Cardiorespiratory, Metabolic, and Performance Changes from the Effects of Creatine and Caffeine Supplementations in Glucose—Electrolyte-Based Sports Drinks: A Double-Blind, Placebo-Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Experimental Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, M.-R.G.; Paiva, T.; Silva, H.-H. 6-The Impact of Sports and Energy Drinks in Performance. In Sports and Energy Drinks; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 183–204. [Google Scholar]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sport. Nutr. 2021, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Coso, J.D.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar-Navarro, M.; Muñoz, G.; Salinero, J.J.; Muñoz-Guerra, J.; Fernández-Álvarez, M.; Plata, M.d.M.; Del Coso, J. Urine Caffeine Concentration in Doping Control Samples from 2004 to 2015. Nutrients 2019, 11, 286. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.L.; Saldanha, L.G.; Gahche, J.J.; Dwyer, J.T. Estimating caffeine intake from energy drinks and dietary supplements in the United States. Nutr. Rev. 2014, 72, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickham, K.A.; Spriet, L.L. Administration of Caffeine in Alternate Forms. Sport. Med. 2018, 48, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Behrens, M.; Mau-Moeller, A.; Weippert, M.; Fuhrmann, J.; Wegner, K.; Skripitz, R.; Bader, R.; Bruhn, S. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions. Sci. Rep. 2015, 5, 10209. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J. Are There Non-Responders to the Ergogenic Effects of Caffeine Ingestion on Exercise Performance? Nutrients 2018, 10, 1736. [Google Scholar] [CrossRef] [Green Version]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. Correction to: The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sport. Med. 2018, 48, 2425–2441. [Google Scholar] [CrossRef] [Green Version]
- Pataky, M.W.; Womack, C.J.; Saunders, M.J.; Goffe, J.L.; D’Lugos, A.C.; El-Sohemy, A.; Luden, N.D. Caffeine and 3-km cycling performance: Effects of mouth rinsing, genotype, and time of day. Scand. J. Med. Sci. Sport. 2016, 26, 613–619. [Google Scholar] [CrossRef]
- Sahlin, K.; Harris, R.C. The creatine kinase reaction: A simple reaction with functional complexity. Amino Acids 2011, 40, 1363–1367. [Google Scholar] [CrossRef]
- Kreider, R.B.; Melton, C.; Rasmussen, C.J.; Greenwood, M.; Lancaster, S.; Cantler, E.C.; Milnor, P.; Almada, A.L. Long-term creatine supplementation does not significantly affect clinical markers of health in athletes. Mol. Cell. Biochem. 2003, 244, 95–104. [Google Scholar] [CrossRef]
- Williams, M.H. Facts and fallacies of purported ergogenic amino acid supplements. Clin. Sport. Med. 1999, 18, 633–649. [Google Scholar] [CrossRef]
- Hultman, E.; Söderlund, K.; Timmons, J.A.; Cederblad, G.; Greenhaff, P.L. Muscle creatine loading in men. J. Appl. Physiol. 1996, 81, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Balsom, P.D.; Söderlund, K.; Ekblom, B. Creatine in Humans with Special Reference to Creatine Supplementation. Sport. Med. 1994, 18, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.G.; Chilibeck, P.D.; Parise, G.; Candow, D.G.; Mahoney, D.; Tarnopolsky, M. Effect of Creatine and Weight Training on Muscle Creatine and Performance in Vegetarians. Med. Sci. Sport. Exerc. 2003, 35, 1946–1955. [Google Scholar] [CrossRef] [PubMed]
