Programming Plyometric-Jump Training in Soccer: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Data Extraction
3. Results and Discussion
3.1. Study Selection
3.2. Characteristics of Soccer Players in Jump Training Studies
3.3. Characteristics of Jump Training Interventions
3.3.1. Duration
3.3.2. Frequency
3.3.3. Type of Jump Exercise
3.3.4. Total Program Number of Jumps
3.3.5. Intensity
3.3.6. Inter-Repetition Recovery
3.3.7. Inter-Set and Inter-Exercise Recovery
3.3.8. Inter-Session Recovery
3.3.9. Progressive Overload
3.3.10. Taper to Optimize Adaptations after Jump Training
3.3.11. Type of Surface
3.3.12. Jump Training Combined with Other Training Methods
3.4. Potential Limitations
3.5. Perspectives for Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramirez-Campillo, R.; Garcia-Pinillos, F.; Garcia-Ramos, A.; Yanci, J.; Gentil, P.; Chaabene, H.; Granacher, U. Effects of different plyometric training frequencies on components of physical fitness in amateur female soccer players. Front. Physiol. 2018, 9, 934. [Google Scholar] [CrossRef] [PubMed]
- FIFA. FIFA Big Count 2006, 270 Million People Active in Football; FIFA Communications Division, Information Services: Zurich, Switzerland, 2007. [Google Scholar]
- FIFA. FIFA Women′s Development Programme; FIFA Communications Division, Information Services: Zurich, Switzerland, 2020. [Google Scholar]
- FIFA. The Football Landscape. 2022. Available online: https://publicationsfifacom/en/vision-report-2021/the-football-landscape. (accessed on 23 May 2022).
- Rattanapian, P.; Tingsabhat, J.; Kanungsukkasem, V. Factors influencing achievement of Regional League Division 2 football tournament management. Kasetsart. J. Soc. Sci. 2018, 39, 542–549. [Google Scholar] [CrossRef]
- Datson, N.; Hulton, A.; Andersson, H.; Lewis, T.; Weston, M.; Drust, B.; Gregson, W. Applied physiology of female soccer: An update. Sports Med. 2014, 44, 1225–1240. [Google Scholar] [CrossRef] [PubMed]
- Stolen, T.; Chamari, K.; Castagna, C.; Wisloff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Vaeyens, R.; Malina, R.M.; Janssens, M.; Van Renterghem, B.; Bourgois, J.; Vrijens, J.; Philippaerts, R.M. A multidisciplinary selection model for youth soccer: The Ghent Youth Soccer Project. Br. J. Sports Med. 2006, 40, 928–934. [Google Scholar] [CrossRef]
- le Gall, F.; Carling, C.; Williams, M.; Reilly, T. Anthropometric and fitness characteristics of international, professional and amateur male graduate soccer players from an elite youth academy. J. Sci. Med. Sport 2010, 13, 90–95. [Google Scholar] [CrossRef]
- Meylan, C.; Cronin, J.; Oliver, J.; Hughes, M.; Manson, S. An evidence-based model of power development in youth soccer. Int. J. Sports Sci. Coach. 2014, 9, 1241–1264. [Google Scholar] [CrossRef]
- Weldon, A.; Duncan, M.J.; Turner, A.; Sampaio, J.; Noon, M.; Wong, D.; Lai, V.W. Contemporary practices of strength and conditioning coaches in professional soccer. Biol. Sport 2021, 38, 377–390. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; Garcia-Hermoso, A.; Ramirez-Velez, R.; Gentil, P.; Asadi, A.; Chaabene, H.; Moran, J.; Meylan, C.; García-de-Alcaraz, A.; et al. Methodological characteristics and future directions for plyometric jump training research: A scoping review. Sports Med. 2018, 48, 1059–1081. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Moran, J.; Chaabene, H.; Granacher, U.; Behm, D.G.; Garcia-Hermoso, A.; Izquierdo, M. Methodological characteristics and future directions for plyometric jump training research: A scoping review update. Scand. J. Med. Sci. Sports 2020, 30, 983–997. [Google Scholar] [CrossRef]
- Chu, D.; Myer, G. Plyometrics; Human Kinetics: Champaign, IL, USA, 2013. [Google Scholar]
- Ramirez-Campillo, R.; Alvarez, C.; García-Pinillos, F.; Gentil, P.; Moran, J.; Pereira, L.A.; Loturco, I. Effects of plyometric training on physical performance of young male soccer players: Potential effects of different drop jump heights. Pediatr. Exerc. Sci. 2019, 31, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Zanetti, V.; Kitamura, K.; Abad, C.C.C.; Nakamura, F.Y. Transference effect of vertical and horizontal plyometrics on sprint performance of high-level U-20 soccer players. J. Sports Sci. 2015, 33, 2182–2191. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Tricoli, V.; Roschel, H.; Nakamura, F.Y.; Cal Abad, C.C.; Kobal, R.; Gil, S.; González-Badillo, J.J. Transference of traditional versus complex strength and power training to sprint performance. J. Hum. Kinet. 2014, 41, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Keiner, M.; Sander, A.; Wirth, K.; Schmidtbleicher, D. The impact of 2 years of additional athletic training on the jump performance of young athletes. Sci. Sports 2014, 29, e39–e46. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Burgos, C.H.; Henriquez-Olguin, C.; Andrade, D.C.; Martinez, C.; Alvarez, C.; Castro-Sepúlveda, M.; Marques, M.C.; Izquierdo, M. Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. J. Strength Cond. Res. 2015, 29, 1317–1328. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Henriquez-Olguin, C.; Burgos, C.; Andrade, D.C.; Zapata, D.; Martinez, C.; Álvarez, C.; Baez, E.I.; Castro-Sepúlveda, M.; Peñailillo, L.; et al. Effect of progressive volume-based overload during plyometric training on explosive and endurance performance in young soccer players. J. Strength Cond. Res. 2015, 29, 1884–1893. