Nationwide Screening for Arthropod, Fungal, and Bacterial Pests and Pathogens of Honey Bees: Utilizing Environmental DNA from Honey Samples in Australia
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Acquisition of Commercial Honey Samples
2.2. eDNA Extraction from Honey Samples
2.3. eDNA Purification
2.4. PCR Analysis
2.5. Assessing Changes in Pest and Pathogen Prevalence over Time
2.6. Statistical Analysis
Target Species | Primer Name 1 | Accession No. | Primer Sequence (5′-3′) | Amplified Region | Product Size (bp) | Reference |
Singleplex PCR | ||||||
Apis mellifera | AM Forward AM Reverse | EF033649.1 | GGCAGAATAAGTGCATTG TTAATATGAATTAAGTGGGG | mtDNA COI-COII | C 85, M 138 2 | [40] |
Nosema apis | Nose_apis_chen_F Nose_apis_chen_R | U97150.1 | CCATTGCCGGATAAGAGAGT CCACCAAAAACTCCCAAGAG | SSUrRNA | 269 | [41] |
Nosema ceranae | Nose_cera_chen_F Nose_cera_chen_R | DQ486027.1 | CGGATAAAAGAGTCCGTTACC TGAGCAGGGTTCTAGGGAT | SSUrRNA | 250 | [41] |
Aethina tumida | Atum-3F Atum-3R | MF943248.1 | CCCATTTCCATTATGTWYTATCTATAGG CTATTTAAAGTYAATCCTGTAATTAATGG | COI | 97 | [42] |
Galleria mellonella | GallMelCox1-F GallMelCox1-R | KT750964.1 | TGAACTTGGTAATCCTGGTTCT TATTATTAAGTCGGGGGAAAGC | COI | 182 | [42] |
Multiplex PCR | ||||||
Paenibacillus larvae Melissococcus plutonius Ascosphaera apis | Han233PaeLarv16S_F Han233PaeLarv16S_R Mp_Arai187_F Mp_Arai187_R AscosFORa AscosREVa | NZCP019687.1 AB778538.1 U68313.1 | GTGTTTCCTTCGGGAGACG CTCTAGGTCGGCTACGCATC TGGTAGCTTAGGCGGAAAAC TGGAGCGATTAGAGTCGTTAGA TGTGTCTGTGCGGCTAGGTG GCTAGCCAGGGGGGAACTAA | 16S rRNA NapA 18S rRNA | 233 187 136 | [43] |
Target Species | Steps | Optimized Conditions | Time | Cycle |
Multiplex PCR | ||||
P. larvae M. plutonius A. apis | Initial Denaturation Annealing Extension Final Extension | 95 °C 95 °C 63 °C 72 °C 72 °C | 2 min 1 min 1 min 1 min 5 min | 35× |
Single plex PCR | ||||
N. apis N. ceranae | Initial Denaturation Annealing Extension Final Extension | 95 °C 94 °C 58.6 °C 68 °C 72 °C | 2 min 15 s 30 s 1 min 7 min | 35× |
A. tumida | Initial Denaturation Annealing Extension Final Extension | 95 °C 98 °C 54 °C 72 °C 72 °C | 3 min 20 s 30 s 1 min 7 min | 35× |
G. mellonella | Initial Denaturation Annealing Extension Final Extension | 95 °C 98 °C 61 °C 72 °C 72 °C | 3 min 1 min 1 min 1 min 1 min | 35× |
3. Results
3.1. Assessment of Extracted DNA
3.2. Prevalence Pattern Across Different Australian States
3.3. Pest and Pathogen Prevalence on Kangaroo Island
3.4. Trends in Co-Occurrence of Pathogens and Pests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cunningham, S.A.; FitzGibbon, F.; Heard, T.A. The future of pollinators for Australian agriculture. Aust. J. Agric. Res. 2002, 53, 893–900. [Google Scholar] [CrossRef]
- Khalifa, S.A.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.A.; Algethami, A.F.; Musharraf, S.G.; AlAjmi, M.F.; Zhao, C.; Masry, S.H.D.; Abdel-Daim, M.M.; et al. Overview of bee pollination and its economic value for crop production. Insects 2021, 12, 688. [Google Scholar] [CrossRef]
- Rogers, S.R.; Tarpy, D.R.; Burrack, H.J. Bee species diversity enhances productivity and stability in a perennial crop. PLoS ONE 2014, 9, e97307. [Google Scholar] [CrossRef]
- Gibbs, D.M.; Muirhead, I.F. The Economic Value and Environmental Impact of the Australian Beekeeping Industry. A Report Prepared for the Australian Beekeeping Industry; Australian Beekeeping Industry: Canberra, Australia, 1998; Available online: https://honeybee.org.au/doc/Muirhead.doc (accessed on 18 April 2024).
