Acorn Weevil Species Diversity and Host Affinity in the Semi-Humid Evergreen Broad-Leaved Forests of Southwest China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Acorn and Weevil Sampling
2.3. Molecular Identification
2.4. Measurement of Acorn Functional Traits
2.5. Data Analysis
2.5.1. Weevil Species Identification
2.5.2. Host Range and Specificity of the Acorn Weevils
2.5.3. Species Diversity of Acorn Weevils
2.5.4. Effects of AFTs on the Diversity of Weevils
3. Results
3.1. Species Composition of the Acorn Weevil in SEBFs
3.2. Host Range and Specificity of Weevils in SEBFs
3.3. Species Diversity of Acorn Weevils Within SEBFs
3.4. Effects of AFTs on Acorn Weevil Species Diversity
4. Discussion
4.1. Species Composition of Weevils in SEBFs
4.2. Host Range and Specificity of Acorn Weevils
4.3. Effects of AFTs on the Species Diversity of Weevils
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heyes, S.; Morgan, J.; Sinclair, S.; Walker, Z.; Hoebee, S. Pre-dispersal seed-predation affects fruit crop and seed fitness in a highly fragmented savanna tree. Aust. J. Bot. 2023, 71, 434–442. [Google Scholar] [CrossRef]
- Muñoz, A.; Bonal, R.; Espelta, J.M. Acorn-weevil interactions in a mixed-oak forest: Outcomes for larval growth and plant recruitment. For. Ecol. Manag. 2014, 322, 98–105. [Google Scholar] [CrossRef]
- Chen, X.; Luo, Y.; Wang, R.; Du, F.K. The distinct fruit size and physical defense promote divergent secondary seed dispersal strategies of three oak species. For. Ecol. Manag. 2023, 529, 120642. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Niklas, K.J.; Sun, J.; Wang, Z.; Zhong, Q.; Hu, D.; Cheng, D. A whole-plant economics spectrum including bark functional traits for 59 subtropical woody plant species. J. Ecol. 2022, 110, 248–261. [Google Scholar] [CrossRef]
- Jackson, E.E.; Wright, S.J.; Calderón, O.; Bullock, J.M.; Oliver, T.; Gripenberg, S. Pre-dispersal seed predation could help explain premature fruit drop in a tropical forest. J. Ecol. 2022, 110, 751–761. [Google Scholar] [CrossRef]
- Kurek, P.; Dobrowolska, D.; Wiatrowska, B.; Seget, B.; Piechnik, Ł. Low rate of pre-dispersal acorn predation by Eurasian Jays Garrulus glandarius during Non-Mast Years. Acta Ornithol. 2023, 57, 211–215. [Google Scholar] [CrossRef]
- Shmida, A.; Wilson, M. Biological determinants of species diversity. J. Biogeogr. 1985, 12, 1–20. [Google Scholar] [CrossRef]
- Bonsignore, C.P.; Laface, V.L.; Vono, G.; Marullo, R.; Musarella, C.M.; Spampinato, G. Threats posed to the rediscovered and rare Salvia ceratophylloides Ard. (Lamiaceae) by borer and seed feeder insect species. Diversity 2021, 13, 33. [Google Scholar] [CrossRef]
- Auld, T. Patterns of predispersal seed predators in the Fabaceae of the Sydney region, South-Eastern Australia. Aust. J. Zool. 1991, 39, 519–528. [Google Scholar] [CrossRef]
- Schütte, A.; Stüben, P.E.; Astrin, J.A.-O. Molecular Weevil Identification Project: A thoroughly curated barcode release of 1300 Western Palearctic weevil species (Coleoptera, Curculionoidea). Biodivers. Data J. 2023, 24, e96438. [Google Scholar] [CrossRef]
- Zhang, X.; Nie, P.; Hu, X.; Feng, J. A host tree and its specialist insects: Black Locust (Robinia pseudoacacia) availability largely determines the future range dynamics of its specialist insects in Europe. Insects 2024, 15, 765. [Google Scholar] [CrossRef]
