Histone H3 Lysine 9 Acetylation Plays a Role in Adipogenesis of Periodontal Ligament-Derived Stem Cells
Abstract
1. Introduction
2. Results
2.1. Characterization of Periodontal Ligament Cells
2.2. VPA and TSA Assays Improve the Adipogenic Capacity of PDLSCs
2.3. Effect of HDAC Inhibitors on H3K9 Acetylation Levels During Adipogenesis
2.4. Effect of TSA and VPA on PPARγ-2 and C/EBPβ Gene Expression
2.5. Analysis of H3K9ac Enrichment in PPARγ-2 During Adipogenesis
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Evaluation of the In Vitro Specialization of PDLCs
4.3. Effect of HDACis During Adipogenesis
4.4. Total RNA Extraction and Quantitative RT-PCR
4.5. Western Blotting
4.6. Chromatin Immunoprecipitation Followed by Quantitative Polymerase Chain Reaction
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ullah, I.; Subbarao, R.B.; Rho, G.J. Human Mesenchymal Stem Cells—Current Trends and Future Prospective. Biosci. Rep. 2015, 35, e00191. [Google Scholar] [CrossRef] [PubMed]
- Uccelli, A.; Moretta, L.; Pistoia, V. Mesenchymal Stem Cells in Health and Disease. Nat. Rev. Immunol. 2008, 8, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Ambele, M.A.; Dhanraj, P.; Giles, R.; Pepper, M.S. Adipogenesis: A Complex Interplay of Multiple Molecular Determinants and Pathways. Int. J. Mol. Sci. 2020, 21, 4283. [Google Scholar] [CrossRef] [PubMed]
- Macchia, P.E.; Nettore, I.C.; Franchini, F.; Santana-Viera, L.; Ungaro, P. Epigenetic Regulation of Adipogenesis by Histone-Modifying Enzymes. Epigenomics 2021, 13, 235–251. [Google Scholar] [CrossRef]
- Darwish, N.M.; Gouda, W.; Almutairi, S.M.; Elshikh, M.S.; Morcos, G.N.B. PPARG Expression Patterns and Correlations in Obesity. J. King Saud Univ. Sci. 2022, 34, 102116. [Google Scholar] [CrossRef]
- Liu, S.-S.; Fang, X.; Wen, X.; Liu, J.-S.; Alip, M.; Sun, T.; Wang, Y.-Y.; Chen, H.-W. How Mesenchymal Stem Cells Transform into Adipocytes: Overview of the Current Understanding of Adipogenic Differentiation. World J. Stem Cells 2024, 16, 245–256. [Google Scholar] [CrossRef]
- Yan, H.; Li, Q.; Li, M.; Zou, X.; Bai, N.; Yu, Z.; Zhang, J.; Zhang, D.; Zhang, Q.; Wang, J.; et al. Ajuba Functions as a Co-Activator of C/EBPβ to Induce Expression of PPARγ and C/EBPα during Adipogenesis. Mol. Cell. Endocrinol. 2022, 539, 111485. [Google Scholar] [CrossRef]
- Sysoeva, V.Y.; Lazarev, M.A.; Kulebyakin, K.Y.; Semina, E.V.; Rubina, K.A. Molecular and Cellular Mechanisms Governing Adipogenic Differentiation. Russ. J. Dev. Biol. 2023, 54, S10–S22. [Google Scholar] [CrossRef]
- Pant, R.; Alam, A.; Choksi, A.; Shah, V.K.; Firmal, P.; Chattopadhyay, S. Chromatin Remodeling Protein SMAR1 Regulates Adipogenesis by Modulating the Expression of PPARγ. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 159045. [Google Scholar] [CrossRef]
- Barilla, S.; Treuter, E.; Venteclef, N. Transcriptional and Epigenetic Control of Adipocyte Remodeling during Obesity. Obesity 2021, 29, 2013–2025. [Google Scholar] [CrossRef]