- Tierney, S.M.; Bernauer, O.M.; King, L.; Spooner-Hart, R.; Cook, J.M. Bee pollination services and the burden of biogeography. Proc. R. Soc. B Biol. Sci. 2023, 290, 20230747. [Google Scholar] [CrossRef] [PubMed]
- Allen, G. Honey Bee Health and Pollination Under Protected and Contained Environments. Hort Innovation. 2022. Available online: https://www.horticulture.com.au (accessed on 18 April 2024).
- Hagan, T. Evolution and Ecology of Invasive Honey Bees. Ph.D. Thesis, The University of Sydney, Sydney, Australia, 2022. Available online: https://hdl.handle.net/2123/31486 (accessed on 18 April 2024).
- Roberts, J.; Anderson, D.; Durr, P. Upgrading Knowledge on Pathogens (Particularly Viruses) of Australian Honey Bees. Rural Industries Research & Development Corporation (RIRDC) Canberra. 2015. Available online: https://www.researchgate.net/profile/Peter-Durr/publication/287198479_Upgrading_knowledge_on_pathogens_particularly_viruses_of_Australian_honey_bees/links/5672964a08aeb8b21c70cec6/Upgrading-knowledge-on-pathogens-particularly-viruses-of-Australian-honey-bees.pdf (accessed on 21 April 2025).
- Chapman, N.C.; Colin, T.; Cook, J.; da Silva, C.R.; Gloag, R.; Hogendoorn, K.; Howard, S.R.; Remnant, E.J.; Roberts, J.M.K.; Tierney, S.M.; et al. The final frontier: Ecological and evolutionary dynamics of a global parasite invasion. Biol. Lett. 2023, 19, 20220589. [Google Scholar] [CrossRef]
- Brettell, L.E.; Riegler, M.; O’brien, C.; Cook, J.M. Occurrence of honey bee-associated pathogens in Varroa-free pollinator communities. J. Invertebr. Pathol. 2020, 171, 107344. [Google Scholar] [CrossRef]
- Borba, R.S.; Hoover, S.E.; Currie, R.W.; Giovenazzo, P.; Guarna, M.M.; Foster, L.J.; Zayed, A.; Pernal, S.F.; Khan, K.A. Phenomic analysis of the honey bee pathogen-web and its dynamics on colony productivity, health, and social immunity behaviors. PLoS ONE 2022, 17, e0263273. [Google Scholar] [CrossRef]
- Parveen, N.; Miglani, R.; Kumar, A.; Dewali, S.; Kumar, K.; Sharma, N.; Bisht, S.S. Honey bee pathogenesis posing a threat to its global population: A short review. Proc. Indian Natl. Sci. Acad. 2022, 88, 11–32. [Google Scholar] [CrossRef]
- Milbrath, M. Honey bee bacterial diseases. In Honey Bee Medicine for the Veterinary Practitioner; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 277–293. [Google Scholar] [CrossRef]
- Büchler, R.; Costa, C.; Hatjina, F.; Andonov, S.; Meixner, M.D.; Conte, Y.L.; Uzunov, A.; Berg, S.; Bienkowska, M.; Bouga, M.; et al. The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe. J. Apic. Res. 2014, 53, 205–214. [Google Scholar] [CrossRef]
- Hedtke, S.M.; Blitzer, E.J.; Montgomery, G.A.; Danforth, B.N. Introduction of non-native pollinators can lead to trans-continental movement of bee-associated fungi. PLoS ONE 2015, 10, e0130560. [Google Scholar] [CrossRef]
- Aditya, I.R.A.; Purwanto, H. Molecular detection of the pathogen of Apis mellifera (Hymenoptera: Apidae) in honey in Indonesia. Biodiversitas J. Biol. Divers. 2023, 24. [Google Scholar] [CrossRef]
- Ward, L.; Brown, M.; Neumann, P.; Wilkins, S.; Pettis, J.; Boonham, N. A DNA method for screening hive debris for the presence of small hive beetle (Aethina tumida). Apidologie 2007, 38, 272–280. [Google Scholar] [CrossRef]
- Ryba, S.; Titera, D.; Haklova, M.; Stopka, P. A PCR method of detecting American foulbrood (Paenibacillus larvae) in winter bee hive wax debris. Vet. Microbiol. 2009, 139, 193–196. [Google Scholar] [CrossRef]
