Biocontrol of Fall Armyworm Larvae by Selected Mexican Metarhizium rileyi Isolates Under Greenhouse and Small-Scale Field Conditions in Maize
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Fungal Isolates
2.3. Experiments Under Greenhouse Conditions
2.4. Small-Scale Field Trials
2.5. Statistical Analysis
3. Results
3.1. Greenhouse Bioassay
3.2. Small-Scale Field Trial
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Technical Guidance on Fall Armyworm. In Coordinated Surveillance and an Early Warning System for the Sustainable Management of Transboundary Pests, with Special Reference to Fall Armyworm (Spodoptera frugiperda [J. E. Smith]) in South and Southeast Asia; FAO, Ed.; FAO: Bangkok, Thailand, 2022. [Google Scholar]
- Abbas, A.; Ullah, F.; Hafeez, M.; Han, X.; Dara, M.Z.N.; Gul, H.; Zhao, C.R. Biological control of fall armyworm, Spodoptera frugiperda. Agronomy 2022, 12, 2704. [Google Scholar] [CrossRef]
- Kumar, R.M.; Gadratagi, B.G.; Paramesh, V.; Kumar, P.; Madivalar, Y.; Narayanappa, N.; Ullah, F. Sustainable management of invasive fall armyworm, Spodoptera frugiperda. Agronomy 2022, 12, 2150. [Google Scholar] [CrossRef]
- Liu, J.; Lin, Y.; Huang, Y.; Liu, L.; Cai, X.; Lin, J.; Shu, B. The effects of carvacrol on development and gene expression profiles in Spodoptera frugiperda. Pestic. Biochem. Physiol. 2023, 195, 105539. [Google Scholar]
- Lu, Z.; Lu, K.; Li, Y.; Xiao, T.; Zhou, Z.; Chen, Y.; Liu, J.; Sun, Z.; Gui, F. Screening and functional validation of the core detoxification genes conferring broad-spectrum response to insecticides in Spodoptera frugiperda. Pest Manag. Sci. 2024, 80, 3491–3503. [Google Scholar] [PubMed]
- Chipabika, G.; Sohati, P.H.; Khamis, F.M.; Chikoti, P.C.; Copeland, R.; Ombura, L.; Kachapulula, P.W.; Tonga, T.K.; Niassy, S.; Sevgan, S. Abundance, diversity and richness of natural enemies of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), in Zambia. Front. Insect Sci. 2023, 3, 1091084. [Google Scholar]
- Panwar, N.; Szczepaniec, A. Endophytic entomopathogenic fungi as biological control agents of insect pest. Pest Manag. Sci. 2024, 80, 6033–6040. [Google Scholar]
- Wallis, C.M.; Sisterson, M.S. Opportunities for optimizing fungal biological control agents for long-term and effective management of insect pests of orchards and vineyards: A review. Front. Fungal Biol. 2024, 5, 1443343. [Google Scholar]
- Rajput, M.; Sajid, M.S.; Rajput, N.A.; George, D.R.; Usman, M.; Zeeshan, M.; Iqbal, O.; Bhutto, B.; Atiq, M.; Rizwan, H.M.; et al. Entomopathogenic fungi as alternatives to chemical acaricides: Chalenges, opportunities and prospects for sustainable tick control. Insects 2024, 15, 1017. [Google Scholar]
- Naranjo-Ortiz, M.A.; Gabaldón, T. Fungal evolution: Major ecological adaptations and evolutionary transitions. Biol. Rev. 2019, 94, 1443–1476. [Google Scholar]
- Wanjiru, J.; Sunday, K. Ovicidal effects of entomopathogenic fungal isolates on the invasive Fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Appl. Entomol. 2019, 143, 626–634. [Google Scholar]
- Yasin, M.; Wakil, W.; Ghazanfar, M.U.; Qayyum, M.A.; Tahir, M.; Bedford, G.O. Virulence of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against red palm weevil, Rhynchophorus ferrugineus (Olivier). Entomol. Res. 2019, 49, 3–12. [Google Scholar]
- Dev, B.; Verma, S.C.; Sharma, P.L.; Chandel, R.S.; Gaikwad, M.B.; Banshtu, T.; Sharma, P. Evaluation of Metarhizium rileyi Farlow (Samson) impregnated with azadirachtin and indoxacarb against Helicoverpa armigera (Hubner). Egypt. J. Biol. Pest Control 2021, 31, 142. [Google Scholar]
- Kepler, R.M.; Humber, R.A.; Bischoff, J.F.; Rehner, S.A. Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia 2014, 106, 811–829. [Google Scholar] [PubMed]