- Endo, K.; Sato, T.; Umetsu, A.; Watanabe, M.; Hikage, F.; Ida, Y.; Ohguro, H.; Furuhashi, M. 3D Culture Induction of Adipogenic Differentiation in 3T3-L1 Preadipocytes Exhibits Adipocyte-Specific Molecular Expression Patterns and Metabolic Functions. Heliyon 2023, 9, e20713. [Google Scholar] [CrossRef]
- Guru, A.; Issac, P.K.; Velayutham, M.; Saraswathi, N.T.; Arshad, A.; Arockiaraj, J. Molecular Mechanism of Down-Regulating Adipogenic Transcription Factors in 3T3-L1 Adipocyte Cells by Bioactive Anti-Adipogenic Compounds. Mol. Biol. Rep. 2021, 48, 743–761. [Google Scholar] [CrossRef]
- Mohamed-Ahmed, S.; Fristad, I.; Lie, S.A.; Suliman, S.; Mustafa, K.; Vindenes, H.; Idris, S.B. Adipose-Derived and Bone Marrow Mesenchymal Stem Cells: A Donor-Matched Comparison. Stem Cell Res. Ther. 2018, 9, 168. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, H.; Chen, M.; Ren, S.; Cheng, P.; Zhang, H. MiR-301b~miR-130b-PPARγ Axis Underlies the Adipogenic Capacity of Mesenchymal Stem Cells with Different Tissue Origins. Sci. Rep. 2017, 7, 1160. [Google Scholar] [CrossRef] [PubMed]
- Bugueno, I.M.; Alastra, G.; Balic, A.; Stadlinger, B.; Mitsiadis, T.A. Limited Adipogenic Differentiation Potential of Human Dental Pulp Stem Cells Compared to Human Bone Marrow Stem Cells. Int. J. Mol. Sci. 2024, 25, 11105. [Google Scholar] [CrossRef] [PubMed]
- Luke, A.M.; Patnaik, R.; Kuriadom, S.; Abu-Fanas, S.; Mathew, S.; Shetty, K.P. Human Dental Pulp Stem Cells Differentiation to Neural Cells, Osteocytes and Adipocytes-An in Vitro Study. Heliyon 2020, 6, e03054. [Google Scholar] [CrossRef]
- Mercado-Rubio, M.D.; Pérez-Argueta, E.; Zepeda-Pedreguera, A.; Aguilar-Ayala, F.J.; Peñaloza-Cuevas, R.; Kú-González, A.; Rojas-Herrera, R.A.; Rodas-Junco, B.A.; Nic-Can, G.I. Similar Features, Different Behaviors: A Comparative in Vitro Study of the Adipogenic Potential of Stem Cells from Human Follicle, Dental Pulp, and Periodontal Ligament. J. Pers. Med. 2021, 11, 738. [Google Scholar] [CrossRef]
- Fracaro, L.; Senegaglia, A.C.; Herai, R.H.; Leitolis, A.; Boldrini-Leite, L.M.; Rebelatto, C.L.K.; Travers, P.J.; Brofman, P.R.S.; Correa, A. The Expression Profile of Dental Pulp-Derived Stromal Cells Supports Their Limited Capacity to Differentiate into Adipogenic Cells. Int. J. Mol. Sci. 2020, 21, 2753. [Google Scholar] [CrossRef]
- Hu, M.; Fan, Z. Role and Mechanisms of Histone Methylation in Osteogenic/Odontogenic Differentiation of Dental Mesenchymal Stem Cells. Int. J. Oral Sci. 2025, 17, 24. [Google Scholar] [CrossRef]
- Li, Y.; Guo, X.; Yao, H.; Zhang, Z.; Zhao, H. Epigenetic Control of Dental Stem Cells: Progress and Prospects in Multidirectional Differentiation. Epigenetics Chromatin 2024, 17, 37. [Google Scholar] [CrossRef]
- Argaez-Sosa, A.A.; Rodas-Junco, B.A.; Carrillo-Cocom, L.M.; Rojas-Herrera, R.A.; Coral-Sosa, A.; Aguilar-Ayala, F.J.; Aguilar-Pérez, D.; Nic-Can, G.I. Higher Expression of DNA (de)Methylation-Related Genes Reduces Adipogenicity in Dental Pulp Stem Cells. Front. Cell Dev. Biol. 2022, 10, 791667. [Google Scholar] [CrossRef] [PubMed]