- Ribani, A.; Utzeri, V.J.; Taurisano, V.; Fontanesi, L. Honey as a source of environmental DNA for the detection and monitoring of honey bee pathogens and parasites. Vet. Sci. 2020, 7, 113. [Google Scholar] [CrossRef]
- Bakonyi, T.; Derakhshifar, I.; Grabensteiner, E.; Nowotny, N. Development and evaluation of PCR assays for the detection of Paenibacillus larvae in honey samples: Comparison with isolation and biochemical characterization. Appl. Environ. Microbiol. 2003, 69, 1504–1510. [Google Scholar] [CrossRef]
- Forsgren, E. European foulbrood in honey bees. J. Invertebr. Pathol. 2010, 103, S5–S9. [Google Scholar] [CrossRef]
- Aziz, M.A.; Alam, S. Diseases of Honeybee (Apis mellifera). In Melittology—New Advances; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Dong, J.; Olano, J.P.; McBride, J.W.; Walker, D.H. Emerging pathogens: Challenges and successes of molecular diagnostics. J. Mol. Diagn. 2008, 10, 185–197. [Google Scholar] [CrossRef]
- Ongus, J.R.; Fombong, A.T.; Irungu, J.; Masiga, D.; Raina, S. Prevalence of common honey bee pathogens at selected apiaries in Kenya, 2013/2014. Int. J. Trop. Insect Sci. 2018, 38, 58–70. [Google Scholar] [CrossRef]
- Bass, D.; Christison, K.W.; Stentiford, G.D.; Cook, L.S.; Hartikainen, H. Environmental DNA/RNA for pathogen and parasite detection, surveillance, and ecology. Trends Parasitol. 2023, 39, 285–304. [Google Scholar] [CrossRef]
- Revainera, P.D.; Quintana, S.; de Landa, G.F.; Iza, C.G.; Olivera, E.; Fuentes, G.; Plischuk, S.; Medici, S.; Ruffinengo, S.; Marcangelli, J.; et al. Molecular detection of bee pathogens in honey. J. Insects Food Feed. 2020, 6, 467–474. [Google Scholar] [CrossRef]
- Traynor, K.S.; Pettis, J.S.; Tarpy, D.R.; Mullin, C.A.; Frazier, J.L.; Frazier, M.; Vanengelsdorp, D. In-hive Pesticide Exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Sci. Rep. 2016, 6, 33207. [Google Scholar] [CrossRef]
- Ribani, A.; Utzeri, V.J.; Taurisano, V.; Galuppi, R.; Fontanesi, L. Analysis of honey environmental DNA indicates that the honey bee (Apis mellifera L.) trypanosome parasite Lotmaria passim is widespread in the apiaries of the North of Italy. J. Invertebr. Pathol. 2021, 184, 107628. [Google Scholar] [CrossRef]
- Call, D.R.; Borucki, M.K.; Loge, F.J. Detection of bacterial pathogens in environmental samples using DNA microarrays. J. Microbiol. Methods 2003, 53, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Bohmann, K.; Evans, A.; Gilbert, M.T.P.; Carvalho, G.R.; Creer, S.; Knapp, M.; Yu, D.W.; De Bruyn, M. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 2014, 29, 358–367. [Google Scholar] [CrossRef]
- Silva, M.S.; Rabadzhiev, Y.; Eller, M.R.; Iliev, I.; Ivanova, I.; Santana, W.C. Microorganisms in honey. In Honey Analysis; IntechOpen: London, UK, 2017; Volume 500, pp. 233–257. [Google Scholar] [CrossRef]
- Bovo, S.; Ribani, A.; Utzeri, V.J.; Schiavo, G.; Bertolini, F.; Fontanesi, L. Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee-derived environmental DNA signature. PLoS ONE 2018, 13, e0205575. [Google Scholar] [CrossRef] [PubMed]
- Bovo, S.; Utzeri, V.J.; Ribani, A.; Cabbri, R.; Fontanesi, L. Shotgun sequencing of honey DNA can describe honey bee derived environmental signatures and the honey bee hologenome complexity. Sci. Rep. 2020, 10, 9279. [Google Scholar] [CrossRef]
- Clarke, M.; le Feuvre, D. Size and scope of the Australian honey bee and pollination industry—A snapshot. In AgriFutures Australia Bulletin; Rural Industries Research and Development Corporation: Kingston, Australia, 2021. [Google Scholar]