- Ydfors, M.; Hughes, M.C.; Laham, R.; Schlattner, U.; Norrbom, J.; Perry, C.G.R. Modelling in vivo creatine/phosphocreatine in vitro reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise. J. Physiol. 2016, 594, 3127–3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jäger, R.; Purpura, M.; Shao, A.; Inoue, T.; Kreider, R.B. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino Acids 2011, 40, 1369–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.-H.; Johnson, K.; Pipe, A.L. The Use of Dietary Supplements and Medications by Canadian Athletes at the Atlanta and Sydney Olympic Games. Clin. J. Sport Med. 2006, 16, 27–33. [Google Scholar] [CrossRef]
- Rodriguez, N.R.; DiMarco, N.M.; Langley, S. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Am. Diet Assoc. 2009, 109, 509–527. [Google Scholar] [CrossRef]
- Sheppard, H.L.; Raichada, S.M.; Kouri, K.M.; Stenson-Bar-Maor, L.; Branch, J.D. Use of creatine and other supplements by members of civilian and military health clubs: A cross-sectional survey. Int. J. Sport Nutr. Exerc. Metab. 2000, 10, 245–259. [Google Scholar] [CrossRef]
- Juhász, I.; Györe, I.; Csende, Z.; Rácz, L.; Tihanyi, J. Creatine supplementation improves the anaerobic performance of elite junior fin swimmers. Hung. Acta Physiol. 2009, 96, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B. Effects of creatine supplementation on performance and training adaptations. Mol. Cell. Biochem. 2003, 244, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Mielgo-Ayuso, J.; Calleja-Gonzalez, J.; Marques-Jimenez, D.; Caballero-Garcia, A.; Cordova, A.; Fernandez-Lazaro, D. Effects of Creatine Supplementation on Athletic Performance in Soccer Players: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, G.; Mujika, I.; Tumilty, D.; Burke, L. Acute creatine supplementation and performance during a field test simulating match play in elite female soccer players. Int. J. Sport Nutr. Exerc. Metab. 2002, 12, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int.Soc. Sport. Nutr. 2017, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Wallimann, T.; Dolder, M.; Schlattner, U.; Eder, M.; Hornemann, T.; O’Gorman, E.; Rück, A.; Brdiczka, D. Some new aspects of creatine kinase (CK): Compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. Biofactors 1998, 8, 229–234. [Google Scholar] [CrossRef]
- Nicholas, C.W.; Nuttall, F.E.; Williams, C. The Loughborough Intermittent Shuttle Test: A field test that simulates the activity pattern of soccer. J. Sport. Sci. 2000, 18, 97–104. [Google Scholar] [CrossRef]
- Rodriguez-Marroyo, J.A.; Antonan, C. Validity of the session rating of perceived exertion for monitoring exercise demands in youth soccer players. Int. J. Sport. Physiol. Perform. 2015, 10, 404–407. [Google Scholar] [CrossRef]
- Tomitani, N.; Wanthong, S.; Roubsanthisuk, W.; Buranakitjaroen, P.; Hoshide, S.; Kario, K. Differences in ambulatory blood pressure profiles between Japanese and Thai patients with hypertension /suspected hypertension. J. Clin. Hypertens. 2021, 23, 614–620. [Google Scholar] [CrossRef]
