Acute Effects of Heavy Strength Training on Mechanical, Hemodynamic, Metabolic, and Psychophysiological Parameters in Young Adult Males
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Progressive Loading Test in the Bench Press and Full Squat
2.4. Heavy Bench Press and Full Squat Training
2.5. Hemodynamic and Metabolic Measures
2.6. Mechanical Fatigue and Psychophysiological Measures
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Heavy Bench Press and Full Squat Training Sessions
3.2. Acute Hemodynamic, Metabolic, Mechanical, and Psychophysiological Responses after Sessions
3.3. Comparison between Sessions on Hemodynamic, Metabolic, Mechanical, and Psychophysiological Changes
4. Discussion
4.1. Main Findings
4.2. Acute Effects of Heavy Bench Press and Full Squat on the Number of Repetitions and Time under Tension
4.3. Acute Mechanical Responses
4.4. Acute Hemodynamic and Metabolic Responses
4.5. Acute Psychophysiological Responses
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Shimano, T.; Kraemer, W.J.; Spiering, B.A.; Volek, J.S.; Hatfield, D.L.; Silvestre, R.; Vingren, J.L.; Fragala, M.S.; Maresh, C.M.; Fleck, S.J.; et al. Relationship between the number of repetitions and selected percentages of one repetition maximum in free weight exercises in trained and untrained men. J. Strength Cond. Res. 2006, 20, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J. The Mechanisms of Muscle Hypertrophy and Their Application to Resistance Training. J. Strength Cond. Res. 2010, 24, 2857–2872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratamess, N.A.; Alvar, B.A.; Evetoch, T.K.; Housh, T.J.; Kibler, W.B.; Kraemer, W.J.; Triplett, N.T. Progression Models in Resistance Training for Healthy Adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Adams, K.; Cafarelli, E.; Dudley, G.A.; Dooly, C.; Feigenbaum, M.S.; Fleck, S.J.; Franklin, B.; Fry, A.C.; Hoffman, J.R.; et al. Progression Models in Resistance Training for Healthy Adults. Med. Sci. Sports Exerc. 2002, 34, 364–380. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.M.; Triplett, N.T. Program Design for Resistance Training. In Essentials of Strength Training and Conditioning; Haff, G.G., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2016; pp. 439–470. ISBN 978-1-4925-0162-6. [Google Scholar]
- González-Badillo, J.J.; Yañez-Garcia, J.M.; Mora-Custodio, R.; Rodríguez-Rosell, D. Velocity Loss as a Variable for Monitoring Resistance Exercise. Int. J. Sports Med. 2017, 38, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Richens, B.; Cleather, D.J. The relationship between the number of repetitions performed at given intensities is different in endurance and strength trained athletes. Biol. Sport 2014, 31, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Terzis, G.; Spengos, K.; Manta, P.; Sarris, N.; Georgiadis, G. Fiber Type Composition and Capillary Density in Relation to Submaximal Number of Repetitions in Resistance Exercise. J. Strength Cond. Res. 2008, 22, 845–850. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Yanez-Garcia, J.M.; Torres-Torrelo, J.; Mora-Custodio, R.; Marques, M.C.; González-Badillo, J.J. Effort Index as a Novel Variable for Monitoring the Level of Effort During Resistance Exercises. J. Strength Cond. Res. 2018, 32, 2139–2153. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Villalba-Fernández, A.; Cornejo-Daza, P.J.; Sánchez-Valdepeñas, J.; González-Badillo, J.J. Time Course of Recovery Following Resistance Exercise with Different Loading Magnitudes and Velocity Loss in the Set. Sports 2019, 7, 59. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; González-Badillo, J. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Ribas-Serna, J.; López-López, C.; Mora-Custodio, R.; Yáñez-García, J.M.; González-Badillo, J.J. Acute and delayed response to resistance exercise leading or not leading to muscle failure. Clin. Physiol. Funct. Imaging 2017, 37, 630–639. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Aagaard, P.; Sánchez-Medina, L.; Ribas-Serna, J.; Mora-Custodio, R.; Otero-Esquina, C.; Yáñez-García, J.M.; González-Badillo, J.J. Time Course of Recovery From Resistance Exercise With Different Set Configurations. J. Strength Cond. Res. 2018, 34, 2867–2876. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Ribas, J.; López-López, C.; Mora-Custodio, R.; Yañez-García, J.M.; Pareja-Blanco, F. Short-term Recovery Following Resistance Exercise Leading or not to Failure. Int. J. Sports Med. 2016, 37, 295–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morán-Navarro, R.; Pérez, C.E.; Mora-Rodríguez, R.; de la Cruz-Sánchez, E.; González-Badillo, J.J.; Sánchez-Medina, L.; Pallarés, J.G. Time course of recovery following resistance training leading or not to failure. Eur. J. Appl. Physiol. 2017, 117, 2387–2399. [Google Scholar] [CrossRef] [PubMed]
- Burd, N.A.; Andrews, R.J.; West, D.W.D.; Little, J.P.; Cochran, A.J.R.; Hector, A.J.; Cashaback, J.G.A.; Gibala, M.J.; Potvin, J.R.; Baker, S.K.; et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J. Physiol. 2012, 590, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Krzysztofik, M.; Wilk, M.; Wojdała, G.; Gołaś, A. Maximizing Muscle Hypertrophy: A Systematic Review of Advanced Resistance Training Techniques and Methods. Int. J. Environ. Res. Public Health 2019, 16, 4897. [Google Scholar] [CrossRef] [Green Version]
- Duncan, M.J.; Birch, S.L.; Oxford, S.W. The Effect of Exercise Intensity on Postresistance Exercise Hypotension in Trained Men. J. Strength Cond. Res. 2014, 28, 1706–1713. [Google Scholar] [CrossRef] [Green Version]
- Lagally, K.M.; Robertson, R.J. Construct Validity if the OMNI Resistance Exercise Scale. J. Strength Cond. Res. 2006, 20, 252–256. [Google Scholar] [CrossRef]
- Rinaldo, N.; Toselli, S.; Gualdi-Russo, E.; Zedda, N.; Zaccagni, L. Effects of Anthropometric Growth and Basketball Experience on Physical Performance in Pre-Adolescent Male Players. Int. J. Environ. Res. Public Health 2020, 17, 2196. [Google Scholar] [CrossRef]
