Characterization and Functional Analysis of Small Heat Shock Protein Genes (Hsp22.2 and Hsp26.7) in Sitodiplosis mosellana Diapause
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Collection
2.2. RNA Extraction, cDNA Synthesis, and gDNA Isolation
2.3. Cloning of the Opening Reading Frames of SmHsp22.7 and SmHsp26.7
2.4. Bioinformatics
2.5. Heat/Cold Shock Treatments
2.6. Quantitative Real-Time PCR (qRT-PCR) Analysis
2.7. dsRNA Synthesis and RNA Interference
2.8. Cold Tolerance of Larvae After RNAi
2.9. Data Analysis
3. Results
3.1. Characterization of SmHsp22.2 and SmHsp26.7 cDNAs
3.2. Expression of SmHsp22.2 and Hsp26.7 During Diapause
3.3. Expression of SmHsp22.2 and Hsp26.7 in Response to Heat Shock During Diapause
3.4. Expression of SmHsp22.2 and Hsp26.7 in Response to Cold Shock During Diapause
3.5. Effects of SmHsp22.2 and SmHsp26.7 Knockdown on Cold Tolerance in S. mosellana
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zonato, V.; Collins, L.; Pegoraro, M.; Tauber, E.; Kyriacou, C.P. Is diapause an ancient adaptation in Drosophila? J. Insect Physiol. 2017, 98, 267–274. [Google Scholar] [CrossRef]
- Schebeck, M.; Lehmann, P.; Laparie, M.; Bentz, B.J.; Ragland, G.J.; Battisti, A.; Hahn, D.A. Seasonality of forest insects: Why diapause matters. Trends Ecol. Evol. 2024, 39, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.Y.; Wang, Z.C.; Wang, R.; Zhang, X.M.; Li, M.Y.; Xin, J.J.; Qin, Y.S.; Zhang, C.; Meng, F.L. Transcriptomic and proteomic analyses of the mechanisms of overwintering diapause in soybean pod borer (Leguminivora glycinivorella). Pest Manag. Sci. 2020, 76, 4248–4257. [Google Scholar] [CrossRef]
- Guo, S.; Tian, Z.; Wu, Q.W.; King-Jones, K.; Liu, W.; Zhu, F.; Wang, X.P. Steroid hormone ecdysone deficiency stimulates preparation for photoperiodic reproductive diapause. PLoS Genet. 2021, 17, e1009352. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Cai, D.X.; Geng, S.L.; Lyu, Z.P.; Wu, Y.L.; Guo, J.J.; Li, H.Y. Transcriptome-based analysis reveals a crucial role of the 20E/HR3 pathway in the diapause of Pieris rapae. Pestic. Biochem. Physiol. 2024, 199, 105787. [Google Scholar] [CrossRef] [PubMed]
- Srygley, R.B. Effects of parental diet on mormon cricket egg diapause, embryonic development rate, and periodic outbreaks. J. Insect Physiol. 2024, 157, 104681. [Google Scholar] [CrossRef]
- Hahn, D.A.; Denlinger, D.L. Energetics of insect diapause. Annu. Rev. Entomol. 2011, 56, 103–121. [Google Scholar] [CrossRef]
- Hand, S.C.; Denlinger, D.L.; Podrabsky, J.E.; Roy, R. Mechanisms of animal diapause: Recent developments from nematodes, crustaceans, insects, and fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R1193–R1211. [Google Scholar] [CrossRef]
- Denlinger, D.L. Why study diapause? Entomol. Res. 2008, 38, 1–9. [Google Scholar] [CrossRef]
- Altincicek, B.; Knorr, E.; Vilcinskas, A. Beetle immunity: Identification of immune-inducible genes from the model insect Tribolium castaneum. Dev. Comp. Immunol. 2008, 32, 585–595. [Google Scholar] [CrossRef]
- Lubkowska, A.; Pluta, W.; Strońska, A.; Lalko, A. Role of heat shock proteins (HSP70 and HSP90) in viral infection. Int. J. Mol. Sci. 2021, 22, 9366. [Google Scholar] [CrossRef]
- Shen, Z.J.; Liu, Y.J.; Cheng, J.; Li, Z.; Michaud, J.P.; Liu, X.X. High temperature exposure reduces the susceptibility of Helicoverpa armigera to its nucleopolyhedrovirus (HearNPV) by enhancing expression of heat shock proteins. Pest Manag. Sci. 2022, 78, 2378–2389. [Google Scholar] [CrossRef] [PubMed]
