Development of a New Trapping System with Potential Implementation as a Tool for Mosquito-Borne Arbovirus Surveillance
Simple Summary
Abstract
1. Background
2. Materials and Methods
BR-ArboTrap Description
3. Laboratory Trap Testing
3.1. Artificial Blood Feeding of Mosquitoes
3.2. BR-ArboTrap Experiments
3.3. Mosquitoes and FTA® Cards’ Processing
3.4. Viral Detection
3.5. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DENV | dengue virus |
ZIKV | Zika virus |
CHIKV | chikungunya virus |
OROV | Oropouche virus |
WNV | West Nile virus |
FTA | Flinders Technology Associates |
RT-qPCR | Reverse transcriptase quantitative PCR |
CO2 | carbon dioxide |
BSL-2 | Biosafety Level 2 |
dpe | days post-exposure |
TBE | Tris-Borate-EDTA buffer |
RT-PCR | Reverse transcriptase PCR |
Cq | Cycle quantification |
SD | Standard deviation |
CI | confidence interval |
RRV | Ross River virus |
PFUs | plaque-forming units |
References
- Turell, M.J. Members of the Culex Pipiens Complex as Vectors of Viruses. J. Am. Mosq. Control Assoc. 2012, 28, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Souza-Neto, J.A.; Powell, J.R.; Bonizzoni, M. Aedes aegypti Vector Competence Studies: A Review. Infect. Genet. Evol. 2019, 67, 191–209. [Google Scholar] [CrossRef]
- Dengue; PAHO: Washington, DC, USA, 2025. Available online: https://www3.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en.html (accessed on 20 December 2024).
- Zika; PAHO: Washington, DC, USA, 2025. Available online: https://www3.paho.org/data/index.php/en/mnu-topics/zika.html (accessed on 20 December 2024).
- Chikungunya; PAHO: Washington, DC, USA, 2025. Available online: https://www3.paho.org/data/index.php/en/mnu-topics/chikv-en.html (accessed on 20 December 2024).
- PAHO. Epidemiological Update Yellow Fever in the Americas Region. 2024. Available online: https://www.paho.org/en/documents/epidemiological-update-yellow-fever-americas-region-19-september-2024 (accessed on 20 December 2024).
- WHO. Oropouche Virus Disease—Region of the Americas. 2024. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON545 (accessed on 20 December 2024).
- West Nile Virus; CDC: Washington, DC, USA, 2025. Available online: https://www.cdc.gov/west-nile-virus/data-maps/current-year-data.html (accessed on 20 December 2024).
- Martins-Filho, P.R.; Carvalho, T.A.; Dos Santos, C.A. Mayaro Fever in Brazil from 2014 to 2024. J. Travel Med. 2024, 31, taae105. [Google Scholar] [CrossRef]
- Paixão, E.S.; Teixeira, M.G.; Rodrigues, L.C. Zika, Chikungunya and Dengue: The Causes and Threats of New and Re-Emerging Arboviral Diseases. BMJ Glob. Health 2018, 3, e000530. [Google Scholar] [CrossRef]
- Ulbert, S. West Nile Virus Vaccines—Current Situation and Future Directions. Hum. Vaccin. Immunother. 2019, 15, 2337–2342. [Google Scholar] [CrossRef]
- Ramírez, A.L.; van den Hurk, A.F.; Meyer, D.B.; Ritchie, S.A. Searching for the Proverbial Needle in a Haystack: Advances in Mosquito-Borne Arbovirus Surveillance. Parasit. Vectors 2018, 11, 320. [Google Scholar] [CrossRef]
- Maia, L.J.; Oliveira, C.H.d.; Silva, A.B.; Souza, P.A.A.; Müller, N.F.D.; Cardoso, J.d.C.; Ribeiro, B.M.; Abreu, F.V.S.d.; Campos, F.S. Arbovirus Surveillance in Mosquitoes: Historical Methods, Emerging Technologies, and Challenges Ahead. Exp. Biol. Med. 2023, 248, 2072–2082. [Google Scholar] [CrossRef]
- Kohl, C.; Wegener, M.; Nitsche, A.; Kurth, A. Use of RNALater® Preservation for Virome Sequencing in Outbreak Settings. Front. Microbiol. 2017, 8, 1888. [Google Scholar] [CrossRef]