- Courel-Ibáñez, J.; Martínez-Cava, A.; Morán-Navarro, R.; Escribano-Peñas, P.; Chavarren-Cabrero, J.; González-Badillo, J.J.; Pallarés, J.G. Reproducibility and Repeatability of Five Different Technologies for Bar Velocity Measurement in Resistance Training. Ann. Biomed. Eng. 2019, 47, 1523–1538. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, J.G.; Sánchez-Medina, L.; Pérez, C.E.; De La Cruz-Sánchez, E.; Mora-Rodriguez, R. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J. Sports Sci. 2014, 32, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Medina, L.; Pérez, C.E.; González-Badillo, J.J. Importance of the Propulsive Phase in Strength Assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Medina, L.; Pallarés, J.G.; Pérez, C.E.; Morán-Navarro, R.; González-Badillo, J.J. Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. Sports Med. Int. Open 2017, 1, E80–E88. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement Velocity as a Measure of Loading Intensity in Resistance Training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Ribeiro, B.; Pereira, A.; Neves, P.P.; Sousa, A.C.; Ferraz, R.; Marques, M.C.; Marinho, D.A.; Neiva, H.P. The role of specific warm-up during bench press and squat exercises: A novel approach. Int. J. Environ. Res. Public Health 2020, 17, 6882. [Google Scholar] [CrossRef]
- Skovdal Rathleff, M.; Thorborg, K.; Bandholm, T. Concentric and Eccentric Time-Under-Tension during Strengthening Exercises: Validity and Reliability of Stretch-Sensor Recordings from an Elastic Exercise-Band. PLoS ONE 2013, 8, e68172. [Google Scholar] [CrossRef] [Green Version]
- Marques, D.L.; Neiva, H.P.; Faíl, L.B.; Gil, M.H.; Marques, M.C. Acute effects of low and high-volume resistance training on hemodynamic, metabolic and neuromuscular parameters in older adults. Exp. Gerontol. 2019, 125, 110685. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Willardson, J.M.; Burkett, L.N. The effect of rest interval length on the sustainability of squat and bench press repetitions. J. Strength Cond. Res. 2006, 20, 400–403. [Google Scholar] [CrossRef]
- Richmond, S.R.; Godard, M.P. The effects of varied rest periods between sets to failure using the bench press in recreationally trained men. J. Strength Cond. Res. 2004, 18, 846–849. [Google Scholar] [CrossRef] [PubMed]
- Willardson, J.M.; Burkett, L.N. The Effect of Rest Interval Length on Bench Press Performance With Heavy vs. Light Loads. J. Strength Cond. Res. 2006, 20, 396. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Yáñez-García, J.M.; Mora-Custodio, R.; Torres-Torrelo, J.; Ribas-Serna, J.; González-Badillo, J.J. Role of the Effort Index in Predicting Neuromuscular Fatigue During Resistance Exercises. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Moreira, O.C.; Faraci, L.L.; de Matos, D.G.; Mazini Filho, M.L.; da Silva, S.F.; Aidar, F.J.; Hickner, R.C.; de Oliveira, C.E.P. Cardiovascular Responses to Unilateral, Bilateral, and Alternating Limb Resistance Exercise Performed Using Different Body Segments. J. Strength Cond. Res. 2017, 31, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Rezk, C.C.; Marrache, R.C.B.; Tinucci, T.; Mion, D.; Forjaz, C.L.M. Post-resistance exercise hypotension, hemodynamics, and heart rate variability: Influence of exercise intensity. Eur. J. Appl. Physiol. 2006, 98, 105–112. [Google Scholar] [CrossRef]
