Elevated Alcohol Consumption and Chronic Inflammation Predict Cardiovascular Risk Among Black Americans: Examination of a Dual-Risk Model Using Epigenetic Risk Markers
Abstract
1. Introduction
- There will be concurrent associations such that elevated Alcohol T-scores (ATS) and elevated Epigenetic Inflammation Scores (EIS) will be associated with variance in cardiac risk at each time point.
- There will be significant prediction of change in cardiac risk such that:
- The ATS and EIS will significantly predict change in cardiac risk three years later even after controlling demographics and baseline cardiac risk.
- The predictive association for the ATS will be robust to controls for self-reported binge drinking at W5.
- There will be significant covariation of slopes for cardiac risk with the ATS and the EIS such that slope of change in EAC and EIS will covary with a slope of change in cardiac risk three years later.
2. Materials and Methods
2.1. Sample
2.2. Measures
2.3. Analytic Strategy
3. Results
3.1. Descriptive Findings (Hypothesis 1)
3.2. Predictive Associations (Hypothesis 2)
3.3. Covariation of Slopes of Change (Hypothesis 3)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosamond, W.D.; Chambless, L.E.; Heiss, G.; Mosley, T.H.; Coresh, J.; Whitsel, E.; Wagenknecht, L.; Ni, H.; Folsom, A.R. Twenty-two–year trends in incidence of myocardial infarction, coronary heart disease mortality, and case fatality in 4 US communities, 1987–2008. Circulation 2012, 125, 1848–1857. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; et al. Heart disease and stroke statistics–2017 update: A report from the American Heart Association. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef]
- Kyalwazi, A.N.; Loccoh, E.C.; Brewer, L.C.; Ofili, E.O.; Xu, J.; Song, Y.; Joynt Maddox, K.E.; Yeh, R.W.; Wadhera, R.K.J.C. Disparities in cardiovascular mortality between Black and White adults in the United States, 1999 to 2019. Circulation 2022, 146, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Carnethon, M.R.; Pu, J.; Howard, G.; Albert, M.A.; Anderson, C.A.; Bertoni, A.G.; Mujahid, M.S.; Palaniappan, L.; Taylor Jr, H.A.; Willis, M. Cardiovascular health in African Americans: A scientific statement from the American Heart Association. Circulation 2017, 136, e393–e423. [Google Scholar] [CrossRef] [PubMed]
- Gilligan, C.; Anderson, K.G.; Ladd, B.O.; Yong, Y.M.; David, M. Inaccuracies in survey reporting of alcohol consumption. BMC Public Health 2019, 19, 1639. [Google Scholar] [CrossRef] [PubMed]
- Grüner Nielsen, D.; Andersen, K.; Søgaard Nielsen, A.; Juhl, C.; Mellentin, A. Consistency between self-reported alcohol consumption and biological markers among patients with alcohol use disorder—A systematic review. Neurosci. Biobehav. Rev. 2021, 124, 370–385. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. ARDI Methods. Available online: https://www.cdc.gov/alcohol/ardi/methods.html (accessed on 25 June 2024).
- Nelson, D.E.; Naimi, T.S.; Brewer, R.D.; Roeber, J. US state alcohol sales compared to survey data, 1993–2006. Addiction 2010, 105, 1589–1596. [Google Scholar] [CrossRef]
- Addison, L.; Addison, C.; Jenkins, B.C.; Buxbaum, S.; White, M.; Wilson, G.; Antoine-LaVigne, D.; Payton, M. The association between alcohol consumption and the selected heart disease among African Americans: The Jackson Heart Study (JHS). Clin. Med. Res. 2018, 4, 22–29. [Google Scholar] [CrossRef]
- Zapolski, T.C.; Pedersen, S.L.; McCarthy, D.M.; Smith, G.T. Less drinking, yet more problems: Understanding African American drinking and related problems. Psychol. Bull. 2014, 140, 188–223. [Google Scholar] [CrossRef]
- Beach, S.R.; Carter, S.E.; Ong, M.L.; Lavner, J.A.; Kogan, S.M.; Ehrlich, K.B.; Lei, M.-K.; Simons, R.L.; Adesogan, O.; Gibbons, F.X. Childhood exposure to danger increases Black youths’ alcohol consumption, accelerated aging, and cardiac risk as young adults: A test of the incubation hypothesis. Dev. Psychopathol. 2025; ahead of print. [Google Scholar] [CrossRef]
- Buu, A.; Wang, W.; Schroder, S.A.; Kalaida, N.L.; Puttler, L.I.; Zucker, R.A. Developmental emergence of alcohol use disorder symptoms and their potential as early indicators for progression to alcohol dependence in a high risk sample: A longitudinal study from childhood to early adulthood. J. Abnorm. Psychol. 2012, 121, 897–908. [Google Scholar] [CrossRef]