- Pei, T.W.; Zhang, M.; Nwanade, C.F.; Meng, H.; Bai, R.W.; Wang, Z.H.; Wang, R.T.; Zhang, T.A.; Liu, J.Z.; Yu, Z.H. Sequential expression of small heat shock proteins contributing to the cold response of Haemaphysalis longicornis (Acari: Ixodidae). Pest Manag. Sci. 2024, 80, 2061–2071. [Google Scholar] [CrossRef] [PubMed]
- King, A.M.; MacRae, T.H. Insect heat shock proteins during stress and diapause. Annu. Rev. Entomol. 2015, 60, 59–75. [Google Scholar] [CrossRef]
- Yu, C.; Leung, S.K.P.; Zhang, W.X.; Lai, L.T.F.; Chan, Y.K.; Wong, M.C.; Benlekbir, S.; Cui, Y.; Jiang, L.W.; Lau, W.C.Y. Structural basis of substrate recognition and thermal protection by a small heat shock protein. Nat. Commun. 2021, 12, 3007. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, B.; Ferrari, V.; Cozzi, M.; Chierichetti, M.; Casarotto, E.; Pramaggiore, P.; Mina, F.; Galbiati, M.; Rusmini, P.; Crippa, V.; et al. The role of small heat shock proteins in protein misfolding associated motoneuron diseases. Int. J. Mol. Sci. 2022, 23, 11759. [Google Scholar] [CrossRef]
- Huang, L.H.; Wang, H.S.; Kang, L. Different evolutionary lineages of large and small heat shock proteins in eukaryotes. Cell Res. 2008, 18, 1074–1076. [Google Scholar] [CrossRef]
- Schell, R.; Mullis, M.; Ehrenreich, I.M. Modifiers of the genotype-phenotype map: Hsp90 and beyond. PLoS Biol. 2016, 14, e2001015. [Google Scholar] [CrossRef]
- Zarouchlioti, C.; Parfitt, D.A.; Li, W.W.; Gittings, L.M.; Cheetham, M.E. DNAJ proteins in neurodegeneration: Essential and protective factors. Philos. Trans. R. Soc. Lond B Biol. Sci. 2018, 373, 20160534. [Google Scholar] [CrossRef]
- Basha, E.; Friedrich, K.L.; Vierling, E. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J. Biol. Chem. 2006, 281, 39943–39952. [Google Scholar] [CrossRef]
- Kriehuber, T.; Rattei, T.; Weinmaier, T.; Bepperling, A.; Haslbeck, M.; Buchner, J. Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J. 2010, 24, 3633–3642. [Google Scholar] [CrossRef] [PubMed]
- Hayes, D.; Napoli, V.; Mazurkie, A.; Stafford, W.F.; Graceffa, P. Phosphorylation dependence of hsp27 multimeric size and molecular chaperone function. J. Biol. Chem. 2009, 284, 18801–18807. [Google Scholar] [CrossRef]
- Carra, S.; Alberti, S.; Arrigo, P.A.; Benesch, J.L.; Benjamin, I.J.; Boelens, W.; Bartelt-Kirbach, B.; Brundel, B.J.J.M.; Buchner, J.; Bukau, B.; et al. The growing world of small heat shock proteins: From structure to functions. Cell Stress Chaperones 2017, 22, 601–611. [Google Scholar] [CrossRef]
- Dubrez, L.; Causse, S.; Borges, B.N.; Dumétier, B.; Garrido, C. Heat-shock proteins: Chaperoning DNA repair. Oncogene 2020, 39, 516–529. [Google Scholar] [CrossRef]
- Shan, R.T.; Liu, N.; Yan, Y.Y.; Liu, B. Apoptosis, autophagy and atherosclerosis: Relationships and the role of Hsp27. Pharmacol. Res. 2021, 166, 105169. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, M.T.; Bellanger, T.; Trecca, M.I.; Weidmann, S.; Scrima, R.; Spano, G.; Russo, P.; Capozzi, V.; Fiocco, D. Molecular chaperone function of three small heat-shock proteins from a model probiotic species. Cell Stress Chaperones 2023, 28, 79–89. [Google Scholar] [CrossRef]