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; García-Pinillos, F.; Sanchez-Sanchez, J.; Yanci, J.; Castillo, D.; Loturco, I.; Chaabene, H.; Moran, M.; Izquierdo, M. Optimal reactive strength index: Is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players? J. Strength Cond. Res. 2018, 32, 885–893. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; Gentil, P.; Loturco, I.; Sanchez-Sanchez, J.; Izquierdo, M.; Moran, J.; Nakamura, F.Y.; Chaabene, H.; Granacher, U. Sequencing effects of plyometric training applied before or after regular soccer training on measures of physical fitness in young players. J. Strength Cond. Res. 2020, 34, 1959–1966. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Meylan, C.M.; Alvarez-Lepin, C.; Henriquez-Olguin, C.; Martinez, C.; Andrade, D.C.; Castro-Sepúlveda, M.; Burgos, C.; Baez, E.I.; Izquierdo, M. The effects of interday rest on adaptation to 6 weeks of plyometric training in young soccer players. J. Strength Cond. Res. 2015, 29, 972–979. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Andrade, D.C.; Alvarez, C.; Henriquez-Olguin, C.; Martinez, C.; Baez-Sanmartin, E.; Silva-Urra, J.; Burgos, C.; Izquierdo, M. The effects of interset rest on adaptation to 7 weeks of explosive training in young soccer players. J. Sports Sci. Med. 2014, 13, 287–296. [Google Scholar]
- Asadi, A.; Ramirez-Campillo, R.; Meylan, C.; Nakamura, F.Y.; Canas-Jamett, R.; Izquierdo, M. Effects of volume-based overload plyometric training on maximal-intensity exercise adaptations in young basketball players. J. Sports Med. Phys. Fit. 2017, 57, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Pereira, L.A.; Andrade, D.; Méndez-Rebolledo, G.; de la Fuente, C.I.; Castro-Sepulveda, M.; Garcia-Pinillos, F.; Freitas, T.T.; Loturco, I. Tapering strategies applied to plyometric jump training: A systematic review with meta-analysis of randomized-controlled trials. J. Sports Med. Phys. Fit. 2020, 61, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Alvarez, C.; Garcia-Pinillos, F.; Garcia-Ramos, A.; Loturco, I.; Chaabene, H.; Granacher, U. Effects of combined surfaces vs. single-surface plyometric training on soccer players′ physical fitness. J. Strength Cond. Res. 2020, 34, 2644–2653. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Sanchez-Sanchez, J.; Gonzalo-Skok, O.; Rodriguez-Fernandez, A.; Carretero, M.; Nakamura, F.Y. Specific changes in young soccer player′s fitness after traditional bilateral vs. unilateral combined strength and plyometric training. Front. Physiol. 2018, 9, 265. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Miñano, J.; Sanchez-Sanchez, J. Efecto del entrenamiento pliométrico sobre el rendimiento del futbolista. Rev. Prep. Física Fútbol. 2019, 30, 1–10. [Google Scholar]
- Abt, G.; Boreham, C.; Davison, G.; Jackson, R.; Nevill, A.; Wallace, E.; Williams, M. Power, precision, and sample size estimation in sport and exercise science research. J. Sports Sci. 2020, 38, 1933–1935. [Google Scholar] [CrossRef]
- Ter Stege, M.H.P.; Dallinga, J.M.; Benjaminse, A.; Lemmink, K.A.P.M. Effect of interventions on potential, modifiable risk factors for knee injury in team ball sports: A systematic review. Sports Med. 2014, 44, 1403–1426. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Sanchez-Sanchez, J.; Romero-Moraleda, B.; Yanci, J.; Garcia-Hermoso, A.; Manuel Clemente, F. Effects of plyometric jump training in female soccer player′s vertical jump height: A systematic review with meta-analysis. J. Sports Sci. 2020, 38, 1475–1487. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Castillo, D.; Raya-González, J.; Moran, J.; de Villarreal, E.S.; Lloyd, R.S. Effects of plyometric jump training on jump and sprint performance in young male soccer players: A systematic review and meta-analysis. Sports Med. 2020, 50, 2125–2143. [Google Scholar] [CrossRef]
- Bedoya, A.A.; Miltenberger, M.R.; Lopez, R.M. Plyometric training effects on athletic performance in youth soccer athletes: A systematic review. J. Strength Cond. Res. 2015, 29, 2351–2360. [Google Scholar] [CrossRef]
- Rao, G.; Lopez-Jimenez, F.; Boyd, J.; D′Amico, F.; Durant, N.H.; Hlatky, M.A.; Howard, G.; Kirley, K.; Masi, C.; Powell-Wiley, T.M.; et al. Methodological standards for meta-analyses and qualitative systematic reviews of cardiac prevention and treatment studies: A scientific statement from the american heart association. Circulation 2017, 136, e172–e194. [Google Scholar] [CrossRef] [PubMed]
- Gentil, P.; Arruda, A.; Souza, D.; Giessing, J.; Paoli, A.; Fisher, J.; Steele, J. Is there any practical application of meta-analytical results in strength training? Front. Physiol. 2017, 8, 1. [Google Scholar] [CrossRef]
- Doleman, B.; Williams, J.P.; Lund, J. Why most published meta-analysis findings are false. Tech. Coloproctol. 2019, 23, 925–928. [Google Scholar] [CrossRef] [PubMed]
- Sáez de Villarreal, E.; Requena, B.; Cronin, J.B. The effects of plyometric training on sprint performance: A meta-analysis. J. Strength Cond. Res. 2012, 26, 575–584. [Google Scholar] [CrossRef]
- Vlachopoulos, D.; Barker, A.R.; Ubago-Guisado, E.; Williams, C.A.; Gracia-Marco, L. The effect of a high-impact jumping intervention on bone mass, bone stiffness and fitness parameters in adolescent athletes. Arch. Osteoporos. 2018, 13, 128. [Google Scholar] [CrossRef] [PubMed]
- PubMed NTNCfBI. Jump Training. Available online: https://www.ncbi.nlm.nih.gov/pubmed (accessed on 24 October 2020).