- Kajtoch, Ł.; Montagna, M.; Wanat, M. Species delimitation within the Bothryorrhynchapion weevils: Multiple evidence from genetics, morphology and ecological associations. Mol. Phylogenet. Evol. 2018, 120, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Marvaldi, A.E.; Sequeira, A.S.; O’Brien, C.W.; Farrell, B.D. Molecular and morphological phylogenetics of weevils (Coleoptera, Curculionoidea): Do niche shifts accompany diversification? Syst. Biol. 2002, 51, 761–785. [Google Scholar] [CrossRef] [PubMed]
- Bocak, L.; Barton, C.; Crampton-Platt, A.; Chesters, D.; Ahrens, D.; Vogler, A.P. Building the Coleoptera tree-of-life for >8000 species: Composition of public DNA data and fit with Linnaean classification. Syst. Entomol. 2014, 39, 97–110. [Google Scholar] [CrossRef]
- Sequeira, A.S.; Sijapati, M.; Lanteri, A.A.; Roque Albelo, L. Nuclear and mitochondrial sequences confirm complex colonization patterns and clear species boundaries for flightless weevils in the Galápagos archipelago. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 3439–3451. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, C.C.; Niemeyer, H.M.; Cabrera-Brandt, M.; Briones, L.M.; Lavandero, B.; Zúñiga-Reinoso, A.; Ramírez, C.C. Forest fragmentation may endanger a plant-insect interaction: The case of the highly specialist native aphid Neuquenaphis staryi in Chile. Insect Conserv. Divers. 2018, 11, 352–362. [Google Scholar] [CrossRef]
- Malav, P.; Pandey, A.; Bhatt, K.; Krishnan, S.; Bisht, I. Morphological variability in holy basil (Ocimum tenuiflorum L.) from India. Genet. Resour. Crop Evol. 2015, 62, 1245–1256. [Google Scholar] [CrossRef]
- Méndez-Tovar, I.; Martín, H.; Santiago, Y.; Ibeas, A.; Herrero, B.; Asensio-S.-Manzanera, M.C. Variation in morphological traits among Thymus mastichina (L.) L. populations. Genet. Resour. Crop Evol. 2015, 62, 1257–1267. [Google Scholar] [CrossRef]
- Willis, C.G.; Baskin, C.C.; Baskin, J.M.; Auld, J.R.; Venable, D.L.; Cavender-Bares, J.; Donohue, K.; Rubio de Casas, R.; Group, T.N.G.W. The evolution of seed dormancy: Environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol. 2014, 203, 300–309. [Google Scholar] [CrossRef]
- Amartuvshin, N.; Hülber, K.; Plutzar, C.; Tserenbaljid, G. Functional traits but not environmental gradients explain seed weight in Mongolian plant species. Plant Biol. 2018, 21, 559–562. [Google Scholar] [CrossRef]
- Fricke, E.; Wright, S.J. The mechanical defence advantage of small seeds. Ecol. Lett. 2016, 19, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Alfaro, B.; Silveira, F.; Fidelis, A.; Poschlod, P.; Commander, L. Seed germination traits can contribute better to plant community ecology. J. Veg. Sci. 2016, 27, 637–645. [Google Scholar] [CrossRef]
- Du, B.M.; Jun, Y.; Ji, H.W.; Yin, S.; Kang, H.Z.; Liu, C.J. Body size plasticity of weevil larvae (Curculio davidi) (Coleoptera: Curculionidae) and its stoichiometric relationship with different hosts. J. Insect Sci. 2021, 21, 1–9. [Google Scholar] [CrossRef]
- Iseki, N.; Sasaki, A.; Toju, H. Arms race between weevil rostrum length and camellia pericarp thickness: Geographical cline and theory. J. Theor. Biol. 2011, 285, 1–9. [Google Scholar] [CrossRef]
