Diversity of Gut Bacteria of Field-Collected Aedes aegypti Larvae and Females, Resistant to Temephos and Deltamethrin
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Declaration and Biological Permits
2.2. Study Area
2.3. Installation of Ovitraps for the Collection of Eggs of Aedes aegypti
2.4. Active Search for Immatures
2.5. Breeding of Immature and Adult Aedes aegypti for Resistance Bioassays
2.6. Bioassay of Susceptibility to Temephos in L3–L4 Larvae of Field-Collected Ae. aegypti
2.7. Centers for Disease Control (CDC) Bottle Bioassay for Susceptibility Evaluation to Deltamethrin
2.8. Gut Dissection of Ae. aegypti
2.9. Isolation and Characterization of Bacteria from Mosquitoes
2.9.1. Molecular Characterization
2.9.2. Sequencing and Phylogenetic Analysis of Gut Bacteria
2.9.3. Diversity of the Bacterial Community
3. Results
3.1. Index of Positivity, Viability, and Egg Density (HDI) in Ovitraps in Florencia, Caquetá
3.2. Determination of Mortality and LC50 from Ae. aegypti to Temephos and Deltamethrin
3.3. Effects of Temephos in the Development of Ae. aegypti Larvae and Adults
3.4. Bacterial Diversity Through Culture Assays
3.4.1. Isolation and Culture of Bacteria Isolates
3.4.2. Abundance of Morphotypes in Bacterial Cultures According to Treatment
3.4.3. Identification of Bacterial Isolates Using 16S rDNA and gyrB Sequencing
3.5. Bacterial Composition in Ae. aegypti Treated and Not Treated with Insecticide
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, R.; Vasilakis, N. Dengue-Quo Tu et Quo Vadis? Viruses 2011, 3, 1562–1608. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.-S.J.; Li, M.-Z.I.; Chong, C.-S.; Ng, L.-C.; Tan, C.-H. Aedes (Stegomyia) albopictus (Skuse): A Potential Vector of Zika Virus in Singapore. PLoS Negl. Trop. Dis. 2013, 7, e2348. [Google Scholar] [CrossRef]
- Mundim-Pombo, A.P.M.; Carvalho, H.J.C.D.; Rodrigues Ribeiro, R.; León, M.; Maria, D.A.; Miglino, M.A. Aedes aegypti: Egg Morphology and Embryonic Development. Parasit. Vectors 2021, 14, 531. [Google Scholar] [CrossRef]
- Herath, J.M.M.K.; De Silva, W.A.P.P.; Weeraratne, T.C.; Karunaratne, S.H.P.P. Breeding Habitat Preference of the Dengue Vector Mosquitoes Aedes aegypti and Aedes albopictus from Urban, Semiurban, and Rural Areas in Kurunegala District, Sri Lanka. J. Trop. Med. 2024, 2024, 4123543. [Google Scholar] [CrossRef] [PubMed]
- Harapan, H.; Michie, A.; Sasmono, R.T.; Imrie, A. Dengue: A Minireview. Viruses 2020, 12, 829. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, K.; Gunathilaka, N.; Amarasinghe, D.; Rodrigo, W.; Udayanga, L. Diversity of Midgut Bacteria in Larvae and Females of Aedes aegypti and Aedes albopictus from Gampaha District, Sri Lanka. Parasit. Vectors 2021, 14, 433. [Google Scholar] [CrossRef] [PubMed]
- Torres-Flores, J.M.; Reyes-Sandoval, A.; Salazar, M.I. Dengue Vaccines: An Update. BioDrugs 2022, 36, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Weeratunga, P.; Rodrigo, C.; Fernando, S.D.; Rajapakse, S. Control Methods for Aedes albopictus and Aedes aegypti. Cochrane Database Syst. Rev. 2017, 2017, CD012759. [Google Scholar] [CrossRef]
- Ye, Y.H.; Woolfit, M.; Rancès, E.; O’Neill, S.L.; McGraw, E.A. Wolbachia-Associated Bacterial Protection in the Mosquito Aedes aegypti. PLoS Negl. Trop. Dis. 2013, 7, e2362. [Google Scholar] [CrossRef] [PubMed]
- Gan, S.J.; Leong, Y.Q.; Barhanuddin, M.F.H.B.; Wong, S.T.; Wong, S.F.; Mak, J.W.; Ahmad, R.B. Dengue Fever and Insecticide Resistance in Aedes Mosquitoes in Southeast Asia: A Review. Parasit. Vectors 2021, 14, 315. [Google Scholar] [CrossRef]
- Dengue-Global Situation. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON498 (accessed on 18 September 2024).
- Report on the Epidemiological Situation of Dengue in the Americas; As of Epidemiological Week 13, 2024. Update: 18 April 2024, 14:00 PM (GMT-5). 2024. Available online: https://www.paho.org/sites/default/files/2024-12/2024-cde-dengue-sitrep-americas-epi-week-48-19-dec.pdf (accessed on 15 June 2024).
- Gutierrez-Barbosa, H.; Medina-Moreno, S.; Zapata, J.C.; Chua, J.V. Dengue Infections in Colombia: Epidemiological Trends of a Hyperendemic Country. Trop. Med. Infect. Dis. 2020, 5, 156. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Salud. Boletín Epidemiológico Semanal. Comportamiento del Dengue en Colombia a Semana Epidemiológica 32 de 2023. Available online: https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspx (accessed on 2 October 2024).