- Waiblinger, H.-U.; Ohmenhaeuser, M.; Meissner, S.; Schillinger, M.; Pietsch, K.; Goerlich, O.; Mankertz, J.; Lieske, K.; Broll, H. In-house and interlaboratory validation of a method for the extraction of DNA from pollen in honey. J. Verbraucherschutz Und Leb. 2012, 7, 243–254. [Google Scholar] [CrossRef]
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.; Mafra, I. Improving DNA isolation from honey for the botanical originidentification. Food Control 2015, 48, 130–136. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Griffith, D.M.; Veech, J.A.; Marsh, C.J. Cooccur: Probabilistic species co-occurrence analysis in R. J. Stat. Softw. 2016, 69, 1–17. [Google Scholar] [CrossRef]
- Veech, J.A. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 2013, 22, 252–260. [Google Scholar] [CrossRef]
- Utzeri, V.J.; Ribani, A.; Fontanesi, L. Authentication of honey based on a DNA method to differentiate Apis mellifera subspecies: Application to Sicilian honey bee (A. m. siciliana) and Iberian honey bee (A. m. iberiensis) honeys. Food Control 2018, 91, 294–301. [Google Scholar] [CrossRef]
- Chen, Y.; Evans, J.; Zhou, L.; Boncristiani, H.; Kimura, K.; Xiao, T.; Litkowski, A.; Pettis, J.S. Asymmetrical coexistence of Nosema ceranae and Nosema apis in honey bees. J. Invertebr. Pathol. 2009, 101, 204–209. [Google Scholar] [CrossRef]
- Ribani, A.A.; Taurisano, V.; Utzeri, V.J.; Fontanesi, L. Honey Environmental DNA Can Be Used to Detect and Monitor Honey Bee Pests: Development of Methods Useful to Identify Aethina tumida and Galleria mellonella Infestations. Vet. Sci. 2022, 9, 213. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Bailón, E.; Higes, M.; Martínez-Salvador, A.; Antúnez, K.; Botías, C.; Meana, A.; Prieto, l.; Martín-Hernández, R. The prevalence of the honeybee brood pathogens Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius in Spanish apiaries determined with a new multiplex PCR assay. Microb. Biotechnol. 2013, 6, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Rodrigues, F.; Delerue-Matos, C. Towards DNA-based methods analysis for honey: An update. Molecules 2023, 28, 2106. [Google Scholar] [CrossRef]
- Lauro, F.M.; Favaretto, M.; Covolo, L.; Rassu, M.; Bertoloni, G. Rapid detection of Paenibacillus larvae from honey and hive samples with a novel nested PCR protocol. Int. J. Food Microbiol. 2003, 81, 195–201. [Google Scholar] [CrossRef]
- McKee, B.; Djordjevic, S.; Goodman, R.; Hornitzky, M. The detection of Melissococcus pluton in honey bees (Apis mellifera) and their products using a hemi-nested PCR. Apidologie 2003, 34, 19–27. [Google Scholar] [CrossRef]
- Holt, H.L.; Grozinger, C.M. Approaches and challenges to managing Nosema (Microspora: Nosematidae) parasites in honey bee (Hymenoptera: Apidae) colonies. J. Econ. Entomol. 2016, 109, 1487–1503. [Google Scholar] [CrossRef]
- Fries, I.; Feng, F.; Da Silva, A.; Slemenda, S.B.; Pieniazek, N.J. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 1996, 32, 356–365. [Google Scholar] [CrossRef]
- Klee, J.; Besana, A.M.; Genersch, E.; Gisder, S.; Nanetti, A.; Tam, D.Q.; Chinh, T.X.; Puerta, F.; Ruz, J.M.; Kryger, P.; et al. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertebr. Pathol. 2007, 96, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Higes, M.; Martín, R.; Meana, A. Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J. Invertebr. Pathol. 2006, 92, 93–95. [Google Scholar] [CrossRef] [PubMed]