- Balam-Lara, J.A.; Carrillo-Cocom, L.M.; Rodas-Junco, B.; Lizama, L.V.; Nic-Can, G. TEN ELEVEN TRANSLOCATION 2 (TET2) Improves the Adipogenic Potential of Dental Pulp Stem Cells. J. Mex. Chem. Soc. 2023, 67, 305–313. [Google Scholar] [CrossRef]
- Gao, W.; Liu, J.L.; Lu, X.; Yang, Q. Epigenetic Regulation of Energy Metabolism in Obesity. J. Mol. Cell Biol. 2021, 13, 480–499. [Google Scholar] [CrossRef]
- Ren, J.; Huang, D.; Li, R.; Wang, W.; Zhou, C. Control of Mesenchymal Stem Cell Biology by Histone Modifications. Cell Biosci. 2020, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gan, L.; Cui, D.X.; Yu, S.H.; Pan, Y.; Zheng, L.W.; Wan, M. Epigenetic Regulation of Dental Pulp Stem Cells and Its Potential in Regenerative Endodontics. World J. Stem Cells 2021, 13, 1647–1666. [Google Scholar] [CrossRef]
- Sharma, D.; Sharma, S.; Chauhan, P. Acetylation of Histone and Modification of Gene Expression via HDAC Inhibitors Affects the Obesity. Biomed. Pharmacol. J. 2021, 14, 153–161. [Google Scholar] [CrossRef]
- Lagace, D.C.; Nachtigal, M.W. Inhibition of Histone Deacetylase Activity by Valproic Acid Blocks Adipogenesis. J. Biol. Chem. 2004, 279, 18851–18860. [Google Scholar] [CrossRef]
- Lv, X.; Qiu, J.; Hao, T.; Zhang, H.; Jiang, H.; Tan, Y. HDAC Inhibitor Trichostatin a Suppresses Adipogenesis in 3T3-L1 Preadipocytes. Aging 2021, 13, 17489–17498. [Google Scholar] [CrossRef]
- Cricrí, D.; Coppi, L.; Pedretti, S.; Mitro, N.; Caruso, D.; De Fabiani, E.; Crestani, M. Histone Deacetylase 3 Regulates Adipocyte Phenotype at Early Stages of Differentiation. Int. J. Mol. Sci. 2021, 22, 9300. [Google Scholar] [CrossRef]
- Stachecka, J.; Kolodziejski, P.A.; Noak, M.; Szczerbal, I. Alteration of Active and Repressive Histone Marks during Adipogenic Differentiation of Porcine Mesenchymal Stem Cells. Sci. Rep. 2021, 11, 1325. [Google Scholar] [CrossRef]
- Montero-Del-Toro, J.A.; Serralta-Interian, A.A.; Nic-Can, G.I.; Rojas-Herrera, R.; Carrillo-Cocom, L.M.; Rodas-Junco, B.A. Effect of Epigenetic Inhibitors on Adipogenesis in Human Periodontal Ligament Stem Cells. Odovtos Int. J. Dent. Sci. 2024, 27, 116–128. [Google Scholar] [CrossRef]
- Serralta-Interian, A.A.; Montero-Del-Toro, J.; Nic-Can, G.I.; Rojas-Herrera, R.; Aguilar-Ayala, F.J.; Rodas-Junco, B.A. Inhibition of Histone Deacetylases Class I Improves Adipogenic Differentiation of Human Periodontal Ligament Cells. Cell. Mol. Biol. 2024, 70, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Charitos, I.A.; Ballini, A.; Cantore, S.; Boccellino, M.; Di Domenico, M.; Borsani, E.; Nocini, R.; Di Cosola, M.; Santacroce, L.; Bottalico, L. Stem Cells: A Historical Review about Biological, Religious, and Ethical Issues. Stem Cells Int. 2021, 2021, 9978837. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Z.; Wang, Q.; Liang, H.; Liu, D. Trichostatin A and Vorinostat Promote Adipogenic Differentiation through H3K9 Acetylation and Dimethylation. Res. Vet. Sci. 2019, 126, 207–212. [Google Scholar] [CrossRef]