- Boletín Epidemiológico. Secretaría de Salud Departamental, Caquetá. Semana Epidemiológica 01-04 2023. Available online: https://caqueta.micolombiadigital.gov.co/sites/caqueta/content/files/001990/99458_i-boletin-epidemiologico-a-sem-42023.pdf (accessed on 22 August 2023).
- Asgarian, T.S.; Vatandoost, H.; Hanafi-Bojd, A.A.; Nikpoor, F. Worldwide Status of Insecticide Resistance of Aedes aegypti and Ae. albopictus, Vectors of Arboviruses of Chikungunya, Dengue, Zika and Yellow Fever. J. Arthropod. Borne Dis. 2023, 17, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Bellinato, D.F.; Viana-Medeiros, P.F.; Araújo, S.C.; Martins, A.J.; Lima, J.B.P.; Valle, D. Resistance Status to the Insecticides Temephos, Deltamethrin, and Diflubenzuron in Brazilian Aedes aegypti Populations. Biomed. Res. Int. 2016, 2016, 8603263. [Google Scholar] [CrossRef] [PubMed]
- Granada, Y.; Mejía-Jaramillo, A.M.; Zuluaga, S.; Triana-Chávez, O. Molecular Surveillance of Resistance to Pyrethroids Insecticides in Colombian Aedes aegypti Populations. PLoS Negl. Trop. Dis. 2021, 15, e0010001. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, X.; Brown, D.J.; An, M.; Xue, R.D.; Liu, N. Insecticide Resistance: Status and Potential Mechanisms in Aedes aegypti. Pestic. Biochem. Physiol. 2023, 195, 105577. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, H.; Peng, H.; Wang, Y.; Zhang, C.; Guo, X.; Wang, H.; Liu, L.; Lv, W.; Cheng, P.; et al. A Symbiotic Gut Bacterium Enhances Aedes albopictus Resistance to Insecticide. PLoS Negl. Trop. Dis. 2022, 16, e0010208. [Google Scholar] [CrossRef]
- Fonseca-González, I.; Quiñones, M.L.; Lenhart, A.; Brogdon, W.G. Insecticide Resistance Status of Aedes aegypti (L.) from Colombia. Pest. Manag. Sci. 2011, 67, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Salud (INS). Red de Vigilancia de la Resistencia a Insecticidas de Uso en Salud Pública en Colombia. 2018. Available online: https://www.ins.gov.co/BibliotecaDigital/red-de-vigilancia-de-la-resistencia-a-insecticidas-de-uso-en-salud-publica-en-colombia-a%C3%B1o-2018.pdf (accessed on 15 January 2024).
- Scates, S.S.; O’Neal, S.T.; Anderson, T.D. Bacteria-Mediated Modification of Insecticide Toxicity in the Yellow Fever Mosquito, Aedes aegypti. Pestic. Biochem. Physiol. 2019, 161, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Govea, M.A.; Ramírez-Ahuja, M.D.L.; Contreras-Perera, Y.; Jiménez-Camacho, A.J.; Ruiz-Ayma, G.; Villanueva-Segura, O.K.; Trujillo-Rodríguez, G.D.J.; Delgado-Enciso, I.; Martínez-Fierro, M.L.; Manrique-Saide, P.; et al. Suppression of Midgut Microbiota Impact Pyrethroid Susceptibility in Aedes aegypti. Front. Microbiol. 2022, 13, 761459. [Google Scholar] [CrossRef]
- Guégan, M.; Zouache, K.; Démichel, C.; Minard, G.; Tran Van, V.; Potier, P.; Mavingui, P.; Valiente Moro, C. The Mosquito Holobiont: Fresh Insight into Mosquito-Microbiota Interactions. Microbiome 2018, 6, 49. [Google Scholar] [CrossRef]
- Tsuchida, T.; Koga, R.; Fujiwara, A.; Fukatsu, T. Phenotypic Effect of “Candidatus Rickettsiella viridis”, a Facultative Symbiont of the Pea Aphid (Acyrthosiphon pisum), and Its Interaction with a Coexisting Symbiont. Appl. Environ. Microbiol. 2014, 80, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Vorburger, C.; Rouchet, R. Are Aphid Parasitoids Locally Adapted to the Prevalence of Defensive Symbionts in Their Hosts? BMC Evol. Biol. 2016, 16, 271. [Google Scholar] [CrossRef] [PubMed]
- Coon, K.L.; Brown, M.R.; Strand, M.R. Mosquitoes Host Communities of Bacteria That Are Essential for Development but Vary Greatly between Local Habitats. Mol. Ecol. 2016, 25, 5806. [Google Scholar] [CrossRef]
- Dada, N.; Sheth, M.; Liebman, K.; Pinto, J.; Lenhart, A. Whole Metagenome Sequencing Reveals Links between Mosquito Microbiota and Insecticide Resistance in Malaria Vectors. Sci. Rep. 2018, 8, 2084. [Google Scholar] [CrossRef]