- Rühr, P.T.; Edel, C.; Frenzel, M.; Blanke, A. A bite force database of 654 insect species. Sci. Data 2024, 11, 58. [Google Scholar] [CrossRef]
- Williams, J.P.; Hawkins, T.S. Acorn weevil (Coleoptera: Curculionidae) predation dynamics in a Mississippi bottomland hardwood forest. Castanea 2020, 85, 159–168. [Google Scholar] [CrossRef]
- Sun, W. State and phase transition behaviors of Quercus rubra seed axes and cotyledonary tissues: Relevance to the desiccation sensitivity and cryopreservation of recalcitrant seeds. Cryobiology 1999, 38, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Cho, G.; Kim, Y.J.; Jeon, K.; Joo, H.J.; Kang, K.S. Accuracy evaluation of visible-near infrared spectroscopy for detecting insect damage in acorns of Quercus acuta. Silvae Genet. 2024, 73, 99–109. [Google Scholar] [CrossRef]
- Fürstenberg-Hägg, J.; Zagrobelny, M.; Bak, S. Plant defense against insect herbivores. Mol. Sci. 2013, 14, 10242–10297. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Zhu, Y.C. Vegetation in Yunnan; Science Press: Beijing, China, 1987. [Google Scholar]
- Wang, C.Y.; Zhu, F.; Zhang, Z.Y.; He, Z.R.; Li, X.S. Parasitism in acorns of Cyclobalanopsis glaucoides and Castanopsis delavayi (Fagaceae) and its impact on population regeneration. Plant Divers. Resour. 2014, 36, 629–638. [Google Scholar] [CrossRef]
- Xia, K.; Harrower, W.L.; Turkington, R.; Tan, H.Y.; Zhou, Z.K. Pre-dispersal strategies by Quercus schottkyana to mitigate the effects of weevil infestation of acorns. Sci. Rep. 2016, 6, 37520. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.D. Biological Habits of Curculio Megadens and Its Adaptive Evolution against Host Plant Defense; Yunnan University: Kunming, China, 2021. [Google Scholar]
- Zhu, H.; Tan, Y. Flora and vegetation of Yunnan, Southwestern China: Diversity, origin and evolution. Diversity 2022, 14, 340. [Google Scholar] [CrossRef]
- Simon, C.; Frati, F.; Beckenbach, A.; Crespi, B.; Liu, H.; Flook, P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 1994, 87, 651–701. [Google Scholar] [CrossRef]
- Hughes, J.; Vogler, A.P. Ecomorphological adaptation of acorn weevils to their oviposition site. Evolution 2004, 58, 1971–1983. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hou, L.Y.; Li, Q.M. Effects of different mechanical treatments on Quercus variabilis, Q. wutaishanica and Q. robur acorn germination. iForest 2015, 8, 728–734. [Google Scholar] [CrossRef]
- Woziwoda, B.; Gręda, A.; Frelich, L.E. High acorn diversity of the introduced Quercus rubra indicates its ability to spread efficiently in the new range. Ecol. Indic. 2023, 146, 109884. [Google Scholar] [CrossRef]
- Shimada, T.; Saitoh, T. Re-evaluation of the relationship between rodent populations and acorn masting: A review from the aspect of nutrients and defensive chemicals in acorns. Popul. Ecol. 2006, 48, 341–352. [Google Scholar] [CrossRef]
- Sun, J.C.; Wu, Y.Y.; Zhu, J.L.; Sun, Y.Y.; Feng, J.; Jiang, Z.P.; Shi, S.Q. Comparison and comprehensive evaluation of acorn qualities of Quercus and Castanopsis from different provenances. J. Beijing For. Univ. 2022, 44, 36–51. [Google Scholar] [CrossRef]
