cond. Res. 2017, 31, 3266–3278. [Google Scholar] [CrossRef]
- González-Silva, J.; Domínguez, A.M.; Fernández-Echeverría, C.; Rabaz, F.C.; Arroyo, M.P.M. Analysis of setting efficacy in young male and female volleyball players. J. Hum. Kinet. 2016, 53, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Palao, J.M.; Ahrabi-Fard, I. Effect of jump set usage on side-out phase in women’s college volleyball. J. Sport Hum. Perform. 2014, 2, 1–10. [Google Scholar]
- Merrigan, J.J.; Stone, J.D.; Martin, J.R.; Hornsby, W.G.; Galster, S.M.; Hagen, J.A. Applying force plate technology to inform human performance programming in tactical populations. Appl. Sci. 2021, 11, 6538. [Google Scholar] [CrossRef]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Doyle, T.L. Reliability of measures obtained during single and repeated countermovement jumps. Int. J. Sports Physiol. Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Gathercole, R.J.; Stellingwerff, T.; Sporer, B.C. Effect of acute fatigue and training adaptation on countermovement jump performance in elite snowboard cross athletes. J. Strength Cond. Res. 2015, 29, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med. Sci. Sports Exerc. 2010, 42, 1731–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, C.N.; Dabbs, N.C.; Davis, J.; Sauls, N.M. Effects of lower-body muscular fatigue on vertical jump and balance performance. J. Strength Cond. Res. 2018, 34, 2903–2910. [Google Scholar] [CrossRef]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Power-time, force-time, and velocity-time curve analysis of the countermovement jump: Impact of training. J. Strength Cond. Res. 2009, 23, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R.; Gabbett, T.J.; Cole, M.H.; Beard, A. The use of wearable microsensors to quantify sport-specific movements. Sports Med. 2015, 45, 1065–1081. [Google Scholar] [CrossRef]
- Cummins, C.; Orr, R.; O’Connor, H.; West, C. Global positioning systems (GPS) and microtechnology sensors in team sports: A systematic review. Sports Med. 2013, 43, 1025–1042. [Google Scholar] [CrossRef]
- Gabbett, T.J.; Whyte, D.G.; Hartwig, T.B.; Wescombe, H.; Naughton, G.A. The relationship between workloads, physical performance, injury and illness in adolescent male football players. Sports Med. 2014, 44, 989–1003. [Google Scholar] [CrossRef]
- Lima, R.F.; Silva, A.; Afonso, J.; Castro, H.; Clemente, F.M. External and internal load and their effects on professional volleyball training. Int. J. Sports Med. 2020, 41, 468–474. [Google Scholar] [CrossRef]
- Cabarkapa, D.V.; Cabarkapa, D.; Fry, A.C. Positional differences in external load in professional male volleyball players. Am. J. Sports Sci. Med. 2022, 10, 25–28. [Google Scholar] [CrossRef]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Kershner, A.L.; Fry, A.C.; Cabarkapa, D. Effect of internal vs. external focus of attention instructions on countermovement jump variables in NCAA division I student-athletes. J. Strength Cond. Res. 2019, 33, 1467–1473. [Google Scholar] [CrossRef]
- Anicic, Z.; Janicijevic, D.; Knezevic, O.M.; Garcia-Ramos, A.; Petrovic, M.R.; Cabarkapa, D.; Mirkov, D.M. Assessment of countermovement Jump: What should we report? Life 2023, 13, 190. [Google Scholar] [CrossRef] [PubMed]