- Arévalo-Cortés, A.; Mejia-Jaramillo, A.M.; Granada, Y.; Coatsworth, H.; Lowenberger, C.; Triana-Chavez, O. The Midgut Microbiota of Colombian Aedes aegypti Populations with Different Levels of Resistance to the Insecticide Lambda-Cyhalothrin. Insects 2020, 11, 584. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, C.; Cheng, P.; Wang, Y.; Liu, H.; Wang, H.; Wang, H.; Gong, M. Differences in the Intestinal Microbiota between Insecticide-Resistant and -Sensitive Aedes albopictus Based on Full-Length 16S RRNA Sequencing. Microbiologyopen 2021, 10, e1177. [Google Scholar] [CrossRef]
- Gusmão, D.S.; Santos, A.V.; Marini, D.C.; Bacci, M.; Berbert-Molina, M.A.; Lemos, F.J.A. Culture-Dependent and Culture-Independent Characterization of Microorganisms Associated with Aedes aegypti (Diptera: Culicidae) (L.) and Dynamics of Bacterial Colonization in the Midgut. Acta Trop. 2010, 115, 275–281. [Google Scholar] [CrossRef]
- Mancini, M.V.; Damiani, C.; Accoti, A.; Tallarita, M.; Nunzi, E.; Cappelli, A.; Bozic, J.; Catanzani, R.; Rossi, P.; Valzano, M.; et al. Estimating Bacteria Diversity in Different Organs of Nine Species of Mosquito by next Generation Sequencing. BMC Microbiol. 2018, 18, 126. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, W.A.; Agudelo, S.O.; Velez, I.D.; Vivero, R.J. Description of the Ovarian Microbiota of Aedes aegypti (L) Rockefeller Strain. Acta Trop. 2021, 214, 105765. [Google Scholar] [CrossRef] [PubMed]
- Terenius, O.; Lindh, J.M.; Eriksson-Gonzales, K.; Bussière, L.; Laugen, A.T.; Bergquist, H.; Titanji, K.; Faye, I. Midgut Bacterial Dynamics in Aedes aegypti. FEMS Microbiol. Ecol. 2012, 80, 556–565. [Google Scholar] [CrossRef]
- Aspectos Ambientales Para el Ordenamiento Territorial de Occidente del Departamento del Caquetá; Instituto Geográfico Agustín Codazzi: Bogotá, Colombia, 1993; Volume VI, p. 673.
- Gomes, A.C. Medidas dos Níveis de Infestação Urbana para Aedes (Stegomyia) aegypti e Aedes (Stegomyia) albopictus Em Programa de Vigilância Entomológica. Inf. Epidemiol. Sus. 1998, 7, 49–57. [Google Scholar] [CrossRef]
- Abílio, A.P.; Abudasse, G.; Kampango, A.; Candrinho, B.; Sitoi, S.; Luciano, J.; Tembisse, D.; Sibindy, S.; de Almeida, A.P.G.; Garcia, G.A.; et al. Distribution and Breeding Sites of Aedes aegypti and Aedes albopictus in 32 Urban/Peri-Urban Districts of Mozambique: Implication for Assessing the Risk of Arbovirus Outbreaks. PLoS Negl. Trop. Dis. 2018, 12, e0006692. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.C.; Almirón, W.R. Clave ilustrada para la identificación de larvas de mosquitos de interés sanitario encontradas en criaderos artificiales en la argentina. Publicaciones Mundo Sano Ser. Enfermedades Transm. 2004, 16, 349–360. [Google Scholar]
- Manual de Culícidos (Diptera: Culicidae). De La Zona Norte y Centro de Chile, Incluyendo Isla de Pascua. 2016. Available online: https://www.ispch.cl/sites/default/files/ManualCulicidosV02.pdf (accessed on 20 November 2023).
- Instituto Nacional de Salud. Protocolo Para Determinación de Grados de Resistencia al Temefos. Available online: https://www.ins.gov.co/BibliotecaDigital/Protocolo-determinacion-de-grados-de-resistencia-al-Temefos.pdf (accessed on 16 January 2025).
- Pérez, M. Evaluación del Temefos y Pyriproxifeno Para el Control de Larvas de Aedes aegypti en Condiciones de Laboratorio. Horiz. Médico 2017, 17, 24–29. [Google Scholar] [CrossRef]
- World Health Organization Vector Resistance to Pesticides: Fifteenth Report of the WHO Expert Committee on Vector Biology and Control [meeting Held in Geneva from 5 to 12 March 1991]. Available online: http://www.who.int/iris/handle/10665/37432 (accessed on 16 January 2025).
- World Health Organization Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes, 2nd ed.; World Health Organization: Geneva, Switzerland, 2016.
- Procedimientos Para Evaluar La Suceptibilidad a Los Insecticidas de Los Principales Mosquitos Vectores de Las Américas; Organización Panamericana de la Salud: Washington, DC, USA, 2023.
- World Health Organization. Manual for Monitoring Insecticide Resistance in Mosquito Vectors and Selecting Appropriate Interventions. 2022. Available online: https://www.who.int/publications/i/item/9789240051089 (accessed on 27 April 2024).