- Bray, M.S.; Hagberg, J.M.; Perusse, L.; Rankinen, T.; Roth, S.M.; Wolfarth, B.; Bouchard, C. The human gene map for performance and health-related fitness phenotypes: The 2006–2007 update. Med. Sci. Sports Exerc. 2009, 41, 35–73. [Google Scholar] [CrossRef]
- Chagnon, Y.C.; Rankinen, T.; Snyder, E.E.; Weisnagel, S.J.; Perusse, L.; Bouchard, C. The human obesity gene map: The 2002 update. Obes. Res. 2003, 11, 313–367. [Google Scholar] [CrossRef]
- Loos, R.J.; Hagberg, J.M.; Perusse, L.; Roth, S.M.; Sarzynski, M.A.; Wolfarth, B.; Rankinen, T.; Bouchard, C. Advances in exercise, fitness, and performance genomics in 2014. Med. Sci. Sports Exerc. 2015, 47, 1105–1112. [Google Scholar] [CrossRef]
- Rankinen, T.; Bray, M.S.; Hagberg, J.M.; Perusse, L.; Roth, S.M.; Wolfarth, B.; Bouchard, C. The human gene map for performance and health-related fitness phenotypes: The 2005 update. Med. Sci. Sports Exerc. 2006, 38, 1863–1888. [Google Scholar] [CrossRef]
- Rankinen, T.; Zuberi, A.; Chagnon, Y.C.; Weisnagel, S.J.; Argyropoulos, G.; Walts, B.; Pérusse, L.; Bouchard, C. The human obesity gene map: The 2005 update. Obesity 2006, 14, 529–644. [Google Scholar] [CrossRef]
- Sarzynski, M.A.; Loos, R.J.; Lucia, A.; Perusse, L.; Roth, S.M.; Wolfarth, B.; Rankinen, T.; Bouchard, C. Advances in Exercise, Fitness, and Performance Genomics in 2015. Med. Sci. Sports Exerc. 2016, 48, 1906–1916. [Google Scholar] [CrossRef]
- Snyder, E.E.; Walts, B.; Perusse, L.; Chagnon, Y.C.; Weisnagel, S.J.; Rankinen, T.; Bouchard, C. The human obesity gene map: The 2003 update. Obes. Res. 2004, 12, 369–439. [Google Scholar] [CrossRef] [PubMed]
- Wolfarth, B.; Bray, M.S.; Hagberg, J.M.; Perusse, L.; Rauramaa, R.; Rivera, M.A.; Roth, S.M.; Rankinen, T.; Bouchard, C. The human gene map for performance and health-related fitness phenotypes: The 2004 update. Med. Sci. Sports Exerc. 2005, 37, 881–903. [Google Scholar] [PubMed]
- Wolfarth, B.; Rankinen, T.; Hagberg, J.M.; Loos, R.J.; Perusse, L.; Roth, S.M.; Sarzynski, M.A.; Bouchard, C. Advances in exercise, fitness, and performance genomics in 2013. Med. Sci. Sports Exerc. 2014, 46, 851–859. [Google Scholar] [CrossRef] [PubMed]
- van der Vlist, A.C.; Winters, M.; Weir, A.; Ardern, C.L.; Welton, N.J.; Caldwell, D.M.; Verhaar, J.A.N.; de Vos, R.J. Which treatment is most effective for patients with Achilles tendinopathy? A living systematic review with network meta-analysis of 29 randomised controlled trials. Br. J. Sports Med. 2021, 55, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Shojania, K.G.; Sampson, M.; Ansari, M.T.; Ji, J.; Doucette, S.; Moher, D. How quickly do systematic reviews go out of date? A survival analysis. Ann. Intern. Med. 2007, 147, 224–233. [Google Scholar] [CrossRef]
- Arksey, H.; O′Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Markovic, G.; Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010, 40, 859–895. [Google Scholar] [CrossRef]
- Mason, B.; McKune, A.; Pumpa, K.; Ball, N. The use of acute exercise interventions as game day priming strategies to improve physical performance and athlete readiness in team-sport athletes: A systematic review. Sports Med. 2020, 50, 1943–1962. [Google Scholar] [CrossRef]
- Expertscape. Available online: https://www.expertscape.com/ex/plyometric+exercise (accessed on 25 October 2020).