- de Tarso Veras Farinatti, P.; Nakamura, F.Y.; Polito, M.D. Influence of recovery posture on blood pressure and heart rate after resistance exercises in normotensive subjects. J. Strength Cond. Res. 2009, 23, 2487–2492. [Google Scholar] [CrossRef]
Variable | Mean ± SD | 95% Confidence Interval |
---|---|---|
Age | 23.3 ± 1.5 | 22.5–24.1 |
Body mass (kg) | 80.5 ± 8.7 | 75.8–85.2 |
Standing height (cm) | 175.9 ± 3.4 | 174.1–177.8 |
Body Mass Index (kg/m2) | 26.0 ± 2.7 | 24.6–27.4 |
Fat Mass (%) | 18.8 ± 5.0 | 16.1–21.6 |
Muscle Mass (kg) | 65.0 ± 4.1 | 62.7–67.2 |
Basal Metabolic Rate (calories) | 1932.3 ± 132.1 | 1860.5–2004.1 |
Systolic Blood Pressure (mmHg) | 132.4 ± 9.4 | 127.3–137.5 |
Diastolic Blood Pressure (mmHg) | 73.2 ± 10.0 | 67.8–78.7 |
Heart Rate Rest (bpm) | 69.1 ± 12.7 | 62.2–76.0 |
Strength Training Experience (years) | 1.4 ± 1.4 | 0.7–2.2 |
1RM Bench Press (kg) | 75.7 ± 9.5 | 70.5–80.8 |
Relative 1RM Bench Press (kg/body mass) | 0.95 ± 0.17 | 0.86–1.05 |
1RM Full Squat (kg) | 87.9 ± 16.4 | 79.0–96.8 |
Relative 1RM Full Squat (kg/body mass) | 1.11 ± 0.26 | 0.97–1.25 |
Set 1 | Set 2 | Set 3 | All * | Set 1 vs. Set 2 | Set 1 vs. Set 3 | Set 2 vs. Set 3 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Acute Variable | Session | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p-Value | g | p-Value | g | p-Value | g |
Repetitions | BP | 5.9 ± 1.9 | 5.8 ± 1.8 | 4.6 ± 1.9 | 5.5 ± 1.7 | 1.00 | −0.04 | 0.03 | −0.65 | 0.08 | −0.63 |
FS | 7.3 ± 1.0 | 6.2 ± 1.7 | 6.2 ± 1.9 | 6.6 ± 1.2 | 0.01 | −0.71 | 0.09 | −0.67 | 1.00 | 0.00 | |
BP vs. FS | p = 0.03 | p = 0.59 | p = 0.04 | p = 0.60 | |||||||
g = −0.88 | g = −0.21 | g = −0.84 | g = −0.75 | ||||||||
TUT (s) | BP | 16.4 ± 5.0 | 16.2 ± 5.2 | 12.9 ± 4.2 | 15.2 ± 4.4 | 1.00 | −0.03 | 0.02 | −0.69 | 0.08 | −0.63 |
FS | 17.6 ± 5.0 | 15.3 ± 4.1 | 15.6 ± 4.6 | 16.2 ± 3.7 | 0.09 | −0.46 | 0.30 | −0.39 | 1.00 | 0.05 | |
BP vs. FS | p = 0.56 | p = 0.64 | p = 0.14 | p = 0.54 | |||||||
g = −0.23 | g = 0.18 | g = −0.57 | g = −0.23 | ||||||||
MPVfast (m·s−1) | BP | 0.47 ± 0.03 | 0.46 ± 0.04 | 0.42 ± 0.07 | 0.45 ± 0.03 | 1.00 | −0.24 | 0.03 | −1.00 | 0.04 | −0.75 |
FS | 0.68 ± 0.03 | 0.63 ± 0.08 | 0.60 ± 0.08 | 0.64 ± 0.05 | 0.01 | −0.85 | <0.001 | −1.34 | 0.24 | −0.38 | |
BP vs. FS | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |||||||
g = −7.54 | g = −2.62 | g = −2.45 | g = −4.16 | ||||||||
MPVslow (m·s−1) | BP | 0.22 ± 0.06 | 0.21 ± 0.07 | 0.23 ± 0.05 | 0.22 ± 0.05 | 1.00 | −0.12 | 1.00 | 0.28 | 0.13 | 0.40 |
FS | 0.45 ± 0.09 | 0.44 ± 0.08 | 0.42 ± 0.09 | 0.44 ± 0.08 | 1.00 | −0.06 | 0.60 | −0.28 | 0.28 | −0.22 | |
BP vs. FS | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |||||||
g = −2.97 | g = −3.01 | g = −2.37 | g = −3.12 | ||||||||
MPVavg (m·s−1) | BP | 0.35 ± 0.03 | 0.34 ± 0.04 | 0.33 ± 0.06 | 0.34 ± 0.04 | 1.00 | −0.27 | 0.44 | −0.43 | 0.93 | −0.17 |
FS | 0.55 ± 0.06 | 0.54 ± 0.07 | 0.51 ± 0.07 | 0.53 ± 0.06 | 0.49 | −0.24 | 0.02 | −0.60 | 0.03 | −0.32 | |
