Impact of Temperature and Soil Moisture on the Life Cycle of the Strawberry Pest Priophorus fulvostigmatus and Its Control
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Rearing Insects
2.2. Observations and Measurements of Growth, Development, and Reproduction Indicators Under Constant and Fluctuating Temperature Conditions
2.3. Effects of Soil Moisture on Pupal Development and Eclosion
2.4. Effects of Soil Saturation on Development During the Pupal Stage and Eclosion
2.5. Statistical Analysis
3. Results
3.1. Developmental Duration of P. fulvostigmatus at Different Temperatures
3.2. Longevity and Reproduction of P. fulvostigmatus at Different Temperatures
3.3. Egg Hatching, Larval Survival, and Adult Eclosion Rates at Different Temperatures
3.4. Population Parameters at Different Temperatures
3.5. Effect of Different Soil Moisture Conditions on Pupation and Eclosion
3.6. Effect of Water Immersion on Pupal Development and Eclosion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiao, F.; Che, L.W.; Xin, Y.; Wu, X.H.; Sun, Y.M.; Cui, J. Biological characteristics of Priophorus fulvostigmatus (Hymenoptera: Tenthredinidae) on strawberry. Plant Prot. 2022, 48, 13–187. [Google Scholar]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Hu, R.R.; Zhang, Y.J.; Liang, J.; Zhang, X.Y. The Effect of temperature and humidity on web-spinning sawflies (Cephlca kunyushanica Xiao). For. Res. 2020, 33, 107–112. [Google Scholar]
- Bozinovic, F.; Catalan, T.; Estay, S.A.; Sabat, P. Acclimation to daily thermal variability drives the metabolic performance curve. Evol. Ecol. Res. 2013, 15, 579–587. [Google Scholar]
- Yu, G.; Shen, H.D. Impact of climate change on locust plagues in Chinese history. Bull. Chin. Acad. Sci. 2010, 25, 207–210. [Google Scholar]
- Chen, M.; Shelton, A.M. Impact of soil type, moisture, and depth on swede midge (Diptera: Cecidomyiidae) pupation and emergence. Environ. Entomol. 2007, 36, 1349–1355. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Ma, T.; Xiao, Q.; Cao, P.; Chen, X.; Xiong, H.; Qin, W.; Sun, Z.; Wen, X. Choice and no-choice bioassays to study the pupation preference and emergence success of Ectropis grisescens. J. Vis. Exp. 2018, 140, e58126. [Google Scholar]
- Quesada-Moraga, E.; Valverde-García, P.; Garrido-Jurado, I. The effect of temperature and soil moisture on the development of the preimaginal mediterranean fruit fly (Diptera: Tephritidae). Environ. Entomol. 2012, 41, 966–970. [Google Scholar] [CrossRef]
- Li, Z.; Chambi, C.; Du, T.; Huang, C.; Wang, F.; Zhang, G.; Li, C.; Juma Kayeke, M. Effects of water immersion and soil moisture content on larval and pupal survival of Bactrocera minax (Diptera: Tephritidae). Insects 2019, 10, 138. [Google Scholar] [CrossRef]
- Schardong, I.S.; Reisig, D.D.; Possebom, T.; Heitman, J. Helicoverpa zea Boddie (Lepidoptera: Noctuidae) pupal success and adult eclosion across variable soil type and moisture. Environ. Entomol. 2024, 53, 511–520. [Google Scholar] [CrossRef]
- He, L.; Zhao, S.; Ali, A.; Ge, S.; Wu, K. Ambient humidity affects development, survival, and reproduction of the invasive fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), in China. J. Econ. Entomol. 2021, 114, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Hu, F.; Hu, B.; Bi, S.; Xu, L. Effect of soil moisture and flooding on the emergence and reproduction of Spodoptera frugiperda. Chin. J. Appl. Entomol. 2023, 60, 1133–1140. [Google Scholar]
- Shi, Y.; Li, L.Y.; Shahid, S.; Smagghe, G.; Liu, T.X. Effect of soil moisture on pupation behavior and inhabitation of Spodoptera frugiperda (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 2021, 56, 69–74. [Google Scholar] [CrossRef]
- Lu, Y.H.; Wu, K.M. Advances in research on cotton mirid bugs in China. Chin. J. Appl. Entomol. 2021, 49, 578–584. [Google Scholar]
- Han, Y.; Tang, L.D.; Fu, B.L.; Qiu, H.Y.; Wu, J.H.; Liu, K. The influences of different soil moisture and type on pupation and eclosion of Megalurothrips usitatus. J. Environ. Entomol. 2015, 37, 710–714. [Google Scholar]
- Chi, H. Two Sex–MS Chart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. Available online: https://www.faas.cn/cms/sitemanage/index.shtml?siteId=810640925913080000 (accessed on 28 February 2024).