- Yanci, J.; Castillo, D.; Iturricastillo, A.; Ayarra, R.; Nakamura, F.Y. Effects of two different volume-equated weekly distributed short-term plyometric training programs on futsal players′ physical performance. J. Strength Cond. Res. 2017, 31, 1787–1794. [Google Scholar] [CrossRef]
- Neves da Silva, V.F.; Aguiar, S.D.S.; Sousa, C.V.; Sotero, R.D.C.; Filho, J.M.S.; Oliveira, I.; Mota, M.R.; Simoes, H.G.; Sales, M.M. Effects of short-term plyometric training on physical fitness parameters in female futsal athletes. J. Phys. Ther. Sci. 2017, 29, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Iida, Y.; Kanehisa, H.; Inaba, Y.; Nakazawa, K. Short-term landing training attenuates landing impact and improves jump height in landing-to-jump movement. J. Strength Cond. Res. 2013, 27, 1560–1567. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, D.; Suzuki, T.; Yasumatsu, M.; Akimoto, T. Moderate running and plyometric training during off-season did not show a significant difference on soccer-related high-intensity performances compared with no-training controls. J. Strength Cond. Res. 2012, 26, 3392–3397. [Google Scholar] [CrossRef]
- Söhnlein, Q.; Müller, E.; Stöggl, T.L. The effect of 16-week plyometric training on explosive actions in early to mid-puberty elite soccer players. J. Strength Cond. Res. 2014, 28, 2105–2114. [Google Scholar] [CrossRef]
- Michailidis, Y.; Fatouros, I.G.; Primpa, E.; Michailidis, C.; Avloniti, A.; Chatzinikolaou, A.; Barbero-Álvarez, J.C.; Tsoukas, D.; Douroudos, I.I.; Draganidis, G.; et al. Plyometrics trainability in preadolescent soccer athletes. J. Strength Cond. Res. 2013, 27, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Bouguezzi, R.; Chaabene, H.; Negra, Y.; Ramirez-Campillo, R.; Jlalia, Z.; Mkaouer, B.; Hachana, Y. Effects of different plyometric training frequency on measures of athletic performance in prepuberal male soccer players. J. Strength Cond. Res. 2020, 34, 1609–1617. [Google Scholar] [CrossRef]
- Granacher, U.; Prieske, O.; Majewski, M.; Büsch, D.; Muehlbauer, T. The role of instability with plyometric training in sub-elite adolescent soccer players. Int. J. Sports Med. 2015, 36, 386–394. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Gallardo, F.; Henriquez-Olguin, C.; Meylan, C.M.; Martinez, C.; Alvarez, C.; Caniuqueo, A.; Cadore, E.L.; Izquierdo, M. Effect of vertical, horizontal, and combined plyometric training on explosive, balance, and endurance performance of young soccer players. J. Strength Cond. Res. 2015, 29, 1784–1795. [Google Scholar] [CrossRef]
- Thomas, K.; French, D.; Hayes, P.R. The effect of two plyometric training techniques on muscular power and agility in youth soccer players. J. Strength Cond. Res. 2009, 23, 332–335. [Google Scholar] [CrossRef]
- Rosas, F.; Ramirez-Campillo, R.; Diaz, D.; Abad-Colil, F.; Martinez-Salazar, C.; Caniuqueo, A.; Cañas-Jamet, R.; Loturco, I.; Nakamura, F.Y.; McKenzie, C.; et al. Jump training in youth soccer players: Effects of haltere type handheld loading. Int. J. Sports Med. 2016, 37, 1060–1065. [Google Scholar] [CrossRef]
- Hammami, M.; Gaamouri, N.; Shephard, R.J.; Chelly, M.S. Effects of contrast strength vs. plyometric training on lower-limb explosive performance, ability to change direction and neuromuscular adaptation in soccer players. J. Strength Cond. Res. 2019, 33, 2094–2103. [Google Scholar] [CrossRef] [PubMed]
- Bouguezzi, R.; Chaabene, H.; Negra, Y.; Moran, J.; Sammoud, S.; Ramirez-Campillo, R.; Granacher, U.; Hachana, Y. Effects of jump exercises with and without stretch-shortening cycle actions on components of physical fitness in prepubertal male soccer players. Sport Sci. Health 2020, 16, 297–304. [Google Scholar] [CrossRef]
- Coratella, G.; Beato, M.; Milanese, C.; Longo, S.; Limonta, E.; Rampichini, S.; Cé, E.; Visconti, A.V.; Schena, F.; Esposito, F. Specific adaptations in performance and muscle architecture after weighted jumpsquat vs. body mass squat jump training in recreational soccer players. J. Strength Cond. Res. 2018, 32, 921–929. [Google Scholar] [CrossRef]
- Moran, J.; Ramirez-Campillo, R.; Liew, B.; Chaabene, H.; Behm, D.G.; Garcia-Hermoso, A.; Izquierdo, M.; Granacher, U. Effects of vertically and horizontally orientated plyometric training on physical performance: A meta-analytical comparison. Sports Med. 2021, 51, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Chu, D. Jumping into Plyometrics; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- NSCA. NSCA′s Guide to Program Design; National Strength and Conditioning Association (NSCA): Colorado Springs, CO, USA, 2012. [Google Scholar]