- Shirreffs, S.M. Symposium on ‘Performance, exercise and health’ Hydration, fluids and performance: Conference on ‘Multidisciplinary approaches to nutritional problems’. Proc. Nutr. Soc. 2009, 68, 17–22. [Google Scholar] [CrossRef]
- Hoffman, M.D.; Joslin, J.; Rogers, I.R. Management of Suspected Fluid Balance Issues in Participants of Wilderness Endurance Events. Curr. Sport. Med. Rep. 2017, 16, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Orrù, S.; Imperlini, E.; Nigro, E.; Alfieri, A.; Cevenini, A.; Polito, R.; Daniele, A.; Buono, P.; Mancini, A. Role of Functional Beverages on Sport Performance and Recovery. Nutrients 2018, 10, 1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenk, K.; Bizzini, M.; Gatterer, H. Exercise physiology and nutritional perspectives of elite soccer refereeing. Scand. J. Med. Sci. Sport. 2018, 28, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.H.; James, L.J.; Shirreffs, S.M.; Maughan, R.J. Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration. J. Appl. Physiol. 2017, 122, 945–951. [Google Scholar] [CrossRef]
- Fielding, R.A.; Costill, D.L.; Fink, W.J.; King, D.S.; Hargreaves, M.; Kovaleski, J.E. Effect of carbohydrate feeding frequencies and dosage on muscle glycogen use during exercise. Med. Sci. Sport. Exerc. 1985, 17, 472–476. [Google Scholar] [CrossRef]
- Rodriguez, N.R.; Di Marco, N.M.; Langley, S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med. Sci. Sport. Exerc. 2009, 41, 709–731. [Google Scholar] [CrossRef]
- Turnbull, D.; Rodricks, J.V.; Mariano, G.F.; Chowdhury, F. Caffeine and cardiovascular health. Regul. Toxicol. Pharmacol. 2017, 89, 165–185. [Google Scholar] [CrossRef]
- Clark, J.M.; Hagerman, F.C.; Gelfand, R. Breathing patterns during submaximal and maximal exercise in elite oarsmen. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 440–446. [Google Scholar] [CrossRef]
- Ali, A.; Duizer, L.; Foster, K.; Grigor, J.; Wei, W. Changes in sensory perception of sports drinks when consumed pre, during and post exercise. Physiol. Behav. 2011, 102, 437–443. [Google Scholar] [CrossRef]
- Temesi, J.; Johnson, N.A.; Raymond, J.; Burdon, C.A.; O’Connor, H.T. Carbohydrate ingestion during endurance exercise improves performance in adults. J. Nutr. 2011, 141, 890–897. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, E.J.; Thelwall, P.E.; Thomas, K.; Smith, F.; Brand-Miller, J.; Trenell, M.I. Dietary glycemic index influences lipid oxidation but not muscle or liver glycogen oxidation during exercise. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E1140–E1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivy, J.L. Glycogen resynthesis after exercise: Effect of carbohydrate intake. Int. J. Sport. Med. 1998, 19 (Suppl. S2), S142–S145. [Google Scholar] [CrossRef] [PubMed]
- Deldicque, L.; Décombaz, J.; Zbinden Foncea, H.; Vuichoud, J.; Poortmans, J.R.; Francaux, M. Kinetics of creatine ingested as a food ingredient. Eur. J. Appl. Physiol. 2008, 102, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Sahlin, K.; Harris, R.C.; Hultman, E. Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen. Scand. J. Clin. Lab. Investig. 1979, 39, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Aaserud, R.; Gramvik, P.; Olsen, S.R.; Jensen, J. Creatine supplementation delays onset of fatigue during repeated bouts of sprint running. Scand. J. Med. Sci. Sport. 