- Ali, M.Y.; Naseem, T.; Arshad, M.; Ashraf, I.; Rizwan, M.; Tahir, M.; Rizwan, M.; Sayed, S.; Ullah, M.I.; Khan, R.R.; et al. Host-plant variations affect the biotic potential, survival, and population projection of Myzus persicae (Hemiptera: Aphididae). Insects 2021, 12, 375. [Google Scholar] [CrossRef]
- Rakha, M.; Bouba, N.; Ramasamy, S.; Regnard, J.L.; Hanson, P. Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content. Genet. Resour. Crop Evol. 2017, 64, 1011–1022. [Google Scholar] [CrossRef]
- Lu, Y.H.; Wu, K.M.; Wyckhuys, K.G.; Guo, Y.Y. Comparative study of temperature-dependent life histories of three economically important Adelphocoris spp. Physiol. Entomol. 2009, 34, 318–324. [Google Scholar] [CrossRef]
- Li, Y.; Yang, A.; Feng, L.K.; Wang, P.L. Effects of different temperatures on the development and reproduction of Lygus pratensis. Plant Prot. 2015, 41, 59–62. [Google Scholar]
- Pan, F.; Chen, J.C.; Xiao, T.B.; Ji, X.C.; Xie, S.H. Research advances on effect of fluctuating temperature on growth, development and reproduction of insect. J. Environ. Entomol. 2014, 36, 240–246. [Google Scholar]
- Du Plessis, H.; Schlemmer, M.L.; Van Den Berg, J. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2020, 11, 228. [Google Scholar] [CrossRef]
- Chu, S.J.; Lu, B.; Wang, P.L.; Lu, Y.H. Life table of Xestia c-nigrum (Lepidoptera: Noctuidae) population at different temperatures and the dynamics of field adults captured in light trap in Korla, Xinjiang, Northwest China. Acta Entomol. Sin. 2024, 67, 246–254. [Google Scholar]
- Xu, C.F.; Luo, D.; Yin, L.X.; Liu, X.P. Influence of temperature on the development and reproduction of the camphor sawfly, Mesoneura rufonota (Hymenoptera: Tenthredinidae). Acta Entomol. Sin. 2017, 60, 1216–1225. [Google Scholar]
- Yoder, J.A.; Chambers, M.J.; Tank, J.L.; Keeney, G.D. High temperature effects on water loss and survival examining the hardiness of female adults of the spider beetles, Mezium affine and Gibbium aequinoctiale. J. Insect Sci. 2009, 9, 68. [Google Scholar] [CrossRef] [PubMed]
- Augustin, J.; Bourgeois, G.; Brodeur, J.; Boivin, G. Low and high temperatures decrease the mating success of an egg parasitoid and the proportion of females in the population. J. Therm. Biol. 2022, 110, 103382. [Google Scholar] [CrossRef]
- Govindan, B.N.; Hutchison, W.D. Influence of temperature on age-stage, two-sex life tables for a Minnesota-acclimated population of the brown marmorated stink bug (Halyomorpha halys). Insects 2020, 11, 108. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Bashir, N.H.; Naeem, M.; Tian, R.; Tian, X.; Chen, H. Age-stage, two-sex life table of Atractomorpha lata (Orthoptera: Pyrgomorphidae) at different temperatures. Insects 2024, 15, 493. [Google Scholar] [CrossRef]
- Jian, X.Y.; Jiang, Y.T.; Wang, M.; Jia, N.; Cai, T.; Xing, D.; Li, C.X.; Zhao, T.Y.; Guo, X.X.; Wu, J.H. Effects of constant temperature and daily fluctuating temperature on the transovarial transmission and life cycle of Aedes albopictus infected with Zika virus. Front. Microbiol. 2023, 13, 1075362. [Google Scholar] [CrossRef]
- Colinet, H.; Sinclair, B.J.; Vernon, P.; Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 2015, 60, 123–140. [Google Scholar] [CrossRef]