- Chaabene, H.; Negra, Y. The effect of plyometric training volume on athletic performance in prepubertal male soccer players. Int. J. Sports Physio. Perform. 2017, 12, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.; Coratella, G.; Dello Iacono, A.; Beato, M. Comparative effects of single vs. double weekly plyometric training sessions on jump, sprint and COD abilities of elite youth football players. J. Sports Med. Phys. Fit. 2019, 59, 910–915. [Google Scholar]
- Yanci, J.; Los Arcos, A.; Camara, J.; Castillo, D.; García, A.; Castagna, C. Effects of horizontal plyometric training volume on soccer players′ performance. Res. Sports Med. 2016, 24, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.; Liew, B.; Ramirez-Campillo, R.; Granacher, U.; Negra, Y.; Chaabene, H. The effects of plyometric jump training on lower-limb stiffness in healthy individuals: A meta-analytical comparison. J. Sport Health Sci. 2021, S2095–S2546. [Google Scholar] [CrossRef]
- Brumitt, J.; Heiderscheit, B.C.; Manske, R.C.; Niemuth, P.; Mattocks, A.; Rauh, M.J. The lower-extremity functional test and lower-quadrant injury in ncaa division iii athletes: A descriptive and epidemiologic report. J. Sport Rehabil. 2016, 25, 219–226. [Google Scholar] [CrossRef]
- Brumitt, J.; Heiderscheit, B.C.; Manske, R.C.; Niemuth, P.E.; Rauh, M.J. Off-season training habits and preseason functional test measures of division iii collegiate athletes: A descriptive report. Int. J. Sports Phys. Ther. 2014, 9, 447–455. [Google Scholar]
- Brumitt, J.; Wilson, V.; Ellis, N.; Petersen, J.; Zita, C.J.; Reyes, J. Preseason lower extremity functional test scores are not associated with lower quadrant injury–A validation study with normative data on 395 division III athletes. Int. J. Sports Phys. Ther. 2018, 13, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P. Practical guidelines for plyometric intensity. NSCA’S Perform. Train. J. 2007, 6, 12–16. [Google Scholar]
- Davies, G.; Riemann, B.L.; Manske, R. Current concepts of plyometric exercise. Int. J. Sports Phys. Ther. 2015, 10, 760–786. [Google Scholar] [PubMed]
- Jarvis, M.M.; Graham-Smith, P.; Comfort, P. A Methodological Approach to Quantifying Plyometric Intensity. J. Strength Cond. Res. 2014, 30, 2522–2532. [Google Scholar] [CrossRef] [PubMed]
- Wallace, B.J.; Kernozek, T.W.; White, J.M.; Kline, D.E.; Wright, G.A.; Peng, H.T.; Huang, C.F. Quantification of vertical ground reaction forces of popular bilateral plyometric exercises. J. Strength Cond. Res. 2010, 24, 207–212. [Google Scholar] [CrossRef]
- Jensen, R.L.; Ebben, W.P. Quantifying plyometric intensity via rate of force development, knee joint, and ground reaction forces. J. Strength Cond. Res. 2007, 21, 763–767. [Google Scholar]
- Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Morin, J.B. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front. Phys. 2017, 7, 677. [Google Scholar] [CrossRef]
- Jimenez-Reyes, P.; Samozino, P.; Morin, J.B. Optimized training for jumping performance using the force-velocity imbalance: Individual adaptation kinetics. PLoS ONE 2019, 14, e0216681. [Google Scholar] [CrossRef]
- Jensen, R.L.; Ebben, W.P. Effect of Plyometric Variations on Jumping Impulse. Med. Sci. Sports Exerc. 2002, 34, S84. [Google Scholar] [CrossRef]
- Ebben, W.P.; Fauth, M.L.; Garceau, L.R.; Petushek, E.J. Kinetic quantification of plyometric exercise intensity. J. Strength Cond. Res. 2011, 25, 3288–3298. [Google Scholar] [CrossRef]
- Andrade, D.C.; Manzo, O.; Beltrán, A.R.; Alvares, C.; Del Río, R.; Toledo, C.; Moran, J.; Ramirez-Campillo, R. Kinematic and neuromuscular measures of intensity during plyometric jumps. J. Strength Cond. Res. 2020, 34, 3395–3402. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Simenz, C.; Jensen, R.L. Evaluation of plyometric intensity using electromyography. J. Strength Cond. Res. 2008, 22, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Moran, J.; Drury, B.; Williams, M.; Keogh, J.W.; Chaabene, H.; Granacher, U. Effects of equal volume but different plyometric jump training intensities on components of physical fitness in physically active young males. J. Strength Cond. Res. 2019, 35, 1916–1923. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A. Use of rating of perceived exertion for determining plyometric exercises intensity in physically active men. Sport Sci. Health 2014, 10, 75–78. [Google Scholar] [CrossRef]
- Taube, W.; Leukel, C.; Lauber, B.; Gollhofer, A. The drop height determines neuromuscular adaptations and changes in jump performance in stretch-shortening cycle training. Scand. J. Med. Sci. Sports. 2012, 22, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Matavulj, D.; Kukolj, M.; Ugarkovic, D.; Tihanyi, J.; Jaric, S. Effects of plyometric training on jumping performance in junior basketball players. J. Sports Med. Phys. Fit. 2001, 41, 159–164. [Google Scholar]