- Mason, W.A.; Toumbourou, J.W.; Herrenkohl, T.I.; Hemphill, S.A.; Catalano, R.F.; Patton, G.C. Early age alcohol use and later alcohol problems in adolescents: Individual and peer mediators in a bi-national study. Psychol. Addict. Behav. 2011, 25, 625–633. [Google Scholar] [CrossRef]
- Ohannessian, C.M.; Finan, L.J.; Schulz, J.; Hesselbrock, V. A long-term longitudinal examination of the effect of early onset of alcohol and drug use on later alcohol abuse. Subst. Abus. 2015, 36, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.K.; Ranjan, P.; Dutta, R.K.; Verma, S.K. Management of inflammation in cardiovascular diseases. Pharmacol. Res. 2021, 173, 105912. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation 2002, 105, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Theroux, P. Pathophysiology of coronary artery disease. Circulation 2005, 111, 3481–3488. [Google Scholar] [CrossRef] [PubMed]
- Geronimus, A.T.; Hicken, M.; Keene, D.; Bound, J. “Weathering” and age patterns of allostatic load scores among blacks and whites in the United States. Am. J. Public Health 2006, 96, 826–833. [Google Scholar] [CrossRef]
- Paalani, M.; Lee, J.W.; Haddad, E.; Tonstad, S. Determinants of inflammatory markers in a bi-ethnic population. Ethn. Dis. 2011, 21, 142–149. [Google Scholar] [CrossRef]
- Ridker, P.M.; Cushman, M.; Stampfer, M.J.; Tracy, R.P.; Hennekens, C.H.J.C. Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation 1998, 97, 425–428. [Google Scholar] [CrossRef]
- Danesh, J.; Wheeler, J.G.; Hirschfield, G.M.; Eda, S.; Eiriksdottir, G.; Rumley, A.; Lowe, G.D.; Pepys, M.B.; Gudnason, V. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 2004, 350, 1387–1397. [Google Scholar] [CrossRef]
- Pradhan, A.D.; Manson, J.E.; Rossouw, J.E.; Siscovick, D.S.; Mouton, C.P.; Rifai, N.; Wallace, R.B.; Jackson, R.D.; Pettinger, M.B.; Ridker, P.M. Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: Prospective analysis from the Women’s Health Initiative observational study. JAMA 2002, 288, 980–987. [Google Scholar] [CrossRef]
- Ridker, P.M.; Buring, J.E.; Shih, J.; Matias, M.; Hennekens, C.H. Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation 1998, 98, 731–733. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Cushman, M.; Stampfer, M.J.; Tracy, R.P.; Hennekens, C.H. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 1997, 336, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Hennekens, C.H.; Buring, J.E.; Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 2000, 342, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Rifai, N.; Clearfield, M.; Downs, J.R.; Weis, S.E.; Miles, J.S.; Gotto Jr, A.M. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N. Engl. J. Med. 2001, 344, 1959–1965. [Google Scholar] [CrossRef]
- Rost, N.S.; Wolf, P.A.; Kase, C.S.; Kelly-Hayes, M.; Silbershatz, H.; Massaro, J.M.; D’Agostino, R.B.; Franzblau, C.; Wilson, P.W. Plasma concentration of C-reactive protein and risk of ischemic stroke and transient ischemic attack: The Framingham study. Stroke 2001, 32, 2575–2579. [Google Scholar] [CrossRef]
- Ridker, P.M. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003, 107, 363–369. [Google Scholar] [CrossRef]
- Tang, X.-F.; Yuan, D.-S.; Zhu, P.; Xu, N.; Yao, Y.; Wang, P.-Z.; Chen, Y.; Gao, L.-J.; Song, L.; Yang, Y.-J. Baseline high-sensitivity C-reactive protein and glycosylated hemoglobinA1c predict adverse outcomes in patients with chronic coronary syndromes undergoing percutaneous coronary intervention. Heliyon 2024, 10, e23900. [Google Scholar] [CrossRef]
- Emerging Risk Factors Collaboration. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis. Lancet 2010, 375, 132–140. [Google Scholar] [CrossRef]
- Buckley, D.I.; Fu, R.; Freeman, M.; Rogers, K.; Helfand, M. C-reactive protein as a risk factor for coronary heart disease: A systematic review and meta-analyses for the US Preventive Services Task Force. Ann. Intern. Med. 2009, 151, 483–495. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Alcohol and Health 2018. Available online: https://apps.who.int/iris/bitstream/handle/10665/274603/9789241565639-eng.pdf (accessed on 24 February 2024).