- Peng, Y.; Yao, Y.; Pang, J.; Di, T.; Du, G.; Chen, B. Genetic diversity and virulence variation of Metarhizium rileyi from infected Spodoptera frugiperda in corn fields. Microorganisms 2024, 12, 264. [Google Scholar] [CrossRef] [PubMed]
- Fronza, E.; Specht, A.; Heinzen, H.; Barros, N. Metarhizium (Nomuraea) rileyi as biological control agent. Biocontrol Sci. Technol. 2017, 27, 1243–1264. [Google Scholar]
- Edelstein, J.D.; Trumper, E.V.; Lecuona, R.E. Temperature-dependent development of the entomopathogenic fungus Nomuraea rileyi (Farlow) Samson in Anticarsia gemmatalis (Hübner) larvae (Lepidoptera: Noctuidae). Neotrop. Entomol. 2005, 34, 593–599. [Google Scholar]
- Visalakshi, M.; Varma, P.; Sekhar, V.; Bharathalaxmi, M.; Manisha, B.L.; Upendhar, S. Studies on mycosis of Metarhizium (Nomuraea) rileyi on Spodoptera frugiperda infesting maize in Andhra Pradesh, India. Egypt. J. Biol. Pest Control 2020, 30, 135. [Google Scholar]
- Xu, P.; He, Z.; Gao, X.; Zeng, X.; Wei, D.; Long, X.; Yu, Y. Research on the expression of immune-related genes at different stages in the third-instar larvae of Spodoptera frugiperda infected by Metarhizium rileyi. Insects 2025, 16, 199. [Google Scholar]
- Wang, Z. Pathogenicity of Metarhizium rileyi against Spodoptera litura larvae: Appresorium differentiation, proliferation in hemolymph, immune interaction, and reemergence of mycelium. Fungal Genet. Biol. 2021, 150, 103508. [Google Scholar]
- Ramos, Y.; Pineda-Guillermo, S.; Tamez-Guerra, P.; Orozco-Flores, A.A.; Figueroa de la Rosa, J.I.; Ramos-Ortiz, S.; Chavarrieta-Yáñez, J.M.; Martínez-Castillo, A.M. Natural prevalence, molecular characteristic, and biological activity of Metarhizium rileyi (Farlow) isolated from Spodoptera frugiperda (J. E. Smith) larvae in Mexico. J. Fungi 2024, 10, 416. [Google Scholar]
- Gu, M.; Tian, J.; Lou, Y.; Ran, J.; Mohamed, A.; Keyhani, N.; Jaronski, S.; Wang, G.; Chen, X.; Zang, L.; et al. Efficacy of Metarhizium rileyi granules for the control of Spodoptera frugiperda and its synergistic effects with chemical pesticides, sex pheromone and parasitoid. Entomol. Gen. 2023, 43, 1211–1219. [Google Scholar]
- Roy, M.C.; Kim, Y. Toll signal pathway activating eicosanoid biosynthesis shares its conserved upstream recognition components in a lepidopteran Spodoptera exigua upon infection by Metarhizium rileyi, an entomopathogenic fungus. J. Invertebr. Pathol. 2021, 188, 107707. [Google Scholar]
- Wang, G.; Xu, S.; Chen, L.; Zhan, T.; Zhang, X.; Liang, H.; Chen, B.; Peng, Y. Gut microbial diversity reveals differences in pathogenicity between Metarhizium rileyi and Beauveria bassiana during the early stage of infection in Spodoptera litura larvae. Microorganisms 2024, 12, 1129. [Google Scholar] [CrossRef]
- Duraimurugan, P.; Meena, K.S.; Roy, D.N.; Bharathi, E.; Devi, T.M.; Chowdappa, A.; Chandrika, K.S.V.P. Biocontrol efficacy of native Metarhizium rileyi (Hypocreales: Clavicipitaceae) isolates against Spodoptera litura (F) (Lepidoptera: Noctuidae) and in silico effect of the secondary metabolites against the virulent proteins of the insect. 3 Biotech 2025, 15, 57. [Google Scholar]
- Mejía, C.; Rocha, J.; Sanabria, J.; Gómez-Álvarez, M.I.; Quiroga-Cubides, G. Performance of Metarhizium rileyi Nm017: Nutritional supplementation to improve production and quality conidia. 3 Biotech 2024, 14, 89. [Google Scholar]
- Grijalba, E.P.; Espinel, C.; Cuartas, P.E.; Chaparro, M.; Villamizar, L.F. Metarhizium rileyi biopesticide to control Spodoptera frugiperda: Stability and insecticidal activity under glasshouse conditions. Fungal Biol. 2018, 122, 1069–1076. [Google Scholar]
- Faria, M.; Souza, D.; Sanches, M.; Schmidt, F.G.; Oliveira, C.; Benito, N.; Lopes, R. Evaluation of key parameters for developing a Metarhizium rileyi-based biopesticide against Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize: Laboratory, greenhouse, and field trials. Pest Manag. Sci. 2021, 78, 1146–1154. [Google Scholar] [PubMed]