- Briegel, H.; Knüsel, I.; Timmermann, S.E. Aedes aegypti: Size, Reserves, Survival, and Flight Potential. J. Vector Ecol. 2001, 26, 21–31. [Google Scholar] [PubMed]
- Hill, S.R.; Ignell, R. Modulation of Odour-Guided Behaviour in Mosquitoes. Cell Tissue Res. 2021, 383, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Tallon, A.K.; Hill, S.R.; Ignell, R. Sex and Age Modulate Antennal Chemosensory-Related Genes Linked to the Onset of Host Seeking in the Yellow-Fever Mosquito, Aedes aegypti. Sci. Rep. 2019, 9, 43. [Google Scholar] [CrossRef]
- Franz, A.W.E.; Kantor, A.M.; Passarelli, A.L.; Clem, R.J. Tissue Barriers to Arbovirus Infection in Mosquitoes. Viruses 2015, 7, 3741–3767. [Google Scholar] [CrossRef]
- Rückert, C.; Ebel, G.D. How Do Virus-Mosquito Interactions Lead to Viral Emergence? Trends Parasitol. 2018, 34, 310–321. [Google Scholar] [CrossRef]
- Kramer, L.D.; Ciota, A.T. Dissecting Vectorial Capacity for Mosquito-Borne Viruses. Curr. Opin. Virol. 2015, 15, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C. Incrimination of Mosquito Vectors. Nat. Microbiol. 2020, 5, 232–233. [Google Scholar] [CrossRef]
- Gary, R.E., Jr.; Foster, W.A. Diel Timing and Frequency of Sugar Feeding in the Mosquito Anopheles Gambiae, Depending on Sex, Gonotrophic State and Resource Availability. Med. Vet. Entomol. 2006, 20, 308–316. [Google Scholar] [CrossRef]
- van den Hurk, A.F.; Johnson, P.H.; Hall-Mendelin, S.; Northill, J.A.; Simmons, R.J.; Jansen, C.C.; Frances, S.P.; Smith, G.A.; Ritchie, S.A. Expectoration of Flaviviruses during Sugar Feeding by Mosquitoes (Diptera: Culicidae). J. Med. Entomol. 2007, 44, 845–850. [Google Scholar] [CrossRef]
- Hall-Mendelin, S.; Ritchie, S.A.; Johansen, C.A.; Zborowski, P.; Cortis, G.; Dandridge, S.; Hall, R.A.; van den Hurk, A.F. Exploiting Mosquito Sugar Feeding to Detect Mosquito-Borne Pathogens. Proc. Natl. Acad. Sci. USA 2010, 107, 11255–11259. [Google Scholar] [CrossRef]
- Hall-Mendelin, S.; Hewitson, G.R.; Genge, D.; Burtonclay, P.J.; De Jong, A.J.; Pyke, A.T.; van den Hurk, A.F. FTA Cards Facilitate Storage, Shipment, and Detection of Arboviruses in Infected Aedes aegypti Collected in Adult Mosquito Traps. Am. J. Trop. Med. Hyg. 2017, 96, 1241–1243. [Google Scholar] [CrossRef]
- Ritchie, S.A.; Cortis, G.; Paton, C.; Townsend, M.; Shroyer, D.; Zborowski, P.; Hall-Mendelin, S.; Van Den Hurk, A.F. A Simple Non-Powered Passive Trap for the Collection of Mosquitoes for Arbovirus Surveillance. J. Med. Entomol. 2013, 50, 185–194. [Google Scholar] [CrossRef]
- Flies, E.J.; Toi, C.; Weinstein, P.; Doggett, S.L.; Williams, C.R. Converting Mosquito Surveillance to Arbovirus Surveillance with Honey-Baited Nucleic Acid Preservation Cards. Vector Borne Zoonotic Dis. 2015, 15, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Wipf, N.C.; Guidi, V.; Tonolla, M.; Ruinelli, M.; Müller, P.; Engler, O. Evaluation of Honey-Baited FTA Cards in Combination with Different Mosquito Traps in an Area of Low Arbovirus Prevalence. Parasit. Vectors 2019, 12, 554. [Google Scholar] [CrossRef]
- Birnberg, L.; Temmam, S.; Aranda, C.; Correa-Fiz, F.; Talavera, S.; Bigot, T.; Eloit, M.; Busquets, N. Viromics on Honey-Baited FTA Cards as a New Tool for the Detection of Circulating Viruses in Mosquitoes. Viruses 2020, 12, 274. [Google Scholar] [CrossRef]