- Roerecke, M.; Rehm, J. Chronic heavy drinking and ischaemic heart disease: A systematic review and meta-analysis. Open Heart 2014, 1, e000135. [Google Scholar] [CrossRef] [PubMed]
- Roerecke, M.; Rehm, J. Alcohol consumption, drinking patterns, and ischemic heart disease: A narrative review of meta-analyses and a systematic review and meta-analysis of the impact of heavy drinking occasions on risk for moderate drinkers. BMC Med. 2014, 12, 182. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.M.; Kaptoge, S.; Butterworth, A.S.; Willeit, P.; Warnakula, S.; Bolton, T.; Paige, E.; Paul, D.S.; Sweeting, M.; Burgess, S. Risk thresholds for alcohol consumption: Combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 2018, 391, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Millwood, I.Y.; Walters, R.G.; Mei, X.W.; Guo, Y.; Yang, L.; Bian, Z.; Bennett, D.A.; Chen, Y.; Dong, C.; Hu, R. Conventional and genetic evidence on alcohol and vascular disease aetiology: A prospective study of 500 000 men and women in China. Lancet 2019, 393, 1831–1842. [Google Scholar] [CrossRef]
- Bell, S.; Daskalopoulou, M.; Rapsomaniki, E.; George, J.; Britton, A.; Bobak, M.; Casas, J.P.; Dale, C.E.; Denaxas, S.; Shah, A.D. Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: Population based cohort study using linked health records. BMJ 2017, 356, j909. [Google Scholar] [CrossRef]
- Lankester, J.; Zanetti, D.; Ingelsson, E.; Assimes, T.L. Alcohol use and cardiometabolic risk in the UK Biobank: A Mendelian randomization study. PLoS ONE 2021, 16, e0255801. [Google Scholar] [CrossRef]
- Ransome, Y.; Slopen, N.; Karlsson, O.; Williams, D.R. Elevated inflammation in association with alcohol abuse among Blacks but not Whites: Results from the MIDUS biomarker study. J. Behav. Med. 2018, 41, 374–384. [Google Scholar] [CrossRef]
- Bogaty, P.; Dagenais, G.R.; Joseph, L.; Boyer, L.; Leblanc, A.; Belisle, P.; Brophy, J.M. Time variability of C-reactive protein: Implications for clinical risk stratification. PLoS ONE 2013, 8, e60759. [Google Scholar] [CrossRef]
- Wielscher, M.; Mandaviya, P.R.; Kuehnel, B.; Joehanes, R.; Mustafa, R.; Robinson, O.; Zhang, Y.; Bodinier, B.; Walton, E.; Mishra, P.P. DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases. Nat. Commun. 2022, 13, 2408. [Google Scholar] [CrossRef]
- Ligthart, S.; Marzi, C.; Aslibekyan, S.; Mendelson, M.M.; Conneely, K.N.; Tanaka, T.; Colicino, E.; Waite, L.L.; Joehanes, R.; Guan, W. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 2016, 17, 255. [Google Scholar] [CrossRef]
- Stevenson, A.J.; McCartney, D.L.; Hillary, R.F.; Campbell, A.; Morris, S.W.; Bermingham, M.L.; Walker, R.M.; Evans, K.L.; Boutin, T.S.; Hayward, C. Characterisation of an inflammation-related epigenetic score and its association with cognitive ability. Clin. Epigenetics 2020, 12, 113. [Google Scholar] [CrossRef]
- Verschoor, C.P.; Vlasschaert, C.; Rauh, M.J.; Paré, G. A DNA methylation based measure outperforms circulating CRP as a marker of chronic inflammation and partly reflects the monocytic response to long-term inflammatory exposure: A Canadian Longitudinal Study on Aging analysis. Aging Cell 2023, 22, e13863. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A.M.; Philibert, R.A.; Gibbons, F.X.; Simons, R.L.; Long, J. Accuracy and utility of an epigenetic biomarker for smoking in populations with varying rates of false self-report. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2017, 174, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Beach, S.R.H.; Ong, M.L.; Gibbons, F.X.; Gerrard, M.; Lei, M.-K.; Dawes, K.; Philibert, R.A. Epigenetic and proteomic biomarkers of elevated alcohol use predict epigenetic aging and cell-type variation better than self-report. Genes 2022, 13, 1888. [Google Scholar] [CrossRef] [PubMed]