- Miano, F.N.; Jiang, T.; Zhang, J.; Zhang, W.N.; Peng, Y.; Xiao, H.J. Identification and up-regulation of three small heat shock proteins in summer and winter diapause in response to temperature stress in Pieris melete. Int. J. Biol. Macromol. 2022, 209, 1144–1154. [Google Scholar] [CrossRef] [PubMed]
- Dageri, A. Molecular characterization and expression analysis of six small heat shock protein genes in Trogoderma granarium during cold and starvation-induced larval diapause. J. Stored Prod. Res. 2024, 108, 102368. [Google Scholar] [CrossRef]
- Tachibana, S.I.; Numata, H.; Goto, S.G. Gene expression of heat-shock proteins (Hsp23, Hsp70 and Hsp90) during and after larval diapause in the blow fly Lucilia sericata. J. Insect Physiol. 2005, 51, 641–647. [Google Scholar] [CrossRef]
- Rinehart, J.P.; Li, A.; Yocum, G.D.; Robich, R.M.; Hayward, S.A.; Denlinger, D.L. Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc. Natl. Acad. Sci. USA 2007, 104, 11130–11137. [Google Scholar] [CrossRef]
- Fremdt, H.; Amendt, J.; Zehner, R. Diapause-specific gene expression in Calliphora vicina (Diptera: Calliphoridae)—A useful diagnostic tool for forensic entomology. Int. J. Legal Med. 2014, 128, 1001–1011. [Google Scholar] [CrossRef] [PubMed]
- Aruda, A.M.; Baumgartner, M.F.; Reitzel, A.M.; Tarrant, A.M. Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. J. Insect Physiol. 2011, 57, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.J.; Xu, K.K.; Cao, Y.; Meng, Y.L.; Liu, Y.; Li, C. Identification and expression analysis of four small heat shock protein genes in cigarette beetle, Lasioderma serricorne (Fabricius). Insects 2019, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Uzelac, I.; Avramov, M.; Knežić, T.; Tatić, V.; Gošić-Dondo, S.; Popović, Ž.D. Prolonged heat stress during winter diapause alters the expression of stress-response genes in Ostrinia nubilalis (Hbn.). Int. J. Mol. Sci. 2024, 25, 3100. [Google Scholar] [CrossRef]
- Gkouvitsas, T.; Kontogiannatos, D.; Kourti, A. Differential expression of two small Hsps during diapause in the corn stalk borer Sesamia nonagrioides (Lef.). J. Insect Physiol. 2008, 54, 1503–1510. [Google Scholar] [CrossRef]
- Smith, M.A.H.; Wise, I.L.; Fox, S.L.; Vera, C.L.; DePauw, R.M.; Lukow, O.M. Seed damage and sources of yield loss by Sitodiplosis mosellana (Diptera: Cecidomyiidae) in resistant wheat varietal blends relative to susceptible wheat cultivars in western Canada. Can. Entomol. 2014, 146, 335–346. [Google Scholar] [CrossRef]
- Shrestha, G.; Reddy, G.V.P. Field efficacy of insect pathogen, botanical, and jasmonic acid for the management of wheat midge Sitodiplosis mosellana and the impact on adult parasitoid Macroglenes penetrans populations in spring wheat. Insect Sci. 2019, 26, 523–535. [Google Scholar] [CrossRef]
- Zhang, L.J.; Geng, M.M.; Zhang, Z.; Zhang, Y.; Yan, G.J.; Wen, S.M.; Liu, G.R.; Wang, R.H. Molecular mapping of major QTL conferring resistance to orange wheat blossom midge (Sitodiplosis mosellana) in Chinese wheat varieties with selective populations. Theor. Appl. Genet. 2020, 133, 491–502. [Google Scholar] [CrossRef]
- Wang, Y.; Long, Z.R.; Feng, A.R.; Cheng, W.N. Effects of initial population number, wheat varieties and precipitation on infestation of Sitodiplosis mosellana (Diptera: Cecidomyiidae). Acta Agri. Boreali-Occident. Sin. 2015, 24, 165–171. [Google Scholar]
- Zhao, J.J.; Huang, Q.T.; Zhang, G.J.; Zhu-Salzman, K.Y.; Cheng, W.N. Characterization of two small heat shock protein genes (Hsp17.4 and Hs20.3) from Sitodiplosis mosellana, and their expression regulation during diapause. Insects 2021, 12, 119. [Google Scholar] [CrossRef]