- Vivero, R.J.; Jaramillo, N.G.; Cadavid-Restrepo, G.; Soto, S.I.U.; Herrera, C.X.M. Structural Differences in Gut Bacteria Communities in Developmental Stages of Natural Populations of Lutzomyia evansi from Colombia’s Caribbean Coast. Parasit. Vectors 2016, 9, 496. [Google Scholar] [CrossRef]
- Jensen, M.A.; Webster, J.A.; Straus, N. Rapid Identification of Bacteria on the Basis of Polymerase Chain Reaction-Amplified Ribosomal DNA Spacer Polymorphisms. Appl. Environ. Microbiol. 1993, 59, 945. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.; Romero, J.; Espejo, R.T. Polymorphism in Repeated 16S RRNA Genes Is a Common Property of Type Strains and Environmental Isolates of the Genus Vibrio. Microbiology 2002, 148, 1233–1239. [Google Scholar] [CrossRef]
- Yin, H.; Cao, L.; Qiu, G.; Wang, D.; Kellogg, L.; Zhou, J.; Liu, X.; Dai, Z.; Ding, J.; Liu, X. Molecular Diversity of 16S RRNA and GyrB Genes in Copper Mines. Arch. Microbiol. 2008, 189, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Harayama, S. PCR Amplification and Direct Sequencing of GyrB Genes with Universal Primers and Their Application to the Detection and Taxonomic Analysis of Pseudomonas putida Strains. Appl. Environ. Microbiol. 1995, 61, 1104–1109. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R.; Teeling, E. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M. Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans and Chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Moyes, C.L.; Vontas, J.; Martins, A.J.; Ng, L.C.; Koou, S.Y.; Dusfour, I.; Raghavendra, K.; Pinto, J.; Corbel, V.; David, J.P.; et al. Contemporary Status of Insecticide Resistance in the Major Aedes Vectors of Arboviruses Infecting Humans. PLoS Negl. Trop. Dis. 2017, 11, e0005625. [Google Scholar] [CrossRef] [PubMed]
- Muturi, E.J.; Donthu, R.K.; Fields, C.J.; Moise, I.K.; Kim, C.H. Effect of Pesticides on Microbial Communities in Container Aquatic Habitats. Sci. Rep. 2017, 7, 44565. [Google Scholar] [CrossRef]
- Souza, R.L.; Nazare, R.J.; Argibay, H.D.; Pellizzaro, M.; Anjos, R.O.; Portilho, M.M.; Jacob-Nascimento, L.C.; Reis, M.G.; Kitron, U.D.; Ribeiro, G.S. Density of Aedes aegypti (Diptera: Culicidae) in a Low-Income Brazilian Urban Community Where Dengue, Zika, and Chikungunya Viruses Co-Circulate. Parasit. Vectors 2023, 16, 1–159. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, G.; Zhong, S.; Wang, X.; Zhong, D.; Hemming-Schroeder, E.; Yi, G.; Fu, F.; Fu, F.; Cui, L.; et al. Spatial Heterogeneity and Temporal Dynamics of Mosquito Population Density and Community Structure in Hainan Island, China. Parasit. Vectors 2020, 13, 1–444. [Google Scholar] [CrossRef]
- Marceló-Díaz, C.; Morales, C.A.; Lesmes, M.C.; Fuya, P.; Andres Mendez, S.; Cadena, H.; Ávila-Díaz, A.; Santamaria, E. Arbovirus Vectors in Municipalities with a High Risk of Dengue in Cauca, Southwestern Colombia. GigaByte 2022, 53, 1–11. [Google Scholar] [CrossRef]
- De Sá, E.L.R.; Rodovalho, C.D.M.; De Sousa, N.P.R.; De Sá, I.L.R.; Bellinato, D.F.; Dias, L.D.S.; Da Silva, L.C.; Martins, A.J.; Lima, J.B.P. Evaluation of Insecticide Resistance in Aedes aegypti Populations Connected by Roads and Rivers: The Case of Tocantins State in Brazil. Mem. Inst. Oswaldo Cruz 2019, 114, e180318. [Google Scholar] [CrossRef]
- Maestre-Serrano, R.; Flórez-Rivadeneira, Z.; Castro-Camacho, J.M.; Ochoa-Bohórquez, L.; Gómez-Camargo, D.; Pareja-Loaiza, P.; Ponce-García, G.; Flores, A.E. Evaluación de La Sensibilidad a Organofosforados En Poblaciones de Aedes aegypti (L.) (Diptera: Culicidae) Del Departamento de La Guajira, Colombia. Biomédica 2023, 43, 296. [Google Scholar] [CrossRef]
- Maestre, R.S.; Rey, G.V.; De Las, A.; Salas, J.; Vergara, C.S.; Santacoloma, L.V.; Goenaga, S.O.; Carrasquilla, M.C.F. Susceptibilidad de Aedes aegypti (Diptera: Culicidae) a Temefos En Atlántico-Colombia. Rev. Colomb. Entomol. 2009, 35, 202–205. [Google Scholar] [CrossRef]
- Poulton, B.C.; Colman, F.; Anthousi, A.; Sattelle, D.B.; Lycett, G.J. Aedes aegypti CCEae3A Carboxylase Expression Confers Carbamate, Organophosphate and Limited Pyrethroid Resistance in a Model Transgenic Mosquito. PLoS Negl. Trop. Dis. 2024, 18, e0011595. [Google Scholar] [CrossRef]