- Leppänen, J.M.; Nelson, C.A. Tuning the developing brain to social signals of emotions. Nat. Rev. Neurosci. 2009, 10, 37–47. [Google Scholar] [CrossRef]
- Ryan, J.; Wrigglesworth, J.; Loong, J.; Fransquet, P.D.; Woods, R.L. A systematic review and meta-analysis of environmental, lifestyle, and health factors associated with DNA methylation age. J. Gerontol. Ser. A 2020, 75, 481–494. [Google Scholar] [CrossRef]
- Northcote, J.; Livingston, M. Accuracy of self-reported drinking: Observational verification of ‘last occasion’drink estimates of young adults. Alcohol Alcohol. 2011, 46, 709–713. [Google Scholar] [CrossRef]
- Dawes, K.; Sampson, L.; Reimer, R.; Miller, S.; Philibert, R.; Andersen, A. Epigenetic analyses of alcohol consumption in combustible and non-combustible nicotine product users. Epigenomes 2021, 5, 18. [Google Scholar] [CrossRef]
- Miller, S.; A Mills, J.; Long, J.; Philibert, R. A comparison of the predictive power of DNA methylation with carbohydrate deficient transferrin for heavy alcohol consumption. Epigenetics 2021, 16, 969–979. [Google Scholar] [CrossRef]
- Beach, S.R.H.; Gibbons, F.X.; Carter, S.E.; Ong, M.L.; Lavner, J.A.; Lei, M.K.; Simons, R.L.; Gerrard, M.; Philibert, R.A. Childhood adversity predicts black young adults’ DNA methylation-based accelerated aging: A dual pathway model. Dev. Psychopathol. 2022, 34, 689–703. [Google Scholar] [CrossRef] [PubMed]
- Philibert, R.; Moody, J.; Philibert, W.; Dogan, M.V.; Hoffman, E.A. The reversion of the epigenetic signature of coronary heart disease in response to smoking cessation. Genes 2023, 14, 1233. [Google Scholar] [CrossRef]
- Philibert, R.; Dogan, T.K.; Knight, S.; Ahmad, F.; Lau, S.; Miles, G.; Knowlton, K.U.; Dogan, M.V. Validation of an integrated genetic—Epigenetic test for the assessment of coronary heart disease. J. Am. Heart Assoc. 2023, 12, e030934. [Google Scholar] [CrossRef] [PubMed]
- Barton, A.W.; Beach, S.R.; Wells, A.C.; Ingels, J.B.; Corso, P.S.; Sperr, M.C.; Anderson, T.N.; Brody, G.H. The protecting strong African American families program: A randomized controlled trial with rural African American couples. Prev. Sci. 2018, 19, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.; Bilke, S. An Introduction to the Methylumi Package. Bioconductor Package. 2010. Available online: https://www.bioconductor.org/packages/devel/bioc/manuals/wateRmelon/man/wateRmelon.pdf (accessed on 3 October 2025).
- Wong, C.C.; Pidsley, R.; Schalkwyk, L.C. The wateRmelon Package; Bioconductor: Seattle, WA, USA, 2013. [Google Scholar]
- Dogan, M.V.; Xiang, J.; Beach, S.R.; Cutrona, C.; Gibbons, F.X.; Simons, R.L.; Brody, G.H.; Stapleton, J.T.; Philibert, R.A. Ethnicity and smoking-associated DNA methylation changes at HIV co-receptor GPR15. Front. Psychiatry 2015, 6, 132. [Google Scholar] [CrossRef]
- Philibert, R.; Miller, S.; Noel, A.; Dawes, K.; Papworth, E.; Black, D.W.; Beach, S.R.H.; Long, J.D.; Mills, J.A.; Dogan, M. A four marker digital PCR toolkit for detecting Heavy alcohol consumption and the effectiveness of its treatment. J. Insur. Med. 2019, 48, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Zhang, X.; Huang, C.-C.; Jafari, N.; Kibbe, W.A.; Hou, L.; Lin, S.M. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinform. 2010, 11, 587. [Google Scholar] [CrossRef]