- Cheng, W.N.; Li, D.; Wang, Y.; Liu, Y.; Zhu-Salzman, K.Y. Cloning of heat shock protein genes (hsp70, hsc70 and hsp90) and their expression in response to larval diapause and thermal stress in the wheat blossom midge, Sitodiplosis mosellana. J. Insect Physiol. 2016, 95, 66–77. [Google Scholar] [CrossRef]
- Cheng, W.N.; Long, Z.R.; Zhang, Y.D.; Liang, T.T.; Zhu-Salzman, K.Y. Effects of temperature, soil moisture and photoperiod on diapause termination and post-diapause development of the wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). J. Insect Physiol. 2017, 103, 78–85. [Google Scholar] [CrossRef]
- Doane, J.F.; Olfert, O. Seasonal development of wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in Saskatchewan, Canada. Crop Prot. 2008, 27, 951–958. [Google Scholar] [CrossRef]
- Chen, H.S.; Lei, C.L.; Wu, Y.Q.; Dou, Z.B.; Miao, J.; Duan, Y.; Jiang, Y.L. Detection on supercooling points of Sitodiplosis mosellana (Gehin) round cocoons in different geographical districts. J. Huazhong Agric. Univ. 2012, 31, 212–215. [Google Scholar]
- Kumar, L.V.; Ramakrishna, T.; Rao, C.M. Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J. Biol. Chem. 1999, 274, 24137–24141. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.W.; Li, X.; Yu, Q.Y.; Xiang, Z.H.; Kishino, H.; Zhang, Z. The small heat shock protein (sHSP) genes in the silkworm, Bombyx mori, and comparative analysis with other insect sHSP genes. BMC Evol. Biol. 2009, 9, 215. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Xiong, W.; Hu, X.; Gu, S.; Li, B. Characterization and functional analysis of hsp21.8b: An orthologous small heat shock protein gene in Tribolium castaneum. J. Appl. Entomol. 2018, 142, 12519. [Google Scholar] [CrossRef]
- Quan, G.X.; Duan, J.; Fick, W.; Kyei-Poku, G.; Candau, J.N. Expression profiles of 14 small heat shock protein (sHSP) transcripts during larval diapause and under thermal stress in the spruce budworm, Choristoneura fumiferana (L.). Cell Stress Chaperones 2018, 23, 1247–1256. [Google Scholar] [CrossRef]
- Li, H.B.; Dai, C.G.; Hu, Y. Characterization and expression analysis of genes encoding three small heat shock proteins in the oriental armyworm, Mythimna separata (Walker). PLoS ONE 2020, 15, e0235912. [Google Scholar] [CrossRef]
- Comeron, J.M. Selective and mutational patterns associated with gene expression in humans: Influences on synonymous composition and intron presence. Genetics 2004, 167, 1293–1304. [Google Scholar] [CrossRef]
- Liu, W.W.; Yang, P.; Chen, X.M.; Xu, D.L.; Hu, Y.H. Cloning and expression analysis of four heat shock protein genes in Ericerus pela (Homoptera: Coccidae). J. Insect Sci. 2014, 14, 142. [Google Scholar] [CrossRef] [PubMed]
- Bagnéris, C.; Bateman, O.A.; Naylor, C.E.; Cronin, N.; Boelens, W.C.; Keep, N.H.; Slingsby, C. Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. J. Mol. Biol. 2009, 392, 1242–1252. [Google Scholar] [CrossRef] [PubMed]
- de Jong, W.W.; Leunissen, J.A.; Voorter, C.E. Evolution of the alpha-crystallin/small heat-shock protein family. Mol. Biol. Evol. 1993, 10, 103–126. [Google Scholar]