- Hu, X.H.; Ren, L.I.; Chen, X.Y. Isolation and characterization of microsatellite loci for acorn weevil Curculio bimaculatus Faust (Coleoptera: Curculionidae). J. Genet. 2016, 93, 1–3. [Google Scholar] [CrossRef]
- Wünschiers, R. Installing BLAST and Clustal W.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Liu, Q.; Charleston, M.A.; Richards, S.A.; Holland, B.R. Performance of akaike information criterion and bayesian information criterion in selecting partition models and mixture models. Syst. Biol. 2023, 72, 92–105. [Google Scholar] [CrossRef]
- Li, Y.D.; Engel, M.S.; Tihelka, E.; Cai, C.Y. Phylogenomics of weevils revisited: Data curation and modelling compositional heterogeneity. Biol. Lett. 2023, 19, 20230307. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.M.; Chen, Y.R.; Cai, G.J.; Cai, R.L.; Hu, Z.; Wang, H. Tree visualization by one table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 2023, 51, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.G.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef] [PubMed]
- Handcock, M.S.; Hunter, D.R.; Butts, C.T.; Goodreau, S.M.; Morris, M. statnet: Software tools for the representation, visualization, analysis and simulation of network data. J. Stat. Softw. 2008, 24, 1–11. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhang, L. Preliminary studies on effects of host functional traits on host specificity of Mistletoe species. J. Trop. Subtrop. Bot. 2019, 27, 187–195. [Google Scholar]
- Thompson, J.N. Variation in preference and specificity in monophagous and oligophagous swallowtail butterflies. Evolution 1988, 42, 118–128. [Google Scholar] [CrossRef]
- Aoki, K.; Kato, M.; Murakami, N. Phylogeographical patterns of a generalist acorn weevil: Insight into the biogeographical history of broadleaved deciduous and evergreen forests. BMC Evol. Biol. 2009, 9, 103. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Chao, A.; Kubota, Y.; Zelený, D.; Chiu, C.H.; Li, C.F.; Kusumoto, B.; Yasuhara, M.; Thorn, S.; Wei, C.L.; Costello, M.J.; et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 2020, 35, 292–314. [Google Scholar] [CrossRef]
- Fang, S.Q.; Li, Y.P.; Pan, Y.; Wang, C.Y.; Peng, M.C.; Hu, S.J. Butterfly diversity in a rapidly developing urban area: A case study on a university campus. Diversity 2024, 16, 4. [Google Scholar] [CrossRef]
- Yi, L.; Dong, Y.; Miao, B.G.; Peng, Y.Q. Diversity of butterfly communities in Gaoligong region of Yunnan. Biodivers. Sci. 2021, 29, 950–959. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, X.Y.; Xiao, C. Advance of weevils host selection behavior research. J. Agric. Catastrophol. 2014, 4, 18–21. [Google Scholar] [CrossRef]
- Wu, Y.M. List of pests to Chinese chestnut in Yunnan and brief introduction on the main pests. J. West China For. Sci. 1997, 3, 74–82. [Google Scholar]
- Lu, M.R.; Li, Z.Y.; SUn, Y.X. Survey of beetle pests of Yunnan chestnut and their natural enemies. Chin. Res. Appl. Entomopathog. Fungi 2003, 5, 175. [Google Scholar]
- Zhao, Y.C. Economic Insects of China, Volume 20: Coleoptera, Curculionidae (I); Science Press: Beijing, China, 1980. [Google Scholar]
- Wang, J.; Zhang, B.; Hou, X.; Chen, X.N.; Han, N.; Chang, G. Seed production and seed size and their relationship with insect infestation in Quercus glandulifera and Quercus aliena var. acuteserrata in the south slopes of the Qinling Mountains. Acta Entomol. Sin. 2015, 58, 1307–1314. [Google Scholar]