- Sogorb, M.A.; Vilanova, E. Enzymes Involved in the Detoxification of Organophosphorus, Carbamate and Pyrethroid Insecticides through Hydrolysis. Toxicol. Lett. 2002, 128, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Poupardin, R.; Srisukontarat, W.; Yunta, C.; Ranson, H. Identification of Carboxylesterase Genes Implicated in Temephos Resistance in the Dengue Vector Aedes aegypti. PLoS Negl. Trop. Dis. 2014, 8, e2743. [Google Scholar] [CrossRef]
- Grisales, N.; Poupardin, R.; Gomez, S.; Fonseca-Gonzalez, I.; Ranson, H.; Lenhart, A. Temephos Resistance in Aedes aegypti in Colombia Compromises Dengue Vector Control. PLoS Negl. Trop. Dis. 2013, 7, e2438. [Google Scholar] [CrossRef]
- Davila-Barboza, J.A.; Gutierrez-Rodriguez, S.M.; Juache-Villagrana, A.E.; Lopez-Monroy, B.; Flores, A.E. Widespread Resistance to Temephos in Aedes aegypti (Diptera: Culicidae) from México. Insects 2024, 15, 120. [Google Scholar] [CrossRef]
- Chediak, M.; Pimenta, F.G.; Coelho, G.E.; Braga, I.A.; Lima, J.B.P.; Cavalcante, K.R.L.J.; Sousa, L.C.D.; de Melo-Santos, M.A.V.; Macoris, M.D.L.D.G.; de Araújo, A.P.; et al. Spatial and Temporal Country-Wide Survey of Temephos Resistance in Brazilian Populations of Aedes aegypti. Mem. Inst. Oswaldo Cruz 2016, 111, 311–321. [Google Scholar] [CrossRef]
- Rahim, J.; Ahmad, A.H.; Maimusa, A.H. Effects of Temephos Resistance on Life History Traits of Aedes albopictus (Skuse) (Diptera: Culicidae), a Vector of Arboviruses. Rev. Bras. Entomol. 2017, 61, 312–317. [Google Scholar] [CrossRef]
- Belinato, T.A.; Martins, A.J.; Valle, D. Fitness Evaluation of Two Brazilian Aedes aegypti Field Populations with Distinct Levels of Resistance to the Organophosphate Temephos. Mem. Inst. Oswaldo Cruz 2012, 107, 916–922. [Google Scholar] [CrossRef]
- Abdulai, A.; Owusu-Asenso, C.M.; Akosah-Brempong, G.; Mohammed, A.R.; Sraku, I.K.; Attah, S.K.; Forson, A.O.; Weetman, D.; Afrane, Y.A. Insecticide Resistance Status of Aedes aegypti in Southern and Northern Ghana. Parasit. Vectors 2023, 16, 135. [Google Scholar] [CrossRef] [PubMed]
- Aponte, A.; Penilla, R.P.; Rodríguez, A.D.; Ocampo, C.B. Mechanisms of Pyrethroid Resistance in Aedes (Stegomyia) aegypti from Colombia. Acta Trop. 2019, 191, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Maestre-Serrano, R.; Flórez-Rivadeneira, Z.; Castro-Camacho, J.M.; Soto-Arenilla, E.; Gómez-Camargo, D.; Pareja-Loaiza, P.; Ponce-Garcia, G.; Juache-Villagrana, A.E.; Flores, A.E. Spatial Distribution of Pyrethroid Resistance and Kdr Mutations in Aedes aegypti from La Guajira, Colombia. Insects 2022, 14, 31. [Google Scholar] [CrossRef]
- Valle, D.; Bellinato, D.F.; Viana-Medeiros, P.F.; Lima, J.B.P.; Martins Junior, A.D.J. Resistance to Temephos and Deltamethrin in Aedes aegypti from Brazil between 1985 and 2017. Mem. Inst. Oswaldo Cruz 2019, 114, e180544. [Google Scholar] [CrossRef] [PubMed]
- Stewart, E.J. Growing Unculturable Bacteria. J. Bacteriol. 2012, 194, 4151–4160. [Google Scholar] [CrossRef]
- Steen, A.D.; Crits-Christoph, A.; Carini, P.; DeAngelis, K.M.; Fierer, N.; Lloyd, K.G.; Cameron Thrash, J. High Proportions of Bacteria and Archaea across Most Biomes Remain Uncultured. ISME J. 2019, 13, 3126–3130. [Google Scholar] [CrossRef]
- Scolari, F.; Casiraghi, M.; Bonizzoni, M. Aedes Spp. and Their Microbiota: A Review. Front. Microbiol. 2019, 10, 2036. [Google Scholar] [CrossRef]
- Galeano-Castañeda, Y.; Urrea-Aguirre, P.; Piedrahita, S.; Bascuñán, P.; Correa, M.M. Composition and Structure of the Culturable Gut Bacterial Communities in Anopheles albimanus from Colombia. PLoS ONE 2019, 14, e0225833. [Google Scholar] [CrossRef] [PubMed]
- Osei-Poku, J.; Mbogo, C.M.; Palmer, W.J.; Jiggins, F.M. Deep Sequencing Reveals Extensive Variation in the Gut Microbiota of Wild Mosquitoes from Kenya. Mol. Ecol. 2012, 21, 5138–5150. [Google Scholar] [CrossRef] [PubMed]