- Lloyd, R.S.; Meyers, R.W.; Oliver, J.L. The natural development and trainability of plyometric ability during childhood. Strength Cond. J. 2011, 33, 23–32. [Google Scholar] [CrossRef]
- Read, M.M.; Cisar, C. The influence of varied rest interval lengths on depth jump performance. J. Strength Cond. Res. 2001, 15, 279–283. [Google Scholar]
- Marginson, V.; Rowlands, A.V.; Gleeson, N.P.; Eston, R.G. Comparison of the symptoms of exercise-induced muscle damage after an initial and repeated bout of plyometric exercise in men and boys. J. Appl. Physiol. 2005, 99, 1174–1181. [Google Scholar] [CrossRef]
- Ratel, S.; Duche, P.; Williams, C.A. Muscle fatigue during high-intensity exercise in children. Sports Med. 2006, 36, 1031–1065. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; Sanchez-Sanchez, J.; Slimani, M.; Gentil, P.; Chelly, M.S.; Shephard, R.J. Effects of plyometric jump training on the physical fitness of young male soccer players: Modulation of response by inter-set recovery interval and maturation status. J. Sport Sci. 2019, 37, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.L.; Alabed, S.; Chico, T.J.A. Effect of sports massage on performance and recovery: A systematic review and meta-analysis. BMJ Open Sport Exerc. Med. 2020, 6, e000614. [Google Scholar] [CrossRef] [PubMed]
- Tufano, J.J.; Brown, L.E.; Haff, G.G. Theoretical and practical aspects of different cluster set structures: A systematic review. J. Strength Cond. Res. 2017, 31, 848–867. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Ramirez-Campillo, R. Effects of cluster vs. traditional plyometric training sets on maximal-intensity exercise performance. Medicina 2016, 52, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Moreno, S.D.; Brown, L.E.; Coburn, J.W.; Judelson, D.A. Effect of cluster sets on plyometric jump power. J. Strength Cond. Res. 2014, 28, 2424–2428. [Google Scholar] [CrossRef]
- Wathen, D. Literature Review: Explosive/Plyometric Exercises. Strength Cond. J. 1993, 15, 17–19. [Google Scholar]
- NSCA. Position statement: Explosive/plyometric exercises. NSCA J. 1993, 15, 16. [Google Scholar]
- Asadi, A. Influence of rest interval between plyometric training sessions on functional performance tests. Phys. Act. Rev. 2015, 3, 1–10. [Google Scholar] [CrossRef]
- Altarriba-Bartes, A.; Pena, J.; Vicens-Bordas, J.; Mila-Villaroel, R.; Calleja-Gonzalez, J. Post-competition recovery strategies in elite male soccer players. Effects on performance: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0240135. [Google Scholar] [CrossRef]
- Jimenez-Reyes, P.; Garcia-Ramos, A.; Parraga-Montilla, J.A.; Morcillo-Losa, J.A.; Cuadrado-Penafiel, V.; Castano-Zambudio, A.; Samozino, P.; Morin, J.B. Seasonal changes in the sprint acceleration force-velocity profile of elite male soccer players. J. Strength Cond. Res. 2020, 36, 70–74. [Google Scholar] [CrossRef]
- ACSM. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Cronin, J.B.; Faigenbaum, A.D.; Haff, G.G.; Howard, R.; Kraemer, W.J.; Micheli, L.J.; Myer, G.D.; Oliver, J.L. National Strength and Conditioning Association position statement on long-term athletic development. J. Strength Cond. Res. 2016, 30, 1491–1509. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Howard, R.; De Ste Croix, M.B.; Williams, C.A.; Best, T.M.; Alvar, B.A.; Micheli, L.J.; Thomas, D.P.; et al. Long-term athletic development, part 2: Barriers to success and potential solutions. J. Strength Cond. Res. 2015, 29, 1451–1464. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L. The Youth Physical Deve.lopment Model: A New Approach to Long-Term Athletic Development. Strength Cond. J. 2012, 34, 61–72. [Google Scholar] [CrossRef]
- Lockie, R.G.; Murphy, A.J.; Schultz, A.B.; Knight, T.J.; de Jonge, X. The effects of different speed training protocols on sprint acceleration kinematics and muscle strength and power in field sport athletes. J. Strength Cond. Res. 2012, 26, 1539–1550. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Murphy, A.J.; Scott, B.R.; de Jonge, X. Quantifying session ratings of perceived exertion for field-based speed training methods in team sport athletes. J. Strength Cond. Res. 2012, 26, 2721–2728. [Google Scholar] [CrossRef]
- Mujika, I. Tapering and Peaking for Optimal Performance; Human Kinetics: Champaign, IL, USA, 2009. [Google Scholar]
- Hortobagyi, T.; Houmard, J.A.; Stevenson, J.R.; Fraser, D.D.; Johns, R.A.; Israel, R.G. The effects of detraining on power athletes. Med. Sci. Sports Exerc. 1993, 25, 929–935. [Google Scholar]