- Heishman, A.D.; Daub, B.D.; Miller, R.M.; Freitas, E.D.; Frantz, B.A.; Bemben, M.G. Countermovement jump reliability performed with and without an arm swing in NCAA division 1 intercollegiate basketball players. J. Strength Cond. Res. 2020, 34, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Philipp, N.M.; Cabarkapa, D.; Eserhaut, D.A.; Cabarkapa, D.V.; Fry, A.C. Countermovement jump force-time metrics and maximal horizontal deceleration performance in professional male basketball players. J. Appl. Sports Sci. 2022, 2, 11–27. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Hoffman, J.R.; Maresh, C.M.; Newton, R.U.; Rubin, M.R.; French, D.N.; Volek, J.S.; Sutherland, J.; Robertson, M.; Gómez, A.L.; Ratamess, N.A.; et al. Performance, biochemical, and endocrine changes during a competitive football game. Med. Sci. Sports Exerc. 2002, 34, 1845–1853. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Nusse, V.; Kang, J. The effect of an intercollegiate soccer game on maximal power performance. Can. J. Appl. Physiol. 2003, 28, 807–817. [Google Scholar] [CrossRef]
- Yu, P.; Gong, Z.; Meng, Y.; Baker, J.S.; István, B.; Gu, Y. The acute influence of running-induced fatigue on the performance and biomechanics of a countermovement jump. Appl. Sci. 2020, 10, 4319. [Google Scholar] [CrossRef]
- Svilar, L.; Castellano, J.; Jukić, I. Load monitoring system in top-level basketball team: Relationship between external and internal training load. Kinesiology 2018, 50, 25–33. [Google Scholar] [CrossRef]
Variable [Unit] | Pre-Practice | Post-Practice | p-Value | Effect Size | % Change |
---|---|---|---|---|---|
Eccentric phase | |||||
Braking phase duration [s] | 0.36 ± 0.11 | 0.35 ± 0.08 | 0.590 | 0.104 | ↓ 2.78 |
Eccentric braking impulse [N·s] | 59.19 ± 18.64 | 59.17 ± 12.39 | 0.997 | 0.001 | ↓ 0.03 |
Eccentric duration [s] | 0.66 ± 0.11 | 0.63 ± 0.13 | 0.324 | 0.249 | ↓ 4.55 |
Eccentric peak velocity [m·s−1] | −1.18 ± 0.24 | −1.18 ± 0.20 | 0.989 | 0.000 | – |
Eccentric peak force [N] | 1918.50 ± 253.43 | 1912.00 ± 289.91 | 0.865 | 0.024 | ↓ 0.34 |
Eccentric mean force [N] | 843.00 ± 67.25 | 857.60 ± 73.88 | 0.409 | 0.207 | ↑ 1.73 |
Eccentric peak power [W] | 1321.80 ± 382.81 | 1384.90 ± 375.27 | 0.529 | 0.166 | ↑ 4.77 |
Eccentric mean power [W] | 478.90 ± 73.97 | 493.50 ± 85.19 | 0.527 | 0.183 | ↑ 3.05 |
Concentric phase | |||||
Concentric impulse [N·s] | 242.94 ± 22.68 | 245.57 ± 25.06 | 0.263 | 0.110 | ↑ 1.08 |
Concentric duration [s] | 0.30 ± 0.04 | 0.30 ± 0.04 | 0.711 | 0.000 | – |
Concentric peak velocity [m·s−1] | 2.96 ± 0.31 | 2.93 ± 0.21 | 0.600 | 0.113 | ↓ 1.01 |
Concentric peak force [N] | 2010.80 ± 178.78 | 2051.80 ± 179.49 | 0.108 | 0.229 | ↑ 2.04 |
Concentric mean force [N] | 1663.80 ± 178.60 | 1694.90 ± 187.64 | 0.263 | 0.169 | ↑ 1.87 |
Concentric peak power [W] | 4817.80 ± 638.22 | 4878.20 ± 511.37 | 0.430 | 0.104 | ↑ 1.25 |
Concentric mean power [W] | 2558.20 ± 477.12 | 2554.30 ± 406.70 | 0.947 | 0.009 | ↓ 0.15 |
Other | |||||
Contraction time [s] | 0.95 ± 0.12 | 0.94 ± 0.18 | 0.772 | 0.065 | ↓ 1.05 |
Vertical jump height [cm] | 41.88 ± 9.82 | 40.73 ± 6.25 | 0.611 | 0.139 | ↓ 2.75 |
RSI-modified [m·s−1] | 0.43 ± 0.08 | 0.46 ± 0.11 | 0.145 | 0.312 | ↑ 6.98 |
Countermovement depth [cm] | −37.18 ± 7.55 | −36.87 ± 6.45 | 0.872 | 0.044 | ↓ 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabarkapa, D.V.; Cabarkapa, D.; Whiting, S.M.; Fry, A.C. Fatigue-Induced Neuromuscular Performance Changes in Professional Male Volleyball Players. Sports 2023, 11, 120. https://doi.org/10.3390/sports11060120
Cabarkapa DV, Cabarkapa D, Whiting SM, Fry AC. Fatigue-Induced Neuromuscular Performance Changes in Professional Male Volleyball Players. Sports. 2023; 11(6):120. https://doi.org/10.3390/sports11060120
Chicago/Turabian StyleCabarkapa, Damjana V., Dimitrije Cabarkapa, Shay M. Whiting, and Andrew C. Fry. 2023. "Fatigue-Induced Neuromuscular Performance Changes in Professional Male Volleyball Players" Sports 11, no. 6: 120. https://doi.org/10.3390/sports11060120
APA StyleCabarkapa, D. V., Cabarkapa, D., Whiting, S. M., & Fry, A. C. (2023). Fatigue-Induced Neuromuscular Performance Changes in Professional Male Volleyball Players. Sports, 11(6), 120. https://doi.org/10.3390/sports11060120