- Lagier, J.C.; Dubourg, G.; Million, M.; Cadoret, F.; Bilen, M.; Fenollar, F.; Levasseur, A.; Rolain, J.M.; Fournier, P.E.; Raoult, D. Culturing the Human Microbiota and Culturomics. Nat. Rev. Microbiol. 2018, 16, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.E.; Kaleta, E.J.; Arora, A.; Wolk, D.M. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: A Fundamental Shift in the Routine Practice of Clinical Microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603. [Google Scholar] [CrossRef] [PubMed]
- Tandina, F.; Almeras, L.; Koné, A.K.; Doumbo, O.K.; Raoult, D.; Parola, P. Use of MALDI-TOF MS and Culturomics to Identify Mosquitoes and Their Midgut Microbiota. Parasit. Vectors 2016, 9, 495. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yin, J.; Huang, X.; Zang, C.; Zhang, Y.; Cao, J.; Gong, M. Mosquito Gut Microbiota: A Review. Pathogens 2024, 13, 691. [Google Scholar] [CrossRef]
- Mejía, A.; Mejía-Jaramillo, A.M.; Fernandez, G.J.; Granada, Y.; Lowenberger, C.; Triana-Chávez, O. Long-Term Exposure to Lambda-Cyhalothrin Reveals Novel Genes Potentially Involved in Aedes aegypti insecticide Resistance. Insects 2025, 16, 106. [Google Scholar] [CrossRef]
- Xia, X.; Zheng, D.; Zhong, H.; Qin, B.; Gurr, G.M.; Vasseur, L.; Lin, H.; Bai, J.; He, W.; You, M. DNA Sequencing Reveals the Midgut Microbiota of Diamondback Moth, Plutella xylostella (L.) and a Possible Relationship with Insecticide Resistance. PLoS ONE 2013, 8, e68852. [Google Scholar] [CrossRef]
- Soltani, A.; Vatandoost, H.; Oshaghi, M.A.; Enayati, A.A.; Chavshin, A.R. The Role of Midgut Symbiotic Bacteria in Resistance of Anopheles stephensi (Diptera: Culicidae) to Organophosphate Insecticides. Pathog. Glob. Health 2017, 111, 289–296. [Google Scholar] [CrossRef]
- Coon, K.L.; Vogel, K.J.; Brown, M.R.; Strand, M.R. Mosquitoes Rely on Their Gut Microbiota for Development. Mol. Ecol. 2014, 23, 2727–2739. [Google Scholar] [CrossRef]
- Wang, Y.; Gilbreath, T.M.; Kukutla, P.; Yan, G.; Xu, J. Dynamic Gut Microbiome across Life History of the Malaria Mosquito Anopheles gambiae in Kenya. PLoS ONE 2011, 6, e24767. [Google Scholar] [CrossRef]
- Boissière, A.; Tchioffo, M.T.; Bachar, D.; Abate, L.; Marie, A.; Nsango, S.E.; Shahbazkia, H.R.; Awono-Ambene, P.H.; Levashina, E.A.; Christen, R.; et al. Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection. PLoS Pathog. 2012, 8, e1002742. [Google Scholar] [CrossRef]
- Valiente Moro, C.; Tran, F.H.; Nantenaina Raharimalala, F.; Ravelonandro, P.; Mavingui, P. Diversity of Culturable Bacteria Including Pantoea in Wild Mosquito Aedes albopictus. BMC Microbiol. 2013, 13, 70. [Google Scholar] [CrossRef]
- Jones, R.T.; Sanchez, L.G.; Fierer, N. A Cross-Taxon Analysis of Insect-Associated Bacterial Diversity. PLoS ONE 2013, 8, e61218. [Google Scholar] [CrossRef]
- Yadav, K.K.; Bora, A.; Datta, S.; Chandel, K.; Gogoi, H.K.; Prasad, G.B.K.S.; Veer, V. Molecular Characterization of Midgut Microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India. Parasit. Vectors 2015, 8, 641. [Google Scholar] [CrossRef]
- Sato, M.; Miyazaki, K. Phylogenetic Network Analysis Revealed the Occurrence of Horizontal Gene Transfer of 16S RRNA in the Genus Enterobacter. Front. Microbiol. 2017, 8, 302057. [Google Scholar] [CrossRef]
- Naum, M.; Brown, E.W.; Mason-Gamer, R.J. Is 16S RDNA a Reliable Phylogenetic Marker to Characterize Relationships below the Family Level in the Enterobacteriaceae? J. Mol. Evol. 2008, 66, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Ramya, S.L.; Venkatesan, T.; Murthy, K.S.; Jalali, S.K.; Varghese, A. Degradation of Acephate by Enterobacter asburiae, Bacillus cereus and Pantoea agglomerans Isolated from Diamondback Moth Plutella xylostella (L), a Pest of Crucif. Crops. J. Environ. Biol. 2016, 37, 611–618. [Google Scholar]
- Singh, B.K.; Walker, A.; Morgan, J.A.W.; Wright, D.J. Biodegradation of Chlorpyrifos by Enterobacter Strain B-14 and Its Use in Bioremediation of Contaminated Soils. Appl. Environ. Microbiol. 2004, 70, 4855–4863. [Google Scholar] [CrossRef] [PubMed]
- Suman, S. Tanuja Isolation and Characterization of a Bacterial Strain Enterobacter cloacae (Accession No. KX438060.1) Capable of Degrading DDTs Under Aerobic Conditions and Its Use in Bioremediation of Contaminated Soil. Microbiol. Insights 2021, 14, 117863612110242. [Google Scholar] [CrossRef]