- Izquierdo, M.; Ibanez, J.; Gonzalez-Badillo, J.J.; Ratamess, N.A.; Kraemer, W.J.; Hakkinen, K.; Bonnabau, H.; Granados, C.; French, D.N.; Gorostiaga, D.M. Detraining and tapering effects on hormonal responses and strength performance. J. Strength Cond. Res./Natl. Strength Cond. Association. 2007, 21, 768–775. [Google Scholar]
- Bosquet, L.; Montpetit, J.; Arvisais, D.; Mujika, I. Effects of tapering on performance: A meta-analysis. Med. Sci. Sports Exerc. 2007, 39, 1358–1365. [Google Scholar] [CrossRef]
- Bobbert, M.F. Drop jumping as a training method for jumping ability. Sports Med. 1990, 9, 7–22. [Google Scholar] [CrossRef]
- Giatsis, G.; Kollias, I.; Panoutsakopoulos, V.; Papaiakovou, G. Biomechanical differences in elite beach-volleyball players in vertical squat jump on rigid and sand surface. Sports Biomech. 2004, 3, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Bobbert, M.F.; Huijing, P.A.; van Ingen Schenau, G.J. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping. Med. Sci. Sports Exerc. 1987, 19, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Negra, Y.; Chaabene, H.; Sammoud, S.; Bouguezzi, R.; Abbes, M.A.; Hachana, Y.; Granacher, U. Effects of plyometric training on physical fitness in prepuberal soccer athletes. Int. J. Sports Med. 2017, 38, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Negra, Y.; Chaabene, H.; Sammoud, S.; Bouguezzi, R.; Mkaouer, B.; Hachana, Y.; Granacher, U. Effects of plyometric training on components of physical fitness in prepuberal male soccer athletes: The role of surface instability. J. Strength Cond. Res. 2017, 31, 3295–3304. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, R.T.; Nunes, R.D.A.M.; Castro, J.B.P.D.; Lima, V.P.; Silva, S.G.; Dantas, E.H.M.; Vale, R.G.S. The effect of aquatic and land plyometric training on the vertical jump and delayed onset muscle soreness in brazilian soccer players. Hum. Mov. 2017, 18, 63–70. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Castagna, C.; Martino, F.; Fiorini, S.; Wisloff, U. Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players. Br. J. Sports Med. 2008, 42, 42–46. [Google Scholar] [CrossRef]
- McGinnis, M. Biomechanics of Sport and Exercise; Human Kinetics: Champaign, IL, USA, 2002. [Google Scholar]
- Milanović, Z.; Pantelić, S.; Čović, N.; Sporiš, G.; Mohr, M.; Krustrup, P. Broad-spectrum physical fitness benefits of recreational football: A systematic review and meta-analysis. Br. J. Sports Med. 2019, 53, 926–939. [Google Scholar] [CrossRef]
- Moran, J.; Blagrove, R.C.; Drury, B.; Fernandes, J.F.T.; Paxton, K.; Chaabene, H.; Ramirez-Campillo, R. Effects of small-sided games vs. conventional endurance training on endurance performance in male youth soccer players: A meta-analytical comparison. Sports Med. 2019, 49, 731–742. [Google Scholar] [CrossRef]
- Kunz, P.; Engel, F.A.; Holmberg, H.C.; Sperlich, B. A meta-comparison of the effects of high-intensity interval training to those of small-sided games and other training protocols on parameters related to the physiology and performance of youth soccer players. Sports Med.–Open. 2019, 5, 7. [Google Scholar] [CrossRef]
- Alcaraz, P.E.; Carlos-Vivas, J.; Oponjuru, B.O.; Martinez-Rodriguez, A. The Effectiveness of Resisted Sled Training (RST) for Sprint Performance: A Systematic Review and Meta-analysis. Sports Med. 2018, 48, 2143–2165. [Google Scholar] [CrossRef]
- Caldemeyer, L.E.; Brown, S.M.; Mulcahey, M.K. Neuromuscular training for the prevention of ankle sprains in female athletes: A systematic review. Phys Sportsmed. 2020, 48, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Blasimann, A.; Eberle, S.; Scuderi, M.M. Effect of core muscle strengthening exercises (including plank and side plank) on injury rate in male adult soccer players: A systematic review. Sportverletz Sportschaden 2018, 32, 35–46. [Google Scholar] [PubMed]
- Maroto-Izquierdo, S.; García-López, D.; Fernandez-Gonzalo, R.; Moreira, O.C.; González-Gallego, J.; de Paz, J.A. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. J. Sci. Med. Sport 2017, 20, 943–951. [Google Scholar] [CrossRef]
- Hrysomallis, C. Relationship between balance ability, training and sports injury risk. Sports Med. 2007, 37, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Gomes Neto, M.; Conceição, C.S.; de Lima Brasileiro, A.J.A.; de Sousa, C.S.; Carvalho, V.O.; de Jesus, F.L.A. Effects of the FIFA 11 training program on injury prevention and performance in football players: A systematic review and meta-analysis. Clin. Rehabil. 2017, 31, 651–659. [Google Scholar] [CrossRef]