- Fries, I. Nosema ceranae in European honey bees (Apis mellifera). J. Invertebr. Pathol. 2010, 103, S73–S79. [Google Scholar] [CrossRef] [PubMed]
- Gisder, S.; Schüler, V.; Horchler, L.L.; Groth, D.; Genersch, E. Long-Term Temporal Trends of Nosema spp. Infection Prevalence in Northeast Germany: Continuous Spread of Nosema ceranae, an Emerging Pathogen of Honey Bees (Apis mellifera), but No General Replacement of Nosema apis. Front. Cell. Infect. Microbiol. 2017, 7, 301. [Google Scholar] [CrossRef]
- Martín-Hernández, R.; Bartolome, C.; Chejanovsky, N.; Le Conte, Y.; Dalmon, A.; Dussaubat, C.; Dussaubat, C.; Meana, A.; Pinto, M.; Soroker, V.; et al. Nosema ceranae in Apis mellifera: A 12 Years Post-Detection Perspective: Nosema ceranae in Apis mellifera. Environ. Microbiol. 2018, 20, 1302–1329. [Google Scholar] [CrossRef]
- Goblirsch, M. Nosema ceranae disease of the honey bee (Apis mellifera). Apidologie 2018, 49, 131–150. [Google Scholar] [CrossRef]
- Emsen, B.; Guzman-Novoa, E.; Hamiduzzaman, M.M.; Eccles, L.; Lacey, B.; Ruiz-Pérez, R.A.; Nasr, M. Higher prevalence and levels of Nosema ceranae than Nosema apis infections in Canadian honey bee colonies. Parasitol. Res. 2016, 115, 175–181. [Google Scholar] [CrossRef]
- Chen, Y.P.; Evans, J.D.; Smith, I.B.; Pettis, J.S. Nosema ceranae is a long-present and widespread microsporidean infection of the European honey bee (Apis mellifera) in the United States. J. Invertebr. Pathol. 2008, 97, 186–188. [Google Scholar] [CrossRef]
- Deutsch, K.R.; Graham, J.R.; Boncristiani, H.F.; Bustamante, T.; Mortensen, A.N.; Schmehl, D.R.; Wedde, A.E.; Lopez, D.L.; Evans, J.D.; Ellis, J.D. Widespread distribution of honey bee-associated pathogens in native bees and wasps: Trends in pathogen prevalence and co-occurrence. J. Invertebr. Pathol. 2023, 200, 107973. [Google Scholar] [CrossRef]
- Guerrero-Molina, C.; Correa-Benítez, A.; Hamiduzzaman, M.M.; Guzman-Novoa, E. Nosema ceranae is an old resident of honey bee (Apis mellifera) colonies in Mexico, causing infection levels of one million spores per bee or higher during summer and fall. J. Invertebr. Pathol. 2016, 141, 38–40. [Google Scholar] [CrossRef]
- Bollan, K.A.; Hothersall, J.D.; Moffat, C.; Durkacz, J.; Saranzewa, N.; Wright, G.A.; Raine, N.E.; Highet, F.; Connolly, C.N. The microsporidian parasites Nosema ceranae and Nosema apis are widespread in honeybee (Apis mellifera) colonies across Scotland. Parasitol. Res. 2013, 112, 751–759. [Google Scholar] [CrossRef]
- Murray, Z.L.; Lester, P.J. Confirmation of Nosema ceranae in New Zealand and a phylogenetic comparison of Nosema spp. strains. J. Apic. Res. 2015, 54, 101–104. [Google Scholar] [CrossRef]
- Frazer, J.L.; Tham, K.-M.; Reid, M.; van Andel, M.; McFadden, A.M.; Forsgren, E.; Pettis, J.S.; Pharo, H. First detection of Nosema ceranae in New Zealand honey bees. J. Apic. Res. 2022, 54, 358–365. [Google Scholar] [CrossRef]
- Giersch, T.; Berg, T.; Galea, F.; Hornitzky, M. Nosema ceranae infects honey bees (Apis mellifera) and contaminates honey in Australia. Apidologie 2009, 40, 117–123. [Google Scholar] [CrossRef]
- Galajda, R.; Valenčáková, A.; Sučik, M.; Kandráčová, P. Nosema Disease of European Honey Bees. J. Fungi 2021, 7, 714. [Google Scholar] [CrossRef] [PubMed]
- Mazur, E.D.; Gajda, A.M. Nosemosis in honeybees: A review guide on biology and diagnostic methods. Appl. Sci. 2022, 12, 5890. [Google Scholar] [CrossRef]
- Gisder, S.; Hedtke, K.; Möckel, N.; Frielitz, M.-C.; Linde, A.; Genersch, E. Five-year cohort study of Nosema spp. in Germany: Does climate shape virulence and assertiveness of Nosema ceranae? Appl. Environ. Microbiol. 2010, 76, 3032–3038. [Google Scholar] [CrossRef]