- Zhang, Z.Y.; Li, W.; Huang, Q.C.; Yang, L.; Chen, X.L.; Xiao, R.D.; Tang, C.Q.; Hu, S.J. Cut to Disarm Plant Defence: A Unique Oviposition Behaviour in Rhynchites foveipennis (Coleoptera: Attelabidae). Insects 2023, 14, 200. [Google Scholar] [CrossRef]
- Zhang, D. Seed predation and Seed Dispersal of Common Lithocarpus Species by Insects and Rodents in the Ailao Mountain; Yunnan Normal University: Kunming, China, 2015. [Google Scholar]
- Xue, Z.; Feng, S.K.; Zhang, C.L.; Lu, X.L.; Feng, M.; Wang, H.; Yu, G.Y. Pimelocerus perforatus (Roelofs) (Coleoptera: Curculionidae), a new pest of the green ash Fraxinus pennsylvanica found in Beijing. Plant Prot. 2018, 44, 242–245. [Google Scholar] [CrossRef]
- Pelsue, F.; Zhang, R. A Review of the Genus Curculio from China with Descriptions of Fourteen New Species. Part IV. The Curculio sikkimensis (Heller) Group (Coleoptera: Curculionidae: Curculioninae: Curculionini). Coleopt. Bull. 2003, 57, 311–333. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.Q.; Li, C.F.; Feng, Y.G.; Li, Q.Y.; Zhao, Z.H. A primary study on weevil diversity in arid-hot valleys, Yuanmou, Yunnan. J. Northwest For. Univ. 2006, 21, 103–107. [Google Scholar]
- Chen, Y.Q.; Li, Q.; Zheng, Y.; Zhu, Y.H.; Wang, S.Y.; Wang, S.M. Diversity of Curculionoidea in subtropical monsoon evergreen broadleaved forest in Puer City, Yunnan. J. Yunnan Univ. 2010, 32, 97–102. [Google Scholar]
- Daza, A.; López-Bote, C.J.; Tomás Barberán, F.A.; Espin, J.C.; López Carrasco, C.; Olivares, A.; Rey, A.I. Effect of mediterranean forest parasite with Curculio sp. on nutritional value of acorn for Iberian pig feeding and fat characteristics. Meat Sci. 2007, 76, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Houshmand, M.; Hojati, F.; Parsaie, S. Dietary nutrient manipulation to improve the performance and tibia characteristics of broilers fed oak acorn (Quercus Brantii Lindl). Braz. J. Poult. Sci. 2015, 17, 17–24. [Google Scholar] [CrossRef]
- Jr, F.W.P. A review of the genus Curculio from China with descriptions of four new taxa. Part V. The Curculio dentipes (Roelofs) Group (Coleoptera: Curculionidae: Curculionini). Coleopt. Bull. 2009, 59, 293–303. [Google Scholar] [CrossRef]
- Wang, C.S.; Han, Y.H.; Niu, H.; Li, L.Y.; Gao, W.T.; Meng, Q.F. The relationship between Curculio dentipes larva and acorn. J. Anhui Agric. Sci. 2017, 45, 167–169. [Google Scholar] [CrossRef]
- Han, Y.H.; Meng, X.; You, S.J.; Chen, Y.B.; Liu, S.M.; Wang, C.S.; Gao, W.T.; Meng, Q.F. Biological characteristics of Curculio dentipes in Jilin City, Jilin Province. J. Northeast. For. Univ. 2018, 46, 49–53. [Google Scholar] [CrossRef]
- Hao, Z.Y.; Guo, Y.D.; He, J.L.; He, H.; Yang, K.L. Relationship between Curculio davidi damage and physical characters of different Castanea mollissima varieties. J. Northwest A F Univ. 2024, 52, 90–96. [Google Scholar] [CrossRef]
- Peguero, G.; Bonal, R.; Sol, D.; Muñoz, A.; Sork, V.; Espelta, J. Tropical insect diversity: Evidence of greater host specialization in seed-feeding weevils. Ecology 2017, 98, 2180–2190. [Google Scholar] [CrossRef]