1998, 8, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Padilla, S.; Ibañez, J.; Izquierdo, M.; Gorostiaga, E. Creatine supplementation and sprint performance in soccer players. Med. Sci. Sport. Exerc. 2000, 32, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Tihanyi, J.; Pucspk, J.; Kovacs, I.; Gabossy, A.; Colli, R.; Pulvirenti, G.; Tranquilli, C.; Foti, C.; Viru, M.; et al. Effect of oral creatine supplementation on jumping and running performance. Int. J. Sport. Med. 1997, 18, 369–372. [Google Scholar] [CrossRef]
- Kais, K.; Raudsepp, L. Cognitive and Somatic Anxiety and Self-Confidence in Athletic Performance of Beach Volleyball. Percept. Motor Skills 2004, 98, 439–449. [Google Scholar] [CrossRef]
- Glade, M.J. Caffeine-Not just a stimulant. Nutrition 2010, 26, 932–938. [Google Scholar] [CrossRef]
- Davis, J.K.; Green, J.M. Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sport. Med. 2009, 39, 813–832. [Google Scholar] [CrossRef]
- Sawynok, J. Adenosine receptor activation and nociception. Eur. J. Pharmacol. 1998, 347, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ajjimaporn, A.; Noppongsakit, P.; Ramyarangsi, P.; Siripornpanich, V.; Chaunchaiyakul, R. A low- dose of caffeine suppresses EEG alpha power and improves working memory in healthy University males. Physiol. Behav. 2022, 256, 113955. [Google Scholar] [CrossRef] [PubMed]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef] [PubMed]
Variables | Drink 1 | Drink 2 | Drink 3 |
---|---|---|---|
Body mass (kg) | 69.65 ± 2.18 | 70.06 ± 2.57 | 67.89 ± 2.38 |
Body mass index (km/m2) | 22.82 ± 0.53 | 22.93 ± 0.60 | 22.14 ± 0.57 |
Body fat (%) | 16.47 ± 1.12 | 15.35 ± 1.28 | 14.31 ± 1.26 |
Body muscle (%) | 36.47 ± 0.34 | 36.41 ± 0.45 | 37.03 ± 0.46 |
Resting heart rate (bpm) | 70 ± 2 | 72 ± 1 | 71 ± 2 |
Resting systolic blood pressure (mmHg) | 119.21 ± 8.80 | 121.47 ± 8.87 | 124.47 ± 8.97 |
Resting diastolic blood pressure (mmHg) | 71.49 ± 10.95 | 67.74 ± 11.65 | 70.87 ± 10.05 |
Phases | Rest | S1 | S2 | S3 | Fatigue |
---|---|---|---|---|---|
Drink 1 | |||||
Cardiac functions | |||||
HR (bpm) | 70 ± 2 | 139 ± 3 | 149 ± 3 | 155 ± 3 | 181 ± 2 |
SV (mL) | 85.50 ± 1.99 | 117.98 ± 4.13 | 123.88 ± 5.10 | 126.13 ± 6.30 | 119.51 ± 5.54 |
CO (L/min) | 6.25 ± 0.35 | 17.90 ± 1.06 | 19.97 ± 1.15 | 19.86 ± 1.49 | 21.90 ± 1.09 |
SVR (dyn·sec·cm−5) | 1192.33 ± 87.23 | 437.66 ± 25.86 | 448.14 ± 59.82 | 409.27 ± 41.95 | 357.12 ± 13.65 |
Respiratory functions | |||||
VT (L/time) | 0.56 ± 0.04 | 1.70 ± 0.06 | 1.59 ± 0.05 | 1.58 ± 0.07 | 1.65 ± 0.05 |
BF (times/min) | 18 ± 1 | 48 ± 2 | 54 ± 3 | 52 ± 3 | 60 ± 2 |
VE (L/min) | 10.43 ± 0.82 | 81.78 ± 4.34 | 85.80 ± 4.05 | 80.91 ± 3.45 | 98.49 ± 3.45 |
Metabolic functions | |||||
VO2 (L/min) | 0.31 ± 0.02 | 2.79 ± 0.08 | 2.70 ± 0.08 | 2.59 ± 0.08 | 3.15 ± 0.08 |
VCO2 (L/min) | 0.28 ± 0.02 | 2.70 ± 0.08 | 2.60 ± 0.07 | 2.49 ± 0.07 | 3.05 ± 0.08 |
RER | 0.88 ± 0.02 | 0.97 ± 0.01 | 0.97 ± 0.02 | 0.96 ± 0.02 | 0.98 ± 0.01 |
EE (cal/h) | 92.86 ± 8.82 | 830.69 ± 23.41 | 801.73 ± 23.25 | 770.42 ± 23.17 | 927.29 ± 24.74 |
Drink 2 | |||||
Cardiac functions | |||||
HR (bpm) | 72 ± 1 | 147 ± 3 | 159 ± 2 | 165 ± 2 | 186 ± 2 |