- Forsgren, E.; Fries, I. Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Vet. Parasitol. 2010, 170, 212–217. [Google Scholar] [CrossRef]
- Fenoy, S.; Rueda, C.; Higes, M.; Martín-Hernández, R.; Del Aguila, C. High-level resistance of Nosema ceranae, a parasite of the honeybee, to temperature and desiccation. Appl. Environ. Microbiol. 2009, 75, 6886–6889. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Chung, W.-P.; Wang, C.-H.; Solter, L.F.; Huang, W.-F. Nosema ceranae infection intensity highly correlates with temperature. J. Invertebr. Pathol. 2012, 111, 264–267. [Google Scholar] [CrossRef]
- Marín-García, P.J.; Peyre, Y.; Ahuir-Baraja, A.E.; Garijo, M.M.; Llobat, L. The role of Nosema ceranae (Microsporidia: Nosematidae) in honey bee colony losses and current insights on treatment. Vet. Sci. 2022, 9, 130. [Google Scholar] [CrossRef]
- Formato, G.; Rivera-Gomis, J.; Bubnic, J.; Martín-Hernández, R.; Milito, M.; Croppi, S.; Higes, M. Nosemosis prevention and control. Appl. Sci. 2022, 12, 783. [Google Scholar] [CrossRef]
- Glatz, R.V. Curious case of the Kangaroo I sland honeybee A pis mellifera L innaeus, 1758 (H ymenoptera: A pidae) sanctuary. Austral Entomol. 2015, 54, 117–126. [Google Scholar] [CrossRef]
- Castagnino, G.L.B.; Mateos, A.; Meana, A.; Montejo, L.; Zamorano Iturralde, L.V.; Cutuli De Simón, M.T. Etiology, Symptoms and Prevention of Chalkbrood Disease: A Literature Review. Rev. Bras. Saude Prod. Anim. 2020, 21, e210332020. [Google Scholar] [CrossRef]
- Wilson, W.; Nunamaker, R.; Maki, D. The occurrence of brood diseases and the absence of the Varroa mite in honey bees from Mexico. Am. Bee J. 1984, 124, 51–53. [Google Scholar]
- Aronstein, K.A.; Murray, K.D. Chalkbrood disease in honey bees. J. Invertebr. Pathol. 2010, 103, S20–S29. [Google Scholar] [CrossRef]
- Guimarães-Cestaro, L.; Serrão, J.E.; Message, D.; Martins, M.F.; Teixeira, E.W. Simultaneous detection of Nosema spp., Ascosphaera apis and Paenibacillus larvae in honey bee products. J. Hymenopt. Res. 2016, 49, 43–50. [Google Scholar] [CrossRef]
- Forsgren, E.; Locke, B.; Sircoulomb, F.; Schäfer, M.O. Bacterial Diseases in Honeybees. Curr. Clin. Microbiol. Rep. 2018, 5, 18–25. [Google Scholar] [CrossRef]
- Alburaki, M.; Abban, S.K.; Evans, J.D.; Chen, Y.P. Occurrence and distribution of two bacterial brood diseases (American and European foulbrood) in US honey bee colonies and resistance to antibiotics from 2015 to 2022. J. Apic. Res. 2024, 63, 701–710. [Google Scholar] [CrossRef]
- Goodman, R.; McKee, B.; Kaczynski, P. An Beekeepers’ Guide Understanding Control Measures for European Foulbrood; RIRDC Publication No. 04/091; RIRDC Project No. DAV-157A; Rural Industries Research and Development Corporation: Wagga Wagga, Australia, 2004. [Google Scholar]
- Ricchiuti, L.; Rossi, F.; Del Matto, I.; Iannitto, G.; Del Riccio, A.L.; Petrone, D.; Ruberto, G.; Cersini, A.; Di Domenico, M.; Cammà, C. A study in the Abruzzo region on the presence of Paenibacillus larvae spores in honeys indicated underestimation of American foulbrood prevalence in Italy. J. Apic. Res. 2019, 58, 416–419. [Google Scholar] [CrossRef]
- Strauss, U.; Human, H.; Gauthier, L.; Crewe, R.M.; Dietemann, V.; Pirk, C.W.W. Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata). J. Invertebr. Pathol. 2013, 114, 45–52. [Google Scholar] [CrossRef]