BP vs. FS | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |||||||
g = −4.20 | g = −3.16 | g = −2.79 | g = −3.62 | ||||||||
Velocity loss (%) | BP | 53.9 ± 13.6 | 54.8 ± 13.9 | 43.6 ± 9.7 | 50.8 ± 10.0 | 1.00 | 0.06 | 0.06 | −0.82 | 0.01 | −0.88 |
FS | 34.0 ± 11.2 | 29.1 ± 10.6 | 28.9 ± 14.1 | 30.7 ± 9.5 | 0.38 | −0.42 | 0.69 | −0.37 | 1.00 | −0.01 | |
BP vs. FS | p < 0.001 | p < 0.001 | p < 0.01 | p < 0.001 | |||||||
g = 1.55 | g = 2.01 | g = 1.17 | g = 1.99 |
Session | Variable | Pre-Training | Post-Training | Mean Difference | p-Value | g | %Δ (90% CI) |
---|---|---|---|---|---|---|---|
BP | SBP (mmHg) | 132.1 ± 10.3 | 132.4 ± 8.0 | 0.3 ± 10.3 | 0.92 | 0.03 | 0.6 (−3.0; 4.3) |
DBP (mmHg) | 70.15 ± 9.2 | 64.0 ± 9.4 | −6.2 ± 10.2 | 0.05 | −0.64 | −8.0 (−14.1; −1.9) | |
HR (bpm) | 76.3 ± 14.5 | 134.92 ± 18.15 | 58.6 ± 18.9 | <0.001 | 3.46 | 81.8 (65.6; 98.1) | |
[La−] (mmol/L) | 1.4 ± 0.3 | 5.7 ± 1.7 | 4.3 ± 1.6 | <0.001 | 3.38 | 322.8 (275.0; 370.5) | |
V1Load (m·s−1) | 1.01 ± 0.02 | 0.93 ± 0.08 | −0.08 ± 0.08 | <0.01 | −1.30 | −7.6 (−11.0; −4.1) | |
OMNI-RES * | 8.4 ± 0.9 | 9.15 ± 1.0 | 0.8 ± 0.8 | <0.01 | 0.80 | 9.6 (4.6; 14.5) | |
FS | SBP (mmHg) | 133.5 ± 8.0 | 157.3 ± 16.8 | 23.8 ± 17.8 | <0.001 | 1.76 | 18.2 (11.8; 24.6) |
DBP (mmHg) | 70.9 ± 8.8 | 79.4 ± 8.3 | 8.5 ± 6.9 | <0.001 | 0.96 | 12.6 (7.6; 17.6) | |
HR (bpm) | 73.2 ± 12.9 | 159.2 ± 10.6 | 86.1 ± 16.6 | <0.001 | 7.06 | 125.1 (102.6; 147.6) | |
[La−] (mmol/L) | 1.4 ± 0.3 | 7.2 ± 2.5 | 5.8 ± 2.4 | <0.001 | 3.13 | 420.1 (344.1; 496.1) | |
CMJ (cm) | 31.1 ± 3.7 | 29.2 ± 3.8 | −1.9 ± 1.5 | <0.001 | −0.48 | −6.0 (−8.2; −3.8) | |
OMNI-RES * | 8.5 ± 0.7 | 9.5 ± 0.7 | 0.9 ± 0.8 | <0.001 | 1.35 | 11.2 (6.9; 15.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, J.; Esteves, D.; Ferraz, R.; Marques, D.L.; Branquinho, L.; Marinho, D.A.; Marques, M.C.; Neiva, H.P. Acute Effects of Heavy Strength Training on Mechanical, Hemodynamic, Metabolic, and Psychophysiological Parameters in Young Adult Males. Sports 2022, 10, 195. https://doi.org/10.3390/sports10120195
Andrade J, Esteves D, Ferraz R, Marques DL, Branquinho L, Marinho DA, Marques MC, Neiva HP. Acute Effects of Heavy Strength Training on Mechanical, Hemodynamic, Metabolic, and Psychophysiological Parameters in Young Adult Males. Sports. 2022; 10(12):195. https://doi.org/10.3390/sports10120195
Chicago/Turabian StyleAndrade, João, Dulce Esteves, Ricardo Ferraz, Diogo Luís Marques, Luís Branquinho, Daniel Almeida Marinho, Mário Cardoso Marques, and Henrique Pereira Neiva. 2022. "Acute Effects of Heavy Strength Training on Mechanical, Hemodynamic, Metabolic, and Psychophysiological Parameters in Young Adult Males" Sports 10, no. 12: 195. https://doi.org/10.3390/sports10120195
APA StyleAndrade, J., Esteves, D., Ferraz, R., Marques, D. L., Branquinho, L., Marinho, D. A., Marques, M. C., & Neiva, H. P. (2022). Acute Effects of Heavy Strength Training on Mechanical, Hemodynamic, Metabolic, and Psychophysiological Parameters in Young Adult Males. Sports, 10(12), 195. https://doi.org/10.3390/sports10120195