- Girard, O.; Amann, M.; Aughey, R.; Billaut, F.; Bishop, D.J.; Bourdon, P.; Buchheit, M.; Chapman, R.; D´Hooghe, M.; Garvican-Lewis, L.A.; et al. Position statement--altitude training for improving team-sport players′ performance: Current knowledge and unresolved issues. Br. J. Sports Med. 2013, 47, i8–i16. [Google Scholar] [CrossRef]
- Andrade, D.C.; Beltran, A.R.; Labarca-Valenzuela, C.; Manzo-Botarelli, O.; Trujillo, E.; Otero-Farias, P.; Álvarez, C.; Garcia-Hermoso, A.; Toledo, C.; Del Rio, R.; et al. Effects of Plyometric Training on Explosive and Endurance Performance at Sea Level and at High Altitude. Front. Physiology. 2018, 9, 1415. [Google Scholar] [CrossRef]
- Hoff, J.; Helgerud, J. Endurance and strength training for soccer players: Physiological considerations. Sports Med. 2004, 34, 165–180. [Google Scholar] [CrossRef]
- Shephard, R.J. Biology and medicine of soccer: An update. J. Sports Sci. 1999, 17, 757–786. [Google Scholar] [CrossRef]
- Bangsbo, J. Optimal preparation for the World Cup in soccer. Clin. Sports Med. 1998, 17, 697–709. [Google Scholar] [CrossRef]
- Oliver, J.; Armstrong, N.; Williams, C. Changes in jump performance and muscle activity following soccer-specific exercise. J. Sport Sci. 2008, 26, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, M.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O′Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Waffenschmidt, S.; Knelangen, M.; Sieben, W.; Bühn, S.; Pieper, D. Single screening versus conventional double screening for study selection in systematic reviews: A methodological systematic review. BMC Med. Res. Methodol. 2019, 19, 132. [Google Scholar] [CrossRef]
- Brumitt, J.; Mattocks, A.; Engilis, A.; Sikkema, J.; Loew, J. Off-season training habits and BMI, not preseason jump measures, are associated with time-loss injury in female collegiate soccer players. Sports 2020, 15, 8. [Google Scholar] [CrossRef]
Date of the search | April 2017 | May 2019 | September 2021 |
Databases | PubMed | PubMed, WOS (Core Collection), Scopus | PubMed, WOS (Core Collection a), Scopus |
Keywords | “plyometric”, “training” | “ballistic”, “complex”, “cycle”, “explosive”, “force”, “plyometric”, “shortening”, “stretch”, “training”, “velocity” | “ballistic”, “complex”, “cycle”, “explosive”, “force”, “jump”, “plyometric”, “power”, “shortening”, “stretch”, “training”, “velocity” |
Applied database fields used during the search | All | PubMed: all WOS: all Scopus: title, abstract, keywords | PubMed: all b WOS: all b Scopus: title, abstract, keywords b |
Restrictions for the search | None | None | None |
Examples of the search strategy (syntax) | Pubmed: “plyometric exercise” [MeSH Terms] OR (“plyometric” [All Fields] AND “exercise” [All Fields]) or “plyometric exercise” [All Fields] OR (“plyometric” [All Fields] AND “training” [All Fields]) OR “plyometric training” [All Fields] WOS: (All = (plyometric)) and All = (training) Scopus: Title-Abs-Key (plyometric AND training) |
Adult Male | Youth Male | Male Total | Adult Female | Youth Female | Female Total | |
---|---|---|---|---|---|---|
No. of studies | 25 | 52 | 77 | 8 | 3 | 11 |
Sample size (median) per study group | 10 | 13 | 10 | 11 | ||
Age (yrs) | 18–25 § | 9.5–17.8 | 18.3–24.3 | 13.4–16.5 | ||
Body mass (kg) | 60.7–83.1 | 31.0–74.5 | 54.9–61.1 | 50.8–61.5 | ||
Height (cm) | 161–184 | 130–180 | 158–167 | 162–167 | ||
No. of studies that included a randomization procedure | 22 | 51 | 73 | 6 | 1 | 7 |
No. of studies with control groups | 14 | 34 | 48 | 6 | 1 | 7 |
No. of studies describing training interventions * | 18 | 29 | 47 | 6 | 0 | 6 |
No. of studies where the fitness of participants was: | ||||||
High | 10 | 6 | 16 | 1 | 1 | 2 |
Moderate | 12 | 45 | 57 | 6 | 1 | 7 |
Recreational | 3 | 1 | 4 | 1 | 1 | 2 |
No. of studies where players had experience with jump training | 7 | 29 | 4 | 2 | ||
No. of studies with in-season interventions | 15 | 39 | 6 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez-Campillo, R.; Moran, J.; Oliver, J.L.; Pedley, J.S.; Lloyd, R.S.; Granacher, U. Programming Plyometric-Jump Training in Soccer: A Review. Sports 2022, 10, 94. https://doi.org/10.3390/sports10060094
Ramirez-Campillo R, Moran J, Oliver JL, Pedley JS, Lloyd RS, Granacher U. Programming Plyometric-Jump Training in Soccer: A Review. Sports. 2022; 10(6):94. https://doi.org/10.3390/sports10060094
Chicago/Turabian StyleRamirez-Campillo, Rodrigo, Jason Moran, Jon L. Oliver, Jason S. Pedley, Rhodri S. Lloyd, and Urs Granacher. 2022. "Programming Plyometric-Jump Training in Soccer: A Review" Sports 10, no. 6: 94. https://doi.org/10.3390/sports10060094
APA StyleRamirez-Campillo, R., Moran, J., Oliver, J. L., Pedley, J. S., Lloyd, R. S., & Granacher, U. (2022). Programming Plyometric-Jump Training in Soccer: A Review. Sports, 10(6), 94. https://doi.org/10.3390/sports10060094