- Lindström, A.; Korpela, S.; Fries, I. The distribution of PaeniBacillus larvae spores in adult bees and honey and larval mortality, following the addition of American foulbrood diseased brood or spore-contaminated honey in honey bee (Apis mellifera) colonies. J. Invertebr. Pathol. 2008, 99, 82–86. [Google Scholar] [CrossRef]
- Ackerly, D.; Tran, L.; Beddoe, T. The development of a loop-mediated isothermal amplification (LAMP) assay to detect American foulbrood in managed honey bee populations. Apidologie 2024, 55, 38. [Google Scholar] [CrossRef]
- Otten, C. A general overview on AFB and EFB pathogen, way of infection, multiplication, clinical symptoms and outbreak. Apiacta 2003, 38, 106–113. [Google Scholar]
- Masood, F.; Thebeau, J.M.; Cloet, A.; Kozii, I.V.; Zabrodski, M.W.; Biganski, S.; Liang, J.; Guarna, M.M.; Simko, E.; Ruzzini, A.; et al. Evaluating approved and alternative treatments against an oxytetracycline-resistant bacterium responsible for European foulbrood disease in honey bees. Sci. Rep. 2022, 12, 5906. [Google Scholar] [CrossRef] [PubMed]
- Neumann, P.; Elzen, P.J. The biology of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae): Gaps in our knowledge of an invasive species. Apidologie 2004, 35, 229–247. [Google Scholar] [CrossRef]
- Hosni, E.M.; Al-Khalaf, A.A.; Nasser, M.G.; Abou-Shaara, H.F.; Radwan, M.H. Modeling the Potential Global Distribution of Honeybee Pest, Galleria mellonella under Changing Climate. Insects 2022, 13, 484. [Google Scholar] [CrossRef]
- Al Toufailia, H.; Alves, D.A.; De Bená, D.C.; Bento, J.M.S.; Iwanicki, N.S.A.; Cline, A.R.; Ellis, J.D.; Ratnieks, F.L.W. First record of small hive beetle, Aethina tumida Murray, in South America. J. Apic. Res. 2017, 56, 76–80. [Google Scholar] [CrossRef]
- Lawal, A.; Oyerinde, A.; Asala, S.; Anjorin, T. The incidence and management of pest affecting honeybees in Nigeria. Glob. J. Bio-Sci. Biotechnol. 2020, 9, 40–44. [Google Scholar] [CrossRef]
- Shen, M.; Cui, L.; Ostiguy, N.; Cox-Foster, D. Intricate transmission routes and interactions between picorna-like viruses (Kashmir bee virus and sacbrood virus) with the honeybee host and the parasitic varroa mite. J. Gen. Virol. 2005, 86, 2281–2289. [Google Scholar] [CrossRef]
- Eyer, M.; Chen, Y.P.; Schäfer, M.O.; Pettis, J.; Neumann, P. Small hive beetle, Aethina tumida, as a potential biological vector of honeybee viruses. Apidologie 2009, 40, 419–428. [Google Scholar] [CrossRef]
- Schäfer, M.O.; Ritter, W.; Pettis, J.; Neumann, P. Small hive beetles, Aethina tumida, are vectors of Paenibacillus larvae. Apidologie 2010, 41, 14–20. [Google Scholar] [CrossRef]
- Sarwar, M. Insect pests of honey bees and choosing of the right management strategic plan. Int. J. Entomol. Res. 2016, 1, 16–22. [Google Scholar]
- Aarifie, U.; Farook, U.B.; Dar, S.A.; Malik, A.R.; Javid, R.; Khaliq, N.; Wachkoo, A.A. 5 Pests of Honey and Bees Diseases. In Honey Bees, Beekeeping and Bee Products; CRC Press: Boca Raton, FL, USA, 2024; p. 53. [Google Scholar]
- Chantawannakul, P.; Ramsey, S.; van Engelsdorp, D.; Khongphinitbunjong, K.; Phokasem, P. Tropilaelaps mite: An emerging threat to European honey bee. Curr. Opin. Insect Sci. 2018, 26, 69–75. [Google Scholar] [CrossRef]
- Naudi, S. Factors Affecting Beekeeping Sustainability: Pathogen Spread, Diagnostics and Queen Breeding. Ph.D. Thesis, Estonian University of Life Sciences, Tartu, Estland, 2025. Available online: https://dspace.emu.ee/server/api/core/bitstreams/5464455a-4b2c-4b1a-9818-a96a0e85e6ce/content (accessed on 21 April 2025).