- Johnson, B.J.; Kerlin, T.; Hall-Mendelin, S.; van den Hurk, A.F.; Cortis, G.; Doggett, S.L.; Toi, C.; Fall, K.; McMahon, J.L.; Townsend, M.; et al. Development and Field Evaluation of the Sentinel Mosquito Arbovirus Capture Kit (SMACK). Parasit. Vectors 2015, 8, 509. [Google Scholar] [CrossRef]
- Xavier, M.d.N.; Rodrigues, M.P.; Melo, D.C.T.V.d.; Santos, E.M.d.M.; Barbosa, R.M.R.; Oliveira, C.M.F.d. Double BR-OVT: A New Trap Model for Collecting Eggs and Adult Mosquitoes from Culex quinquefasciatus and Aedes spp. Rev. Inst. Med. Trop. Sao Paulo 2020, 62, e94. [Google Scholar] [CrossRef]
- Fourniol, L.; Madec, Y.; Mousson, L.; Vazeille, M.; Failloux, A.-B. A Laboratory-Based Study to Explore the Use of Honey-Impregnated Cards to Detect Chikungunya Virus in Mosquito Saliva. PLoS ONE 2021, 16, e0249471. [Google Scholar] [CrossRef]
- Gloria-Soria, A.; Brackney, D.E.; Armstrong, P.M. Saliva Collection via Capillary Method May Underestimate Arboviral Transmission by Mosquitoes. Parasit. Vectors 2022, 15, 103. [Google Scholar] [CrossRef]
- Melo-Santos, M.A.V.d.; Sanches, E.G.; Jesus, F.J.d.; Regis, L. Evaluation of a New Tablet Formulation Based on Bacillus thuringiensis Sorovar. Israelensis for Larvicidal Control of Aedes aegypti. Mem. Inst. Oswaldo Cruz 2001, 96, 859–860. [Google Scholar] [CrossRef] [PubMed]
- Krokovsky, L.; Lins, C.; Guedes, D.R.D.; Wallau, G.; Ayres, C.; Paiva, M.H.S. Dynamic of Mayaro Virus Transmission in Aedes aegypti, Culex quinquefasciatus Mosquitoes, and a Mice Model. Viruses 2023, 15, 799. [Google Scholar] [CrossRef]
- Guedes, D.R.; Paiva, M.H.; Donato, M.M.; Barbosa, P.P.; Krokovsky, L.; Rocha, S.W.D.S.; Saraiva, K.L.A.; Crespo, M.M.; Rezende, T.M.; Wallau, G.L.; et al. Zika Virus Replication in the Mosquito Culex quinquefasciatus in Brazil. Emerg. Microbes Infect. 2017, 6, e69. [Google Scholar] [CrossRef]
- Promega. pGEM®-T and pGEM®-T Easy Vector Systems; Promega: Madison, WI, USA, 2021; Available online: https://www.promega.com.br/en/products/pcr/pcr-cloning/pgem-t-easy-vector-systems/?catNum=A1360 (accessed on 15 May 2025).
- Krokovsky, L.; Guedes, D.R.D.; Santos, F.C.F.; Sales, K.G.d.S.; Bandeira, D.A.; Pontes, C.R.; Leal, W.S.; Ayres, C.F.J.; Paiva, M.H.S. Potential Nosocomial Infections by the Zika and Chikungunya Viruses in Public Health Facilities in the Metropolitan Area of Recife, Brazil. Trop. Med. Infect. Dis. 2022, 7, 351. [Google Scholar] [CrossRef] [PubMed]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Panella, A.J.; Velez, J.O.; Lambert, A.J.; Campbell, G.L. Chikungunya Virus in US Travelers Returning from India, 2006. Emerg. Infect. Dis. 2007, 13, 764–767. [Google Scholar] [CrossRef]
- Kong, Y.Y.; Thay, C.H.; Tin, T.C.; Devi, S. Rapid Detection, Serotyping and Quantitation of Dengue Viruses by TaqMan Real-Time One-Step RT-PCR. J. Virol. Methods 2006, 138, 123–130. [Google Scholar] [CrossRef]
- McCall, M.N.; McMurray, H.R.; Land, H.; Almudevar, A. On Non-Detects in qPCR Data. Bioinformatics 2014, 30, 2310–2316. [Google Scholar] [CrossRef]
- Melanson, V.R.; Jochim, R.; Yarnell, M.; Ferlez, K.B.; Shashikumar, S.; Richardson, J.H. Improving Vector-Borne Pathogen Surveillance: A Laboratory-Based Study Exploring the Potential to Detect Dengue Virus and Malaria Parasites in Mosquito Saliva. J. Vector Borne Dis. 2017, 54, 301–310. [Google Scholar] [CrossRef]
- Cardona-Ospina, J.A.; Villalba-Miranda, M.F.; Palechor-Ocampo, L.A.; Mancilla, L.I.; Sepúlveda-Arias, J.C. A Systematic Review of FTA Cards® as a Tool for Viral RNA Preservation in Fieldwork: Are They Safe and Effective? Prev. Vet. Med. 2019, 172, 104772. [Google Scholar] [CrossRef] [PubMed]