- Du, X.K. Population Genetic Structure and Gene Flow of Curculio Bimaculatus in Fragmented Habitats; East China Normal Univeristy: Shanghai, China, 2019. [Google Scholar]
- Hu, X.H. Host Related Species Diversification and Population Genetic Diversity of Acorn Weevils; East China Normal Univeristy: Shanghai, China, 2016. [Google Scholar]
- Xiao, G.R.; Li, Z.Y. Chinese Forest Insects, 3rd ed.; China Forestry Publishing House: Beijing, China, 2020. [Google Scholar]
- Yoshida, K.; Matsuda, H.; Tokuda, M. Laboratory rearing and developmental traits of olive weevil, Pimelocerus perforatus (Coleoptera: Curculionidae), using an artificial diet. Jpn. J. Appl. Entomol. Zool. 2018, 62, 231–237. [Google Scholar] [CrossRef]
- Mitsumoto, A.; Yamazaki, T. Repellent Activity of Vanillin Derivatives and Monoterpenes to Olive Weevil. J. Pharm. Soc. Jpn. 2022, 142, 1005–1014. [Google Scholar] [CrossRef]
- Xiao, Y.L.; Zhang, F.; Xu, Y.X.; Zhong, Y.L. Discrimination of two chestnut fruit border weevils (Coleoptera: Curculionidae). Plant Prot. 2017, 43, 104–109. [Google Scholar]
- Wang, X.; Hu, S.J.; Zhang, Z.Y.; Geng, Y.P.; Bai, X. Oviposition preference and offspring performance of Mechoris ursulus (Coleoptera: Attelabidae) in Cyclobalanopsis glaucoides (Fagales: Fagaceae) and Quercus franchetii (Fagales: Fagaceae) in Central Yunnan, China. J. Insect Sci. 2015, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Bonal, R.; Espelta, J.; Muñoz, A.; Ortego, J.; Aparicio, J.; Gaddis, K.; Sork, V. Diversity in insect seed parasite guilds at large geographical scale: The roles of host specificity and spatial distance. J. Biogeogr. 2016, 43, 1620–1630. [Google Scholar] [CrossRef]
- Ji, H.W.; Du, B.M.; Liu, C.J. Elemental stoichiometry and compositions of weevil larvae and two acorn hosts under natural phosphorus variation. Sci. Rep. 2017, 7, 45810. [Google Scholar] [CrossRef]
- Kaushal, B.; Pant, M.; Kalia, S.; Joshi, R.; Bora, R. Aspects of the biology and control of three species of acorn weevils infesting oak acorns in Kumaun Himalaya. J. Appl. Entomol. 1993, 115, 388–397. [Google Scholar] [CrossRef]
- Halpern, A.; Sousa, W.; Lake, F.; Carlson, T.; Paddock, W. Prescribed fire reduces insect infestation in Karuk and Yurok acorn resource systems. For. Ecol. Manag. 2022, 505, 119768. [Google Scholar] [CrossRef]
- Howe, G.A.; Jander, G. Plant Immunity to Insect Herbivores. Annu. Rev. Plant Biol. 2008, 59, 41–66. [Google Scholar] [CrossRef]
- Yu, H.X.; Ye, W.F.; Sun, M.Q.; Xu, N.; Lou, S.Z.; Ran, J.X.; Lou, Y.G. Three levels of defense and anti-defense responses between host plants and herbivorous insects. Chin. J. Ecol. 2015, 34, 256–262. [Google Scholar] [CrossRef]
- Peters, D.J.; Constabel, C.P. Molecular analysis of herbivore-induced condensed tannin synthesis: Cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant J. 2002, 32, 701–712. [Google Scholar] [CrossRef]
- Mohamed, M.; Ghazy, A.-E.; Abdel Karim, G.; El-khonezy, M.; Abd-Elaziz, A.; Ghanem, M. Defense status in larval stage of red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Biocatal. Agric. Biotechnol. 2022, 44, 102465. [Google Scholar] [CrossRef]
- Guo, S.H.; Yi, X.F. Gut bacterial composition of two Curculio species and their adaptation to high-tannin food. Acta Microbiol. Sin. 2019, 59, 657–667. [Google Scholar] [CrossRef]