- Barros, S.K.A.; de Almeida, E.G.; Ferreira, F.T.R.; Barreto, M.R.; Lopes, R.B.; Pitta, R.M. Field efficacy of Metarhizium rileyi applications against Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. Neotrop. Entomol. 2021, 50, 976–988. [Google Scholar]
- Johny, S.; Kyei-Poky, G.; Gauthier, D.; van Frankenhuyzen, K.; Krell, P.J. Characterization and virulence of Beauveria spp. recovered from emerald ash borer in southwestern Ontario, Canada. J. Invertebr. Pathol. 2012, 111, 41–49. [Google Scholar]
- Poitout, S.; Blues, R. Elevage de chenilles de vingt-huit especes de Lepidopteres Noctuidae et de deux especes d’Arctiidae sur milieu artificiel simple particularites de l’elevage selon les especes. Ann. Zool. Ecol. Anim. 1974, 6, 431–441. [Google Scholar]
- Falvo, M.L.; Pereira-Junior, R.A.; Rodrigues, J.; López Lastra, C.C.; García, J.J.; Fernandes, É.K.K.; Luz, C. UV-B radiation reduces in vitro germination of Metarhizium anisopliae s.l. but does not affect virulence in fungus-treated Aedes aegypti adults and development on dead mosquitoes. J. Appl. Microbiol. 2016, 121, 1710–1717. [Google Scholar] [PubMed]
- Rombach, M.C. Production of Beauveria bassiana (Deuteromycotina. Hyphomycetes) sympoduloconidia in submerged culture. Entomophaga 1989, 34, 45–52. [Google Scholar]
- Wraight, S.; Inglis, D.G.; Goettel, M.S. Fungi. In Field Manual of Techniques in Invertebrate Pathology; Lacey, L.A., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 223–248. [Google Scholar]
- Goettel, M.S.; Inglis, G.D. Fungi: Hyphomycetes. In Manual of Techniques in Insect Pathology, 2nd ed.; Lacey, L.A., Ed.; Academic Press: London, UK, 2012; pp. 213–249. [Google Scholar]
- Ritchie, S.W.; Hanway, J.J.; Benson, G.O. How a Corn Plant Develops? Special Report No. 48; Iowa State University of Science and Technology Cooperative Extension Service: Ames, IA, USA, 1993. [Google Scholar]
- Gómez-García, G.; Real-Santillan, R.A.; Larsen, J.; López, L.; Figueroa, J.I.; Pineda, S.; Martínez-Castillo, S. Maize mycorrhizas decrease the susceptibility of the foliar insect herbivore Spodoptera frugiperda to its homologous nucleopolyhedrovirus. Pest Manag. Sci. 2020, 77, 4701–4708. [Google Scholar]
- Sparks, T.C.; Thompson, G.D.; Kirst, H.A.; Hertlein, M.B.; Larson, L.L.; Worden, T.V.; Thibault, S.T. Biological activity of the spinosyns, new fermentation derived insect control agents, on tobacco budworm (Lepidoptera: Noctuidae) larvae. J. Econ. Entomol. 1998, 91, 1277–1283. [Google Scholar]
- Firake, D.M.; Behere, G.T. Natural mortality of invasive fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in maize agroecosystems of northeast India. Biol. Control 2020, 148, 104–303. [Google Scholar]
- Zhou, Y.; Xie, W.; Ye, J.; Zhang, T.; Li, D.; Zhi, J.; Zou, X. New potential strains for controlling Spodopetera frugiperda in China: Cordyceps cateniannulata and Metarhizium rileyi. BioControl 2020, 65, 663–672. [Google Scholar]
- Yang, X.; Zhang, Y.; Zhou, J.; Dong, H.; Bai, X.; Liu, W.; Gu, Z. Pathogenicity, infection process, physiological and biochemical effects of Metarhizium rileyi against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) larvae. Egypt. J. Biol. Pest Control 2024, 34, 19. [Google Scholar]
- Lepcha, O. Use of Entomopathogenic Fungus and Nematodes Indigenous to Thailand for Controlling of Fall Armyworm (Spodoptera frugiperda (J.E. Smith). Master’s Thesis, Naresuan University, Phitsanulok, Thailand, 2020; p. 88. [Google Scholar]
- Idrees, A.; Qadir, Z.A.; Akutse, K.S.; Afzal, A.; Hussain, M.; Islam, W.; Waqas, M.S.; Bamisile, B.S.; Li, J. Effectiveness of entomopathogenic fungi on immature stages and feeding performance of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Insects 2021, 12, 1044. [Google Scholar] [CrossRef]