- Krambrich, J.; Bringeland, E.; Hesson, J.C.; Hoffman, T.; Lundkvist, Å.; Lindahl, J.F.; Ling, J. Usage of FTA® Classic Cards for Safe Storage, Shipment, and Detection of Arboviruses. Microorganisms 2022, 10, 1445. [Google Scholar] [CrossRef]
- Kurucz, N.; McMahon, J.L.; Warchot, A.; Hewitson, G.; Barcelon, J.; Moore, F.; Moran, J.; Harrison, J.J.; Colmant, A.M.G.; Staunton, K.M.; et al. Nucleic Acid Preservation Card Surveillance Is Effective for Monitoring Arbovirus Transmission on Crocodile Farms and Provides a One Health Benefit to Northern Australia. Viruses 2022, 14, 1342. [Google Scholar] [CrossRef]
- Kurucz, N.; Minney-Smith, C.A.; Johansen, C.A. Arbovirus Surveillance Using FTATM Cards in Modified CO2-Baited Encephalitis Virus Surveillance Traps in the Northern Territory, Australia. J. Vector Ecol. 2019, 44, 187–194. [Google Scholar] [CrossRef]
Experiment | Groups | Mean Number of CHIKV RNA Copies/mL per Group | Mean Cq | Positivity | ||||||
---|---|---|---|---|---|---|---|---|---|---|
M | F | B | M | F | B | M | F | B | ||
1 | 37 °C | 2 × 1013 | 2 × 109 | - | 15 (±1.23) | 35 (±2.43) | - | 28/30 | 2/2 | - |
25 °C + Water | 4 × 1012 | 7 × 109 | - | 16 (±2.72) | 35 (±1.54) | - | 29/30 | 2/2 | - | |
25 °C | 7 × 1012 | 5 × 109 | - | 16 (±2.93) | 34 (±0.97) | - | 29/30 | 2/2 | - | |
−80 °C | 3 × 1012 | 5 × 109 | - | 16 (±3.74) | 33 (±1.88) | - | 28/30 | 2/2 | - | |
Mean | 1 × 1013 | 2 × 109 | - | 15 (±2.87) | 34 (±1.52) | - | * | * | * | |
2 | 2 M | 1 × 1012 | 2 × 109 | - | 23 (±8.8) | 37 (±0.7) | - | 4/4 | 2/2 | - |
5 M | 4 × 1012 | 2 × 109 | - | 19 (±7.14) | 36 | - | 7/8 | 1/2 | - | |
10 M | 5 × 1013 | 4 × 107 | - | 18 (±7.7) | 38 | - | 17/17 | 2/2 | - | |
20 M | 1 × 1013 | 9 × 107 | - | 16 (±3.5) | 37 | - | 39/39 | 2/2 | - | |
Mean | 1 × 1013 | 9 × 107 | - | 17 (±6.25) | 37 (±0.83) | - | * | * | * | |
3 | Second meal on FTA | 4 × 1012 | 5 × 107 | - | 15 (±5.4) | 36 (±2) | - | 13/14 | 12/14 | - |
Second meal on blood | 4 × 1013 | - | 9 × 107 | 16 (±1.3) | - | 36 (±1.7) | 14/14 | - | 11/14 | |
Mean | 3 × 1013 | 5 × 107 | 9 × 107 | 16 (±0.3) | 36 (±2) | 36 (±1.7) | * | * | * | |
Total mean | 1 × 1013 | 2 × 109 | 9 × 107 | 16 (±2.5) | 36 (±1.5) | 36 (±1.7) | * | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, L.M.I.; Krokovsky, L.; Matos, R.C.; Wallau, G.d.L.; Paiva, M.H.S. Development of a New Trapping System with Potential Implementation as a Tool for Mosquito-Borne Arbovirus Surveillance. Insects 2025, 16, 637. https://doi.org/10.3390/insects16060637
da Silva LMI, Krokovsky L, Matos RC, Wallau GdL, Paiva MHS. Development of a New Trapping System with Potential Implementation as a Tool for Mosquito-Borne Arbovirus Surveillance. Insects. 2025; 16(6):637. https://doi.org/10.3390/insects16060637
Chicago/Turabian Styleda Silva, Luísa Maria Inácio, Larissa Krokovsky, Rafaela Cassiano Matos, Gabriel da Luz Wallau, and Marcelo Henrique Santos Paiva. 2025. "Development of a New Trapping System with Potential Implementation as a Tool for Mosquito-Borne Arbovirus Surveillance" Insects 16, no. 6: 637. https://doi.org/10.3390/insects16060637
APA Styleda Silva, L. M. I., Krokovsky, L., Matos, R. C., Wallau, G. d. L., & Paiva, M. H. S. (2025). Development of a New Trapping System with Potential Implementation as a Tool for Mosquito-Borne Arbovirus Surveillance. Insects, 16(6), 637. https://doi.org/10.3390/insects16060637