- Aglagane, A.; Ravaioli, V.; Er-Rguibi, O.; Lavazza, A.; Carra, E.; Rabitti, A.; El Mouden, E.H.; Aourir, M.; Frasnelli, M. Molecular investigation and infection patterns of seven viruses of honey bee (Apis mellifera L., 1758) populations from southeastern Morocco. Apidologie 2023, 54, 42. [Google Scholar] [CrossRef]
- Sturtevant, A.P. Mixed infection in the brood diseases of bees. J. Econ. Entomol. 1921, 14, 127–134. [Google Scholar] [CrossRef]
- Stephan, J.G.; de Miranda, J.R.; Forsgren, E. American foulbrood in a honeybee colony: Spore-symptom relationship and feedbacks between disease and colony development. BMC Ecol. 2020, 20, 16. [Google Scholar] [CrossRef]
- Ongus, J.R.; Irungu, J.; Raina, S. Correlation between Pest Abundance and Prevalence of Honeybee Pathogens at Selected Apiaries in Kenya, 2013/2014. J. Environ. Earth Sci. 2017, 7, 27–36. [Google Scholar]
- Özkırım, A.; Schiesser, A.; Keskin, N. Dynamics of Nosema apis and Nosema ceranae co-infection seasonally in honey bee (Apis mellifera L.) colonies. J. Apic. Sci. 2019, 63, 41–48. [Google Scholar] [CrossRef]
- Araneda, X.; Aldea, P.; Freire, X. Small Hive Beetle (Aethina tumida Murray), A potential thret to beekeeping in Chile. Chil. J. Agric. Anim. Sci. 2021, 37, 3–10. [Google Scholar] [CrossRef]
- Kaur, G.; Sharma, R.; Chaudhary, A.; Singh, R. Factors affecting immune responses in honey bees: An insight. J. Apic. Sci. 2021, 65, 25–47. [Google Scholar] [CrossRef]
State | No. of Samples | No. of Samples Positive for P. larvae | % of Positive Samples | No. of Samples Positive for M. plutonius | % of Positive Samples |
---|---|---|---|---|---|
Victoria (VIC) | 27 | 9 | 33% | 10 | 37% |
New South Wales (NSW) | 29 | 8 | 28% | 4 | 14% |
Queensland (QLD) | 24 | 5 | 21% | 3 | 13% |
Northern Territory (NT) | 1 | 0 | 0% | 0 | 0% |
Western Australia (WA) | 22 | 3 | 14% | 0 | 0% |
South Australia (SA) | 14 | 0 | 0% | 4 | 29% |
Kangaroo Island (KI) | 6 | 0 | 0% | 0 | 0% |
Tasmania (TAS) | 12 | 3 | 25% | 3 | 25% |
Total | 135 | 28 | 21% | 24 | 18% |
State | No. of Samples | No. of Samples Positive for A. apis | % of Positive Samples | No. of Samples Positive for N. apis | % of Positive Samples | No. of Samples Positive for N. ceranae | % of Positive Samples | % of Co-Occurrence of N. apis and N. ceranae |
---|---|---|---|---|---|---|---|---|
VIC | 27 | 1 | 4% | 5 | 19% | 19 | 70% | 19% |
NSW | 29 | 2 | 7% | 3 | 10% | 17 | 59% | 10% |
QLD | 24 | 0 | 0% | 0 | 0% | 14 | 58% | 0% |
NT | 1 | 0 | 0% | 0 | 0% | 1 | 100% | 0% |
WA | 22 | 0 | 0% | 5 | 23% | 10 | 45% | 23% |
SA | 14 | 0 | 0% | 2 | 14% | 9 | 64% | 14% |
KI | 6 | 0 | 0% | 3 | 50% | 1 | 17% | 17% |
TAS | 12 | 4 | 33% | 7 | 58% | 6 | 50% | 42% |
Total | 135 | 7 | 5% | 25 | 19% | 77 | 57% | 16% |
State | No. of Samples | No. of Samples Positive for A. tumida | % of Positive Samples | No. of Samples Positive for G. mellonella | % of Positive Samples |
---|---|---|---|---|---|
VIC | 27 | 15 | 56% | 12 | 44% |
NSW | 29 | 9 | 31% | 3 | 10% |
QLD | 24 | 17 | 71% | 6 | 25% |
NT | 1 | 0 | 0% | 0 | 0% |
WA | 22 | 1 | 5% | 10 | 45% |
SA | 14 | 8 | 57% | 8 | 57% |
KI | 6 | 0 | 0% | 0 | 0% |
TAS | 12 | 4 | 33% | 10 | 83% |
Total | 135 | 54 | 40% | 49 | 37% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhasi, G.; Zerna, G.; Beddoe, T. Nationwide Screening for Arthropod, Fungal, and Bacterial Pests and Pathogens of Honey Bees: Utilizing Environmental DNA from Honey Samples in Australia. Insects 2025, 16, 764. https://doi.org/10.3390/insects16080764
Bhasi G, Zerna G, Beddoe T. Nationwide Screening for Arthropod, Fungal, and Bacterial Pests and Pathogens of Honey Bees: Utilizing Environmental DNA from Honey Samples in Australia. Insects. 2025; 16(8):764. https://doi.org/10.3390/insects16080764
Chicago/Turabian StyleBhasi, Gopika, Gemma Zerna, and Travis Beddoe. 2025. "Nationwide Screening for Arthropod, Fungal, and Bacterial Pests and Pathogens of Honey Bees: Utilizing Environmental DNA from Honey Samples in Australia" Insects 16, no. 8: 764. https://doi.org/10.3390/insects16080764
APA StyleBhasi, G., Zerna, G., & Beddoe, T. (2025). Nationwide Screening for Arthropod, Fungal, and Bacterial Pests and Pathogens of Honey Bees: Utilizing Environmental DNA from Honey Samples in Australia. Insects, 16(8), 764. https://doi.org/10.3390/insects16080764