- Kingsolver, J.G.; Ragland, G.J.; Diamond, S.E. Evolution in a constant environment: Thermal fluctuations and thermal sensitivity of laboratory and field populations of Manduca sexta. Evolution 2009, 63, 537–541. [Google Scholar] [CrossRef]
- Htwe, A.N.; Murata, M.; Takano, S.; Nakamura, S. Effects of constant and fluctuating temperatures on development of the coconut hispine beetle, Brontispa longissima (Coleoptera: Chrysomelidae) and two species of parasitoid. Biocontrol Sci. Technol. 2013, 23, 574–583. [Google Scholar] [CrossRef]
- Fantinou, A.A.; Perdikis, D.C.; Chatzoglou, C.S. Development of immature stages of Sesamia nonagrioides (Lepidoptera: Noctuidae) under alternating and constant temperatures. Environ. Entomol. 2003, 32, 1337–1342. [Google Scholar] [CrossRef]
- Renkema, J.M.; Cutler, G.C.; Lynch, D.H.; MacKenzie, K.; Walde, S.J. Mulch type and moisture level affect pupation depth of Rhagoletis mendax Curran (Diptera: Tephritidae) in the laboratory. J. Pest Sci. 2011, 84, 281–287. [Google Scholar] [CrossRef]
- Rhainds, M.; Davis, D.R.; Price, P.W. Bionomics of bagworms (Lepidoptera: Psychidae). Annu. Rev. Entomol. 2009, 54, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Dávila, C.; Fiorenza, J.E.; Gershenzon, J.; Reichelt, M.; Zavala, J.A.; Fernández, P.C. Sawfly egg deposition extends the insect life cycle and alters hormone and volatile emission profiles. Front. Ecol. Evol. 2023, 11, 1084063. [Google Scholar] [CrossRef]
- Chang, X.N.; Gao, H.J.; Chen, F.; Zhai, B.P. Effects of environmental moisture and precipitation on insects: A review. Chin. J. Ecol. 2008, 27, 619–625. [Google Scholar]
- Tian, T.; Zhai, Y.; Chen, Z.; Yang, Y.; Hong, B. Effects of saturated soil moisture on fall armyworm pupal development. Insects 2025, 16, 521. [Google Scholar] [CrossRef]
Time (Hour) | Temperature (°C) |
---|---|
0:00–2:00 | 16 |
2:00–4:00 | 18 |
4:00–6:00 | 20 |
6:00–8:00 | 22 |
8:00–10:00 | 24 |
10:00–12:00 | 26 |
12:00–14:00 | 28 |
14:00–16:00 | 26 |
16:00–18:00 | 24 |
18:00–20:00 | 22 |
20:00–22:00 | 20 |
22:00–24:00 | 18 |
Temperature (℃) | n | Egg (Days) | n | Larvae (Days) | n | Prepupa + Pupa (Days) | n | Immature Stage (Days) |
---|---|---|---|---|---|---|---|---|
16 | 56 | 9.73 ± 0.06 a | 45 | 18.82 ± 0.24 a | 41 | 17.73 ± 0.22 a | 41 | 44.93 ± 0.33 a |
19 | 56 | 8.48 ± 0.07 b | 47 | 14.60 ± 0.28 b | 40 | 13.98 ± 0.23 b | 40 | 36.68 ± 0.20 b |
22 | 57 | 7.42 ± 0.07 c | 49 | 11.55 ± 0.20 d | 31 | 11.52 ± 0.34 d | 31 | 30.23 ± 0.61 cd |
25 | 57 | 6.51 ± 0.07 d | 41 | 10.83 ± 0.21 d | 33 | 10.64 ± 0.32 d | 33 | 27.15 ± 0.32 d |
28 | 52 | 5.03 ± 0.04 e | 28 | 13.04 ± 0.35 c | 13 | 13.54 ± 0.50 c | 13 | 32.04 ± 0.59 c |
Temperature (℃) | n | Pre-Oviposition (Days) | n | Oviposition Period (Days) | n | Fecundity (Eggs/Female) | n | Longevity of Female Adults (Days) | n | Longevity of Male Adults (Days) |
---|---|---|---|---|---|---|---|---|---|---|
16 | 19 | 1.66 ± 0.16 a | 19 | 1.84 ± 0.19 a | 19 | 61.47 ± 3.56 a | 24 | 5.50 ± 0.19 a | 17 | 6.88 ± 0.24 bc |
19 | 23 | 1.30 ± 0.12 ab | 22 | 1.35 ± 0.12 ab | 23 | 59.35 ± 2.34 a | 31 | 4.97 ± 0.18 a | 9 | 8.33 ± 0.29 a |
22 | 20 | 1.13 ± 0.08 b | 20 | 1.15 ± 0.08 b | 20 | 65.80 ± 3.24 a | 25 | 5.00 ± 0.28 a | 6 | 8.17 ± 0.31 ab |