- Eappen, A.G.; Smith, R.C.; Jacobs-Lorena, M. Enterobacter-Activated Mosquito Immune Responses to Plasmodium Involve Activation of SRPN6 in Anopheles stephensi. PLoS ONE 2013, 8, e62937. [Google Scholar] [CrossRef] [PubMed]
- Milugo, T.K.; Torto, B.; Tchouassi, D.P. Bacteria Associated with Parthenium hysterophorus Root Exudate Influence Olfactory Oviposition Responses of Anopheles gambiae. Front. Trop. Dis. 2024, 5, 1359774. [Google Scholar] [CrossRef]
- Akbar, S.; Sultan, S.; Kertesz, M. Determination of Cypermethrin Degradation Potential of Soil Bacteria Along with Plant Growth-Promoting Characteristics. Curr. Microbiol. 2015, 70, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Cycon, M.; Piotrowska-Seget, Z. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review. Front. Microbiol. 2016, 7, 218351. [Google Scholar] [CrossRef]
- Pa Wu, A.; Sun, P.; Nie, K.; Zhou, H.; Wang, P.; Cheng Correspondence, G. A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses. Cell Host Microbe 2019, 25, 101–112. [Google Scholar] [CrossRef]
- Schrieke, H.; Maignien, L.; Constancias, F.; Trigodet, F.; Chakloute, S.; Rakotoarivony, I.; Marie, A.; L’Ambert, G.; Makoundou, P.; Pages, N.; et al. The Mosquito Microbiome Includes Habitat-Specific but Rare Symbionts. Comput. Struct. Biotechnol. J. 2021, 20, 410–420. [Google Scholar] [CrossRef]
- Chen, S.; Bagdasarian, M.; Walker, E.D. Elizabethkingia anophelis: Molecular Manipulation and Interactions with Mosquito Hosts. Appl. Environ. Microbiol. 2015, 81, 2233. [Google Scholar] [CrossRef]
- Park, H.; Seo, S.I.; Lim, J.H.; Song, J.; Seo, J.H.; Kim, P.I. Screening of Carbofuran-Degrading Bacteria Chryseobacterium sp. BSC2-3 and Unveiling the Change in Metabolome during Carbofuran Degradation. Metabolites 2022, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Martinez Villegas, L.E.; Radl, J.; Dimopoulos, G.; Short, S.M. Bacterial Communities of Aedes aegypti Mosquitoes Differ between Crop and Midgut Tissues. PLoS Negl. Trop. Dis. 2023, 17, e0011218. [Google Scholar] [CrossRef]
- David, M.R.; Santos, L.M.B.D.; Vicente, A.C.P.; Maciel-de-Freitas, R. Effects of Environment, Dietary Regime and Ageing on the Dengue Vector Microbiota: Evidence of a Core Microbiota throughout Aedes aegypti Lifespan. Mem. Inst. Oswaldo Cruz 2016, 111, 577–587. [Google Scholar] [CrossRef]
- Hegde, S.; Khanipov, K.; Albayrak, L.; Golovko, G.; Pimenova, M.; Saldaña, M.A.; Rojas, M.M.; Hornett, E.A.; Motl, G.C.; Fredregill, C.L.; et al. Microbiome Interaction Networks and Community Structure from Laboratory-Reared and Field-Collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquito Vectors. Front. Microbiol. 2018, 9, 405381. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.; Nilyanimit, P.; Kozlova, E.; Anderson, E.R.; Narra, H.P.; Sahni, S.K.; Heinz, E.; Hughes, G.L. CRISPR/Cas9-Mediated Gene Deletion of the OmpA Gene in Symbiotic Cedecea neteri Impairs Biofilm Formation and Reduces Gut Colonization of Aedes aegypti Mosquitoes. PLoS Negl. Trop. Dis. 2019, 13, e0007883. [Google Scholar] [CrossRef]
- Thompson, D.K.; Sharkady, S.M. Genomic Insights into Drug Resistance Determinants in Cedecea neteri, a Rare Opportunistic Pathogen. Microorganisms 2021, 9, 1741. [Google Scholar] [CrossRef] [PubMed]
- Gangola, S.; Sharma, A.; Bhatt, P.; Khati, P.; Chaudhary, P. Presence of Esterase and Laccase in Bacillus subtilis Facilitates Biodegradation and Detoxification of Cypermethrin. Sci. Rep. 2018, 8, 12755. [Google Scholar] [CrossRef]
- Coon, K.L.; Brown, M.R.; Strand, M.R. Gut Bacteria Differentially Affect Egg Production in the Anautogenous Mosquito Aedes aegypti and Facultatively Autogenous Mosquito Aedes atropalpus (Diptera: Culicidae). Parasit. Vectors 2016, 9, 375. [Google Scholar] [CrossRef]