- Gilardini Montani, M.S.; Granato, M.; Santoni, C.; Del Porto, P.; Merendino, N.; D’Orazi, G.; Faggioni, A.; Cirone, M. Histone Deacetylase Inhibitors VPA and TSA Induce Apoptosis and Autophagy in Pancreatic Cancer Cells. Cell. Oncol. 2017, 40, 167–180. [Google Scholar] [CrossRef]
- Ververis, K.; Hiong, A.; Karagiannis, T.C.; Licciardi, P.V. Histone Deacetylase Inhibitors (HDACIS): Multitargeted Anticancer Agents. Biologics 2013, 7, 47–60. [Google Scholar] [CrossRef]
- Li, Q.; Liu, F.; Dang, R.; Feng, C.; Xiao, R.; Hua, Y.; Wang, W.; Jia, Z.; Liu, D. Epigenetic Modifier Trichostatin A Enhanced Osteogenic Differentiation of Mesenchymal Stem Cells by Inhibiting NF-ΚB (P65) DNA Binding and Promoted Periodontal Repair in Rats. J. Cell. Physiol. 2020, 235, 9691–9701. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.R.; Seo, M.S.; Roh, K.H.; Park, S.B.; Hwang, J.W.; Sun, B.; Seo, K.; Lee, Y.S.; Kang, S.K.; et al. Histone Deacetylase Inhibitors Decrease Proliferation Potential and Multilineage Differentiation Capability of Human Mesenchymal Stem Cells. Cell Prolif. 2009, 42, 711–720. [Google Scholar] [CrossRef]
- Um, S.; Lee, H.; Zhang, Q.; Kim, H.Y.; Lee, J.H.; Seo, B.M. V Alproic Acid Modulates the Multipotency in Periodontal Ligament Stem Cells via P53-Mediated Cell Cycle. Tissue Eng. Regen. Med. 2017, 14, 153–162. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, R.; Yang, X.; Tang, K.; Jing, N. Dual Roles of Histone H3 Lysine 9 Acetylation in Human Embryonic Stem Cell Pluripotency and Neural Differentiation. J. Biol. Chem. 2015, 290, 2508–2520. [Google Scholar] [CrossRef]
- Lefterova, M.I.; Haakonsson, A.K.; Lazar, M.A.; Mandrup, S. PPARγ and the Global Map of Adipogenesis and Beyond. Trends Endocrinol. Metab. 2014, 25, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Paino, F.; La Noce, A.; Tirino, V.; Naddeo, A.; Desiderio, V.; Pirozzi, U.; De Rosa, L.; Laino, U.; Altucci, U.; Papaccio, G. Histone Deacetylase Inhibition with Valproic Acid Downregulates Osteocalcin Gene Expression in Human Dental Pulp Stem Cells and Osteoblasts: Evidence for HDAC2 Involvement. Stem Cells 2014, 32, 279–289. [Google Scholar] [CrossRef]
- Li, Q.; Foote, M.; Chen, J. Effects of Histone Deacetylase Inhibitor Valproic Acid on Skeletal Myocyte Development. Sci. Rep. 2014, 4, 7207. [Google Scholar] [CrossRef] [PubMed]
- Gates, L.A.; Shi, J.; Rohira, A.D.; Feng, Q.; Zhu, B.; Bedford, M.T.; Sagum, C.A.; Jung, S.Y.; Qin, J.; Tsai, M.J.; et al. Acetylation on Histone H3 Lysine 9 Mediates a Switch from Transcription Initiation to Elongation. J. Biol. Chem. 2017, 292, 14456–14472. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Pan, R.; Zhang, H.; Yang, C.; Shao, J.; Xiang, L. Modification of Histone Acetylation Facilitates Hepatic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. PLoS ONE 2013, 8, e63405. [Google Scholar] [CrossRef]