25 | 18 | 1.03 ± 0.05 b | 18 | 1.06 ± 0.06 b | 18 | 61.22 ± 3.73 a | 22 | 4.50 ± 0.23 a | 11 | 6.27 ± 0.33 c |
28 | 6 | 0.83 ± 0.11 b | 6 | 1.17 ± 0.17 b | 6 | 45.50 ± 6.64 b | 7 | 1.86 ± 0.26 b | 6 | 2.50 ± 0.22 d |
Temperature (℃) | Egg Hatching Rate (%) | Larval Survival Rate (%) | Adult Eclosion Rate (%) |
---|---|---|---|
16 | 91.88 ± 2.10 ab | 58.19 ± 1.29 b | 89.38 ± 1.93 a |
19 | 90.63 ± 2.74 ab | 60.69 ± 1.44 b | 80.73 ± 1.25 ab |
22 | 94.17 ± 2.71 a | 70.93 ± 1.95 a | 79.95 ± 3.54 ab |
25 | 93.57 ± 3.57 a | 58.57 ± 3.40 b | 71.77 ± 2.59 b |
28 | 81.25 ± 3.15 b | 40.83 ± 0.83 c | 14.58 ± 1.72 c |
Temperature (°C) | Net Reproductive Rate R0 (per Offspring Individual) | Mean Generation Time T (d) | Intrinsic Rate of Increase r (per Day) | Finite Rate of Increase λ (per Day) |
---|---|---|---|---|
16 | 32.90 ± 4.55 a | 46.68 ± 0.64 a | 0.1036 ± 0.0066 a | 1.1091 ± 0.0073 a |
19 | 26.27 ± 4.37 b | 38.18 ± 0.51 b | 0.1030 ± 0.0056 a | 1.1085 ± 0.0061 a |
22 | 23.70 ± 4.03 b | 33.31 ± 1.30 c | 0.0915 ± 0.0038 a | 1.0958 ± 0.0041 a |
25 | 22.23 ± 3.97 b | 31.71 ± 0.55 c | 0.0678 ± 0.0039 b | 1.0702 ± 0.0042 b |
28 | 5.10 ± 1.94 c | 29.95 ± 0.69 d | 0.0489 ± 0.0132 b | 1.0501 ± 0.0137 b |
Moisture Content (%) | n | Larvae Penetration Rate (%) | Prepupa + Pupa Duration (Days) | Eclosion Rate (%) | ||
---|---|---|---|---|---|---|
Minimum Period | Maximum Period | Average Period | ||||
8 | 30 | 93.33 ± 3.33 ab | 10 | 15 | 12.94 ± 0.30 a | 60.00 ± 5.77 b |
12 | 30 | 90.00 ± 0.00 ab | 11 | 16 | 13.13 ± 0.22 a | 80.00 ± 0.00 a |
16 | 30 | 96.67 ± 3.33 a | 11 | 16 | 12.92 ± 0.22 a | 83.33 ± 3.33 a |
20 | 30 | 83.33 ± 3.33 b | 11 | 14 | 13.00 ± 0.26 a | 56.67 ± 3.33 b |
24 | 30 | 0.00 ± 0.00 c |
Time of Water Immersion (h) | n | Prepupa + Pupa Duration (Days) | Eclosion Rate (%) | ||
---|---|---|---|---|---|
Minimum Period | Maximum Period | Average Period | |||
12 | 30 | 8 | 17 | 12.00 ± 0.47 ab | 80.00 ± 0.00 a |
24 | 30 | 10 | 12 | 11.06 ± 0.17 b | 53.33 ± 3.33 b |
72 | 30 | 8 | 13 | 11.57 ± 0.65 ab | 46.67 ± 3.33 b |
120 | 30 | 11 | 15 | 13.17 ± 0.41 a | 43.33 ± 3.33 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Yin, J.; Dong, L.; Gao, Y.; Shi, S.; Zou, J.; Li, W.; Wang, Y. Impact of Temperature and Soil Moisture on the Life Cycle of the Strawberry Pest Priophorus fulvostigmatus and Its Control. Insects 2025, 16, 717. https://doi.org/10.3390/insects16070717
Cui J, Yin J, Dong L, Gao Y, Shi S, Zou J, Li W, Wang Y. Impact of Temperature and Soil Moisture on the Life Cycle of the Strawberry Pest Priophorus fulvostigmatus and Its Control. Insects. 2025; 16(7):717. https://doi.org/10.3390/insects16070717
Chicago/Turabian StyleCui, Juan, Jingxu Yin, Lihuan Dong, Yu Gao, Shusen Shi, Jingzhu Zou, Wenbo Li, and Yu Wang. 2025. "Impact of Temperature and Soil Moisture on the Life Cycle of the Strawberry Pest Priophorus fulvostigmatus and Its Control" Insects 16, no. 7: 717. https://doi.org/10.3390/insects16070717
APA StyleCui, J., Yin, J., Dong, L., Gao, Y., Shi, S., Zou, J., Li, W., & Wang, Y. (2025). Impact of Temperature and Soil Moisture on the Life Cycle of the Strawberry Pest Priophorus fulvostigmatus and Its Control. Insects, 16(7), 717. https://doi.org/10.3390/insects16070717