- Moncayo, A.C.; Lerdthusnee, K.; Leon, R.; Robich, R.M.; Romoser, W.S. Meconial Peritrophic Matrix Structure, Formation, and Meconial Degeneration in Mosquito Pupae/Pharate Adults: Histological and Ultrastructural Aspects. J. Med. Entomol. 2005, 42, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Gimonneau, G.; Tchioffo, M.T.; Abate A, L.; Boissière, A.; Awono-Ambéné, P.H.; Nsango, S.E.; Christen, R.; Morlais, I. Composition of Anopheles coluzzii and Anopheles gambiae Microbiota from Larval to Adult Stages. Infect. Genet. Evol. 2014, 28, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.M.; Melo, F.F.; Bezerra, J.M.T.; Chaves, B.A.; Silva, B.M.; Silva, L.D.; Pessanha, J.E.M.; Arias, J.R.; Secundino, N.F.C.; Norris, D.E.; et al. Distinct Variation in Vector Competence among Nine Field Populations of Aedes aegypti from a Brazilian Dengue-Endemic Risk City. Parasit. Vectors 2014, 7, 320. [Google Scholar] [CrossRef]
- Oliveira, J.H.M.; Gonçalves, R.L.S.; Lara, F.A.; Dias, F.A.; Gandara, A.C.P.; Menna-Barreto, R.F.S.; Edwards, M.C.; Laurindo, F.R.M.; Silva-Neto, M.A.C.; Sorgine, M.H.F.; et al. Blood Meal-Derived Heme Decreases ROS Levels in the Midgut of Aedes aegypti and Allows Proliferation of Intestinal Microbiota. PLoS Pathog. 2011, 7, e1001320. [Google Scholar] [CrossRef] [PubMed]
- Saab, S.A.; Dohna, H.Z.; Nilsson, L.K.J.; Onorati, P.; Nakhleh, J.; Terenius, O.; Osta, M.A. The Environment and Species Affect Gut Bacteria Composition in Laboratory Co-Cultured Anopheles gambiae and Aedes albopictus Mosquitoes. Sci. Rep. 2020, 10, 3352. [Google Scholar] [CrossRef]
- Baltar, J.M.C.; Pavan, M.G.; Corrêa-Antônio, J.; Couto-Lima, D.; Maciel-de-Freitas, R.; David, M.R. Gut Bacterial Diversity of Field and Laboratory-Reared Aedes albopictus Populations of Rio de Janeiro, Brazil. Viruses 2023, 15, 1309. [Google Scholar] [CrossRef]
- World Health Organization. Global Insecticide Use for Vector-Borne Disease Control, 6th ed.; World Health Organization: Geneva, Switzerland, 2010; Available online: https://iris.who.int/bitstream/handle/10665/345573/9789240032033-eng.pdf (accessed on 20 January 2025).
- Iturbe-Ormaetxe, I.; Walker, T.; O’Neill, S.L. Wolbachia and the Biological Control of Mosquito-Borne Disease. EMBO Rep. 2011, 12, 508. [Google Scholar] [CrossRef] [PubMed]
Code Sequencing | Isolate Code | Origin * | NCBI–GenBank Identifier | NCBI Code | % Similarity |
---|---|---|---|---|---|
J1G | P1D1C1 | UFTs | Enterobacter asburiae | KP345905.1 | 99.02% |
J3G | P1D3C1 | UFTs | Bacillus aerius | CP133585.1 | 99.52% |
J4G | P2D2C1 | UFTs | Enterobacter asburiae | CP056716.1 | 94.46% |
J10G | P31D2 | TRL 0.01 µg/mL | Chryseobacterium gleum | LR134289.1 | 97.11% |
J11G | P23D2 | TRL 0.03 µg/mL | Enterobacter cloacae | OL364945.1 | 98.57% |
J16G | P15D2 | TRL 0.05 µg/mL | Acinetobacter sp. | CP028561.1 | 96.36% |
J17G | P32D3 | TRL 0.02 µg/mL | Chryseobacterium gleum | LR134289.1 | 96.75% |
J19G | P43D4 | TRL 0.03 µg/mL | Enterobacter asburiae | CP129027.1 | 99.14% |
J28G | P43D3 | TRL 0.03 µg/mL | Enterobacter asburiae | CP129027.1 | 99.11% |
J29G | P2HD2 | DRFs | Cedecea neteri | CP134767.1 | 97.03% |
J31G | P1HD2 | DRFs | Cedecea neteri | MN329097.1 | 99.49% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viafara-Campo, J.D.; Vivero-Gómez, R.J.; Fernando-Largo, D.; Manjarrés, L.M.; Moreno-Herrera, C.X.; Cadavid-Restrepo, G. Diversity of Gut Bacteria of Field-Collected Aedes aegypti Larvae and Females, Resistant to Temephos and Deltamethrin. Insects 2025, 16, 181. https://doi.org/10.3390/insects16020181
Viafara-Campo JD, Vivero-Gómez RJ, Fernando-Largo D, Manjarrés LM, Moreno-Herrera CX, Cadavid-Restrepo G. Diversity of Gut Bacteria of Field-Collected Aedes aegypti Larvae and Females, Resistant to Temephos and Deltamethrin. Insects. 2025; 16(2):181. https://doi.org/10.3390/insects16020181
Chicago/Turabian StyleViafara-Campo, Jennifer D., Rafael José Vivero-Gómez, Daniel Fernando-Largo, Lina Marcela Manjarrés, Claudia Ximena Moreno-Herrera, and Gloria Cadavid-Restrepo. 2025. "Diversity of Gut Bacteria of Field-Collected Aedes aegypti Larvae and Females, Resistant to Temephos and Deltamethrin" Insects 16, no. 2: 181. https://doi.org/10.3390/insects16020181
APA StyleViafara-Campo, J. D., Vivero-Gómez, R. J., Fernando-Largo, D., Manjarrés, L. M., Moreno-Herrera, C. X., & Cadavid-Restrepo, G. (2025). Diversity of Gut Bacteria of Field-Collected Aedes aegypti Larvae and Females, Resistant to Temephos and Deltamethrin. Insects, 16(2), 181. https://doi.org/10.3390/insects16020181