- Zych, J.; Stimamiglio, M.A.; Senegaglia, A.C.; Brofman, P.R.S.; Dallagiovanna, B.; Goldenberg, S.; Correa, A. The Epigenetic Modifiers 5-Aza-2′-Deoxycytidine and Trichostatin A Influence Adipocyte Differentiation in Human Mesenchymal Stem Cells. Braz. J. Med. Biol. Res. 2013, 46, 405–416. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Solomon, E.R.; Caldwell, K.K.; Allan, A.M. A Novel Method for the Normalization of ChIP-QPCR Data. MethodsX 2021, 8, 101504. [Google Scholar] [CrossRef]
M.M. | DIRECT SEQUENCE 5’→3’ | REVERSE SEQUENCE 5’→3’ | FS (pb) | AT (°C) | Ref. |
---|---|---|---|---|---|
Stemness markers | |||||
Oct4 | GAAAGGGACCGAGGAGTA3 | CCGAGTGTGGTTCTGTAAC | 196 | 62 | [40] |
NANOG | TGCTGAGATGCCTCACACGGA | TGACCGGGACCTTGTCTTCCTT | 117 | 60 | |
SOX2 | ACACCATECCATCCACACT | CCTCCCCAGGTTTTCTGT | 117 | 62 | [41] |
KLF4 | TACCAAGAGCTCATGCCACC | CGCCTAATCACAAGTGTGGG | 114 | 60 | |
c-MYC | GGACCCGCTTCTCTGAAAGG | TAACGTTGAGGGGCATCGTC | 104 | 60 | |
Mesenchymal surface markers | |||||
CD73 | CTCAAGACCAGGAAGTCCATA | GATGAGGAAGGCACCAAAG | 131 | 58 | |
CD90 | GTCCTCTACTTATCCGCCTTC | GACCAGTTTGTCTCTGAGCAC | 123 | 56 | [42] |
CD105 | CAGCATTCCTGAAGATCCAAG | GATTGAGAGGAGCCATCCAG | 120 | 56 | |
Adipogenic markers | |||||
PPARγ-2 | CAGTGGGGGCTCATAA | 5′CTTTTGGCATACTCTGTGAT | 137 | 60 | [43] |
C/EBPβ | CACAGCGACGACTCAAGATCC | GGAGTACTIGCGCTCAGGAGGAGC | 188 | 58 | [44] |
Housekeeping gene | |||||
18s | GGACAGGATTGACAGATTGAT | AGTCTCGTTCGTTATCGGAAT | 111 | 60 | Own |
ChIP-qPCR assay (Promoter PPARγ2) | |||||
Site 1 | AGTGCAGTGGTGTGATCTCA | GATTACAGGCGTGCTACCAC | 105 | 63.5 | Own |
Site 2 | GTCTCGAACTCCTGACCTCA | AAGGTATACAGGCCAGGCAC | 95 | 63.5 | |
Site 3 | GCGCCCAGATGAGATTACTT | AGAATGGCATCTCTGTGTCAA | 148 | 63.5 | |
Site 4 | CCTCTCACATGTCTCCATACACA | CTGAAATGAAATAATAAAGTTTCAACA | 250 | 63.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montero-Del-Toro, J.A.; Serralta-Interian, A.A.; Nic-Can, G.I.; Lamas, M.; Rivera-Solís, R.A.; Rodas-Junco, B.A. Histone H3 Lysine 9 Acetylation Plays a Role in Adipogenesis of Periodontal Ligament-Derived Stem Cells. Epigenomes 2025, 9, 15. https://doi.org/10.3390/epigenomes9020015
Montero-Del-Toro JA, Serralta-Interian AA, Nic-Can GI, Lamas M, Rivera-Solís RA, Rodas-Junco BA. Histone H3 Lysine 9 Acetylation Plays a Role in Adipogenesis of Periodontal Ligament-Derived Stem Cells. Epigenomes. 2025; 9(2):15. https://doi.org/10.3390/epigenomes9020015
Chicago/Turabian StyleMontero-Del-Toro, Julio A., Angelica A. Serralta-Interian, Geovanny I. Nic-Can, Mónica Lamas, Rodrigo A. Rivera-Solís, and Beatriz A. Rodas-Junco. 2025. "Histone H3 Lysine 9 Acetylation Plays a Role in Adipogenesis of Periodontal Ligament-Derived Stem Cells" Epigenomes 9, no. 2: 15. https://doi.org/10.3390/epigenomes9020015
APA StyleMontero-Del-Toro, J. A., Serralta-Interian, A. A., Nic-Can, G. I., Lamas, M., Rivera-Solís, R. A., & Rodas-Junco, B. A. (2025). Histone H3 Lysine 9 Acetylation Plays a Role in Adipogenesis of Periodontal Ligament-Derived Stem Cells. Epigenomes, 9(2), 15. https://doi.org/10.3390/epigenomes9020015