Host Species | Locality | No. of Weevils | Total |
---|---|---|---|
Castanopsis delavayi | Xishan, Kunming | 11 | 57 |
Huaning, Yuxi | 3 | ||
Yao’an, Chuxiong | 43 | ||
C. orthacantha | Xinping, Yuxi | 12 | 42 |
Zixi, Chuxiong | 5 | ||
Yao’an, Chuxiong | 25 | ||
Lithocarpus dealbatus | Luoping, Qujing | 13 (2) * | 36 |
Xishan, Kunming | 4 | ||
Lufeng, Chuxiong | 17 | ||
Quercus delavayi | Luquan, Kunming | 11 | 40 |
Luquan, Kunming | 13 | ||
Yao’an, Chuxiong | 16 | ||
Q. franchetii | Binchuan, Dali | 15 | 22 |
E’shan, Yuxi | 5 | ||
Xishan, Kunming | 2 | ||
Q. schottkyana | Xishan, Kunming | 12 (2) * | 36 |
Yao’an, Chuxiong | 13 | ||
Yongren, Chuxiong | 11 |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1. Curculio dentipes | 8.50 | |||||
2. C. davidi | 11.63 | 6.70 | ||||
3. C. bimaculatus | 12.18 | 13.04 | 2.83 | |||
4. Niphades castanea | 20.39 | 19.85 | 18.40 | 4.38 | ||
5. Pimelocerus perforatus | 21.96 | 21.60 | 20.91 | 20.12 | 15.03 | |
6. Cyllorhynchites ursulus | 26.85 | 27.22 | 27.19 | 26.23 | 29.74 | 1.41 |
Species of Weevil | No. of Host Species | No. of Host Genus | Host Specificity (S) | |
---|---|---|---|---|
Generalist species | Curculio davidi | 5.00 | 3.00 | 0.15 |
C. dentipes | 6.00 | 3.00 | 0.14 | |
C. bimaculatus | 2.00 | 2.00 | 0.35 | |
Pimelocerus perforatus | 2.00 | 2.00 | 0.35 | |
Average | 3.75 | 2.50 | 0.25 | |
Host-specific species | Niphades castanea | 1.00 | 1.00 | 1.00 |
Cyllorhynchites ursulus | 1.00 | 1.00 | 1.00 | |
Average | 1.00 | 1.00 | 1.00 |
Trait Variable | Species Richness | Shannon–Wiener Diversity | Simpson Diversity | |
---|---|---|---|---|
Morphological traits | Acorn mass | −0.05 | −0.15 | −0.23 |
Fruit shape index | 0.35 | 0.35 | 0.30 | |
Volume | 0.08 | 0.18 | 0.05 | |
Pericarp thickness | −0.38 | −0.32 | −0.49 * | |
Cicatrix thickness | 0.18 | 0.14 | 0.04 | |
Physiological traits | Moisture | 0.13 | −0.04 | 0.04 |
Total phenols | −0.41 | −0.20 | −0.43 | |
Total flavonoids | −0.42 | −0.51 * | −0.47 * | |
Tannins | −0.40 | −0.41 | −0.47 * | |
Starch | 0.37 | 0.45 * | 0.48 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, S.; Hu, S.; Zhao, B.; Chen, D.; Lan, C.; Li, X.; Li, Y.; Peng, M.; Wang, Z.; Ge, M.; et al. Acorn Weevil Species Diversity and Host Affinity in the Semi-Humid Evergreen Broad-Leaved Forests of Southwest China. Insects 2025, 16, 579. https://doi.org/10.3390/insects16060579
Fang S, Hu S, Zhao B, Chen D, Lan C, Li X, Li Y, Peng M, Wang Z, Ge M, et al. Acorn Weevil Species Diversity and Host Affinity in the Semi-Humid Evergreen Broad-Leaved Forests of Southwest China. Insects. 2025; 16(6):579. https://doi.org/10.3390/insects16060579
Chicago/Turabian StyleFang, Shengquan, Shaoji Hu, Biao Zhao, Dengpeng Chen, Chunyan Lan, Xinrong Li, Yongping Li, Mingchun Peng, Zihao Wang, Mingyu Ge, and et al. 2025. "Acorn Weevil Species Diversity and Host Affinity in the Semi-Humid Evergreen Broad-Leaved Forests of Southwest China" Insects 16, no. 6: 579. https://doi.org/10.3390/insects16060579
APA StyleFang, S., Hu, S., Zhao, B., Chen, D., Lan, C., Li, X., Li, Y., Peng, M., Wang, Z., Ge, M., & Wang, C. (2025). Acorn Weevil Species Diversity and Host Affinity in the Semi-Humid Evergreen Broad-Leaved Forests of Southwest China. Insects, 16(6), 579. https://doi.org/10.3390/insects16060579