SV (mL) | 89.94 ± 4.24 | 129.30 ± 9.44 | 123.92 ± 5.77 | 134.59 ± 11.98 | 118.94 ± 3.64 |
CO (L/min) | 7.70 ± 0.49 | 20.51 ± 1.21 | 21.09 ± 0.99 | 23.22 ± 1.47 | 21.59 ± 0.76 |
SVR (dyn·sec·cm−5) | 987.95 ± 75.88 | 402.95 ± 26.40 | 486.68 ± 79.60 | 399.60 ± 39.40 | 327.09 ± 12.66 |
Respiratory functions | |||||
VT (L/time) | 0.54 ± 0.04 | 1.74 ± 0.06 | 1.67 ± 0.07 | 1.63 ± 0.08 | 1.70 ± 0.07 |
BF (times/min) | 19 ± 1 | 47 ± 3 | 49 ± 2 | 50 ± 3 | 58 ± 2 |
VE (L/min) | 10.03 ± 0.80 | 79.78 ± 3.82 | 79.34 ± 2.78 | 79.84 ± 4.12 | 98.38 ± 3.62 |
Metabolic functions | |||||
VO2 (L/min) | 0.32 ± 0.01 | 2.96 ± 0.06 | 2.77 ± 0.06 | 2.59 ± 0.09 | 3.31 ± 0.07 |
VCO2 (L/min) | 0.270.01 | 2.76 ± 0.09 | 2.62 ± 0.08 | 2.45 ± 0.09 | 3.11 ± 0.10 |
RER | 0.85 ± 0.03 | 0.93 ± 0.02 | 0.94 ± 0.02 | 0.95 ± 0.01 | 0.97 ± 0.01 |
EE (cal/h) | 91.58 ± 6.61 | 874.02 ± 20.07 | 819.80 ± 18.96 | 768.01 ± 28.00 | 957.23 ± 26.27 |
Drink 3 | |||||
Cardiac functions | |||||
HR (bpm) | 71 ± 2 | 145 ± 4 | 160 ± 4 | 162 ± 4 | 182 ± 3 |
SV (mL) | 85.37 ± 3.62 | 122.89 ± 3.23 | 122.65 ± 3.83 | 132.02 ± 2.74 | 109.70 ± 2.92 |
CO (L/min) | 6.42 ± 0.39 | 17.72 ± 0.64 | 20.17 ± 0.68 | 21.82 ± 0.83 | 19.93 ± 0.63 |
SVR (dyn·sec·cm−5) | 1224.75 ± 90.01 | 446.83 ± 24.41 | 416.04 ± 30.72 | 425.59 ± 45.40 | 365.41 ± 13.06 |
Respiratory functions | |||||
VT (L/time) | 0.60 ± 0.04 | 1.82 ± 0.07 | 1.76 ± 0.05 | 1.65 ± 0.07 | 1.71 ± 0.06 |
BF (times/min) | 19 ± 1 | 46 ± 2 | 48 ± 2 | 50 ± 3 | 56 ± 2 |
VE (L/min) | 10.89 ± 0.74 | 81.33 ± 2.16 | 83.02 ± 2.66 | 80.80 ± 3.48 | 93.77 ± 2.03 |
Metabolic functions | |||||
VO2 (L/min) | 0.31 ± 0.01 | 2.92 ± 0.05 | 2.84 ± 0.05 | 2.58 ± 0.07 | 3.12 ± 0.06 |
VCO2 (L/min) | 0.27 ± 0.10 | 2.75 ± 0.10 | 2.63 ± 0.10 | 2.51 ± 0.09 | 2.92 ± 0.12 |
RER | 0.86 ± 0.02 | 0.94 ± 0.03 | 0.93 ± 0.03 | 0.97 ± 0.01 | 0.94 ± 0.03 |
EE (cal/h) | 97.66 ± 5.95 | 865.49 ± 16.55 | 841.22 ± 16.24 | 768.91 ± 20.60 | 923.35 ± 19.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masodsai, K.; Sahaschot, T.; Chaunchaiyakul, R. Cardiorespiratory, Metabolic, and Performance Changes from the Effects of Creatine and Caffeine Supplementations in Glucose—Electrolyte-Based Sports Drinks: A Double-Blind, Placebo-Controlled Study. Sports 2023, 11, 4. https://doi.org/10.3390/sports11010004
Masodsai K, Sahaschot T, Chaunchaiyakul R. Cardiorespiratory, Metabolic, and Performance Changes from the Effects of Creatine and Caffeine Supplementations in Glucose—Electrolyte-Based Sports Drinks: A Double-Blind, Placebo-Controlled Study. Sports. 2023; 11(1):4. https://doi.org/10.3390/sports11010004
Chicago/Turabian StyleMasodsai, Kunanya, Thanachai Sahaschot, and Rungchai Chaunchaiyakul. 2023. "Cardiorespiratory, Metabolic, and Performance Changes from the Effects of Creatine and Caffeine Supplementations in Glucose—Electrolyte-Based Sports Drinks: A Double-Blind, Placebo-Controlled Study" Sports 11, no. 1: 4. https://doi.org/10.3390/sports11010004
APA StyleMasodsai, K., Sahaschot, T., & Chaunchaiyakul, R. (2023). Cardiorespiratory, Metabolic, and Performance Changes from the Effects of Creatine and Caffeine Supplementations in Glucose—Electrolyte-Based Sports Drinks: A Double-Blind, Placebo-Controlled Study. Sports, 11(1), 4. https://doi.org/10.3390/sports11010004