- Si, F.L.; He, Z.B.; Chen, B. Cloning and expression profiling of heat shock protein DaHSP23 gene in the winter and summer diapause pupae of the onion maggot, Delia antiqua (Diptera: Anthomyiidae). Acta Entomol. Sin. 2016, 59, 402–410. [Google Scholar]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Barnes, H.F. Studies of fluctuations in insect populations. Ⅷ. The wheat blossom midge on broadbalk, 1932–1940, with a discussion of the results obtained 1927-40. J. Anim. Ecol. 1941, 10, 94–120. [Google Scholar] [CrossRef]
- Yuan, F. The Wheat Blossom Midges Sitodiplosis mosellana (Gehin) and Contarinia tritici (Kirby): Their Plague Principle and Control; Science Press: Beijing, China, 2004. [Google Scholar]
- Colinet, H.; Lee, S.F.; Hoffmann, A. Knocking down expression of Hsp22 and Hsp23 by RNA interference affects recovery from chill coma in Drosophila melanogaster. J. Exp. Biol. 2010, 213, 4146–4150. [Google Scholar] [CrossRef]
- Pan, D.D.; Lu, M.X.; Li, Q.Y.; Du, Y.Z. Characteristics and expression of genes encoding two small heat shock protein genes lacking introns from Chilo suppressalis. Cell Stress Chaperones 2018, 23, 55–64. [Google Scholar] [CrossRef]
- Yocum, G.D.; Joplin, K.H.; Denlinger, D.L. Upregulation of a 23 kDa small heat shock protein transcript during pupal diapause in the flesh fly, Sarcophaga, crassipalpis. Insect Biochem. Mol. Biol. 1998, 28, 677–682. [Google Scholar] [CrossRef]
- Dong, C.L.; Zhu, F.; Lu, M.X.; Du, Y.Z. Characterization and functional analysis of Cshsp19.0 encoding a small heat shock protein in Chilo suppressalis (Walker). Int. J. Biol. Macromol. 2021, 188, 924–931. [Google Scholar] [CrossRef]
Primer Name | Sequence (5′ to 3′) | Purpose |
---|---|---|
Hsp22.2 sense | CTAAAGTGAAGTAGAAAAAATGG | ORF and gDNA cloning |
Hsp22.2 antisense | GCATCACATCTTTTACATTCC | |
Hsp26.7 sense | ATGAAGTATTTCTCCGTTTTGG | |
Hsp26.7 antisense | TTAGGCCTTTAGTTTTTCATCC | |
dsHsp22.2 sense | taatacgactcactatagggTGTTTCACGACACTTCAGCC | dsRNA synthesis |
dsHsp22.2 antisense | taatacgactcactatagggGGCTCCAGTTTGTTGGATGT | |
dsHsp26.7 sense | taatacgactcactatagggAGATTGTTGGCTCACTCGCT | |
dsHsp26.7 antisense | taatacgactcactatagggCTTGGCGTTCACCACAATCG | |
dsGFP sense | taatacgactcactatagggTGACCACCCTGACCTAC | |
dsGFP antisense | taatacgactcactatagggTTGATGCCGTTCTTCTGC | |
Hsp22.2 sense | ATTGCCATCGTTGTTCTG | qPCR |
Hsp22.2 antisense | TCCATCTTCGGGTGTGCT | |
Hsp26.7 sense | CGATTGTGGTGAACGCCAAG | |
Hsp26.7 antisense | CAATTTGGCGCACGTTGGAT | |
GAPDH sense | CCATCAAAGCAAGCAAGA | |
GAPDH antisense | CAGCACGGAGCACAAGAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Ma, Q.; Liu, X.; Zhu-Salzman, K.; Cheng, W. Characterization and Functional Analysis of Small Heat Shock Protein Genes (Hsp22.2 and Hsp26.7) in Sitodiplosis mosellana Diapause. Insects 2025, 16, 649. https://doi.org/10.3390/insects16070649
Huang Q, Ma Q, Liu X, Zhu-Salzman K, Cheng W. Characterization and Functional Analysis of Small Heat Shock Protein Genes (Hsp22.2 and Hsp26.7) in Sitodiplosis mosellana Diapause. Insects. 2025; 16(7):649. https://doi.org/10.3390/insects16070649
Chicago/Turabian StyleHuang, Qitong, Qian Ma, Xiaobin Liu, Keyan Zhu-Salzman, and Weining Cheng. 2025. "Characterization and Functional Analysis of Small Heat Shock Protein Genes (Hsp22.2 and Hsp26.7) in Sitodiplosis mosellana Diapause" Insects 16, no. 7: 649. https://doi.org/10.3390/insects16070649
APA StyleHuang, Q., Ma, Q., Liu, X., Zhu-Salzman, K., & Cheng, W. (2025). Characterization and Functional Analysis of Small Heat Shock Protein Genes (Hsp22.2 and Hsp26.7) in Sitodiplosis mosellana Diapause. Insects, 16(7), 649. https://doi.org/10.3390/insects16070649