- Domínguez, F.; Adler, E.; García-Pavía, P. Alcoholic cardiomyopathy: An update. Eur. Heart J. 2024, 45, 2294–2305. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.-Y.; Brown, R.A.; Ren, J. Ethanol and acetaldehyde in alcoholic cardiomyopathy: From bad to ugly en route to oxidative stress. Alcohol 2004, 32, 175–186. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, B.; Alexander, D.; Steffen, L.M.; Nettleton, J.A.; Boerwinkle, E. Metabolomic patterns and alcohol consumption in African Americans in the Atherosclerosis Risk in Communities Study. Am. J. Clin. Nutr. 2014, 99, 1470–1478. [Google Scholar] [CrossRef]
- Lv, J.; Pan, C.; Cai, Y.; Han, X.; Wang, C.; Ma, J.; Pang, J.; Xu, F.; Wu, S.; Kou, T. Plasma metabolomics reveals the shared and distinct metabolic disturbances associated with cardiovascular events in coronary artery disease. Nat. Commun. 2024, 15, 5729. [Google Scholar] [CrossRef]
- Aragam, K.G.; Jiang, T.; Goel, A.; Kanoni, S.; Wolford, B.N.; Atri, D.S.; Weeks, E.M.; Wang, M.; Hindy, G.; Zhou, W. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat. Genet. 2022, 54, 1803–1815. [Google Scholar] [CrossRef]
- Walters, R.K.; Polimanti, R.; Johnson, E.C.; McClintick, J.N.; Adams, M.J.; Adkins, A.E.; Aliev, F.; Bacanu, S.-A.; Batzler, A.; Bertelsen, S. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat. Neurosci. 2018, 21, 1656–1669. [Google Scholar] [CrossRef]
- Sanchez-Roige, S.; Palmer, A.A.; Fontanillas, P.; Elson, S.L.; The 23andMe Research Team, the Substance Use Disorder Working Group of the Psychiatric Genomics Consortium; Adams, M.J.; Howard, D.M.; Edenberg, H.J.; Davies, G.; Crist, R.C. Genome-wide association study meta-analysis of the alcohol use disorders identification test (AUDIT) in two population-based cohorts. Am. J. Psychiatry 2019, 176, 107–118. [Google Scholar] [CrossRef]
Cardiac Risk W6 | ||||
---|---|---|---|---|
Predictor Variables | Model 1 | Model 2 | Model 3 | Model 4 |
Age | −0.141 ** | −0.108 * | −0.103 | −0.103 |
Sex | 0.139 ** | 0.112 * | 0.116 * | 0.116 * |
Cardiac Risk W5 | 0.455 ** | 0.368 ** | 0.362 ** | 0.362 ** |
ATSW5 | −0.193 ** | −0.206 * | −0.206 ** | |
EISW5 | −0.042 | −0.040 | −0.040 | |
BingeW5 | 0.047 | 0.047 | ||
EISW5* Age | 0.001 | |||
R2 | 0.277 | 0.312 | 0.314 | 0.314 |
ΔR2 | 0.035 | 0.002 | 0.000 |
Cardiac Risk | ||
---|---|---|
Predictor variables | Model 1 | Model 2 |
Age_40 | −0.0004 ** | 0.0001 |
Sex | 0.0050 * | 0.0106 ** |
Cardiac Risk | 0.8087 ** | 0.6098 ** |
ATS | −0.0004 | |
EIS | −0.0145 ** | |
R2 | 0.551 | 0.653 |
ΔR2 | 0.102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beach, S.R.H.; Philibert, R.A.; Ong, M.-L.; Lei, M.-K.; Ye, K. Elevated Alcohol Consumption and Chronic Inflammation Predict Cardiovascular Risk Among Black Americans: Examination of a Dual-Risk Model Using Epigenetic Risk Markers. Epigenomes 2025, 9, 40. https://doi.org/10.3390/epigenomes9040040
Beach SRH, Philibert RA, Ong M-L, Lei M-K, Ye K. Elevated Alcohol Consumption and Chronic Inflammation Predict Cardiovascular Risk Among Black Americans: Examination of a Dual-Risk Model Using Epigenetic Risk Markers. Epigenomes. 2025; 9(4):40. https://doi.org/10.3390/epigenomes9040040
Chicago/Turabian StyleBeach, Steven R. H., Robert A. Philibert, Mei-Ling Ong, Man-Kit Lei, and Kaixiong Ye. 2025. "Elevated Alcohol Consumption and Chronic Inflammation Predict Cardiovascular Risk Among Black Americans: Examination of a Dual-Risk Model Using Epigenetic Risk Markers" Epigenomes 9, no. 4: 40. https://doi.org/10.3390/epigenomes9040040
APA StyleBeach, S. R. H., Philibert, R. A., Ong, M.-L., Lei, M.-K., & Ye, K. (2025). Elevated Alcohol Consumption and Chronic Inflammation Predict Cardiovascular Risk Among Black Americans: Examination of a Dual-Risk Model Using Epigenetic Risk Markers. Epigenomes, 9(4), 40. https://doi.org/10.3390/epigenomes9040040