- Ausique, J.J.S.; D’Alessandro, C.P.; Conceshi, M.R.; Mascarin, G.M.; Delalibera, I. Efficacy of entomopathogenic fungi against adult Diaphorina citri from laboratory to field applications. J. Pest Sci. 2017, 90, 947–960. [Google Scholar]
- Lopes, R.; Nicodemos, F.; Zacaroni, A.B.; de Sousa, H.; Faria, M. Dusting Metarhizium rileyi conidia with a drone for controlling fall armyworm and soybean looper in maize and soybean fields. BioControl 2024, 69, 675–685. [Google Scholar]
- Costa, S.C.; Ribeiro, C.; Girard, P.A.; Zumbihl, R.; Brehelin, M. Modes of phagocytosis of Gram-positive and Gram-negative bacteria by Spodoptera littoralis granular haemocytes. J. Insect Physiol. 2005, 51, 39–46. [Google Scholar] [PubMed]
- Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743. [Google Scholar] [PubMed]
- Mishra, S.; Srivastava, A.; Singh, A.; Pandey, G.; Srivastava, G. An overview of symbiotic and pathogenic interactions at the fungi-plant interface under environmental constraints. Front. Fungal Biol. 2024, 5, 1363460. [Google Scholar]
- Licona-Juárez, K.C.; Andrade, E.P.; Medina, H.R.; Oliveira, J.N.S.; Sosa-Gómez, D.R.; Rangel, D.E.N. Tolerance to UV-B radiation of the entomopathogenic fungus Metarhizium rileyi. Fungal Biol. 2023, 127, 1250–1258. [Google Scholar] [PubMed]
- Méndez, W.A.; Valle, J.; Ibarra, J.E.; Cisneros, J.; Penagos, D.I.; Williams, T. Spinosad and nucleopolyhedrovirus mixtures for control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. Biol. Control 2002, 25, 195–206. [Google Scholar]
- Cisneros, J.; Goulson, D.; Derwent, L.C.; Penagos, D.I.; Hernández, O.; Williams, T. Toxic effects of spinosad on predatory insects. Biol. Control 2002, 23, 156–163. [Google Scholar]
- Souza, M.; Sanches, M.; de Souza, D.; Faria, M.; Espinel-Correal, C.; Sihler, W.; Lopes, R. Within-host interactions of Metarhizium rileyi strains and nucleopolyhedroviruses in Spodoptera frugiperda and Anticarsia gemmatalis (Lepidoptera: Noctuidae). J. Invertebr. Pathol. 2019, 162, 10–18. [Google Scholar]
- Meyling, N.V.; Pell, J.K. Detection and avoidance of an entomopathogenic fungus by a generalist insect predator. Ecol. Entomol. 2006, 31, 162–171. [Google Scholar]
- Myles, T.G. Alarm, aggregation, and defense by Reticulitermes flavipes in response to a naturally occurring isolate of Metarhizium anisopliae. Sociobiology 2002, 40, 243–255. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, Y.; Pineda-Guillermo, S.; Tamez-Guerra, P.; Valle-Mora, J.F.; Figueroa-de la Rosa, J.I.; Ramos-Ortiz, S.; Palma-Castillo, L.J.; Martínez-Castillo, A.M. Biocontrol of Fall Armyworm Larvae by Selected Mexican Metarhizium rileyi Isolates Under Greenhouse and Small-Scale Field Conditions in Maize. Insects 2025, 16, 706. https://doi.org/10.3390/insects16070706
Ramos Y, Pineda-Guillermo S, Tamez-Guerra P, Valle-Mora JF, Figueroa-de la Rosa JI, Ramos-Ortiz S, Palma-Castillo LJ, Martínez-Castillo AM. Biocontrol of Fall Armyworm Larvae by Selected Mexican Metarhizium rileyi Isolates Under Greenhouse and Small-Scale Field Conditions in Maize. Insects. 2025; 16(7):706. https://doi.org/10.3390/insects16070706
Chicago/Turabian StyleRamos, Yordanys, Samuel Pineda-Guillermo, Patricia Tamez-Guerra, Javier Francisco Valle-Mora, José Isaac Figueroa-de la Rosa, Selene Ramos-Ortiz, Luis Jesús Palma-Castillo, and Ana Mabel Martínez-Castillo. 2025. "Biocontrol of Fall Armyworm Larvae by Selected Mexican Metarhizium rileyi Isolates Under Greenhouse and Small-Scale Field Conditions in Maize" Insects 16, no. 7: 706. https://doi.org/10.3390/insects16070706
APA StyleRamos, Y., Pineda-Guillermo, S., Tamez-Guerra, P., Valle-Mora, J. F., Figueroa-de la Rosa, J. I., Ramos-Ortiz, S., Palma-Castillo, L. J., & Martínez-Castillo, A. M. (2025). Biocontrol of Fall Armyworm Larvae by Selected Mexican Metarhizium rileyi Isolates Under Greenhouse and Small-Scale Field Conditions in Maize. Insects, 16(7), 706. https://doi.org/10.3390/insects16070706