How Science Supports Honey Bees: Identification of Research on Best Practices in Beekeeping
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Geographic and Temporal Distribution
3.2. Practice Themes and Frequencies
3.3. General Apiary Management
3.4. Varroosis
3.5. American Foulbrood
3.6. Small Hive Beetle
3.7. Tropilaelaps spp.
3.8. Species and Subspecies Used
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rivera-Gomis, J.; Bubnič, J.; Ribarits, A.; Mutinelli, F.; Dahle, B.; Formato, G.; van der Zee, R.; Gracia, M.J.; Soroker, V.; Schuster, S.; et al. Good farming practices in apiculture. Rev. Sci. Tech. 2019, 38, 1–27. [Google Scholar] [CrossRef]
- Tubene, S.; Kulhanek, K.; Rennich, K.; vanEngelsdorp, D. Best management practices increase profitability of small-scale US beekeeping operations. J. Econ. Entomol. 2023, 116, 47–55. [Google Scholar] [CrossRef]
- Pietropaoli, M.; Ribarits, A.; Moosbeckhofer, R.; Köglberger, H.; Alber, O.; Gregorc, A.; Smodis Skerl, M.I.; Presern, J.; Bubnic, J.; Necati Muzet, M.; et al. Biosecurity measures in European beekeeping. Rev. Sci. Tech. 2020, 39, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Antúnez, K.; Invernizzi, C.; Mendoza, Y.; vanEngelsdorp, D.; Zunino, P. Honeybee colony losses in Uruguay during 2013–2014. Apidologie 2017, 48, 364–370. [Google Scholar] [CrossRef]
- Brown, P.; Newstrom-Lloyd, L.E.; Foster, B.J.; Badger, P.H.; McLean, J.A. Winter 2016 honey bee colony losses in New Zealand. J. Apic. Res. 2018, 57, 278–291. [Google Scholar] [CrossRef]
- Gray, A.; Adjlane, N.; Arab, A.; Ballis, A.; Brusbardis, V.; Charrière, J.D.; Chlebo, R.; Coffey, M.F.; Cornelissen, B.; da Costa, C.A.; et al. Honey bee colony winter loss rates for 35 countries participating in the COLOSS survey for winter 2018–2019, and the effects of a new queen on the risk of colony winter loss. J. Apic. Res. 2020, 59, 744–751. [Google Scholar] [CrossRef]
- Oberreiter, H.; Brodschneider, R. Austrian COLOSS survey of honey bee colony winter losses 2018/19 and analysis of hive management practices. Diversity 2020, 12, 99. [Google Scholar] [CrossRef]
- Steinhauer, N.; vanEngelsdorp, D.; Saegerman, C. Prioritizing changes in management practices associated with reduced winter honey bee colony losses for US beekeepers. Sci. Total Environ. 2021, 753, 141629. [Google Scholar] [CrossRef]
- Azzami, K.; Ritter, W.; Tautz, J.; Beier, H. Infection of honey bees with acute bee paralysis virus does not trigger humoral or cellular immune responses. Arch. Virol. 2012, 157, 689–702. [Google Scholar] [CrossRef]
- Evans, J.D.; Spivak, M. Socialized medicine: Individual and communal disease barriers in honey bees. J. Invertebr. Pathol. 2010, 103, 62–72. [Google Scholar] [CrossRef]
- Boecking, O.; Genersch, E. Varroosis—The ongoing crisis in beekeeping. J. Verbrauch. Lebensm. 2008, 3, 221–228. [Google Scholar] [CrossRef]
- Genersch, E.; von der Ohe, W.; Kaatz, H.; Schroeder, A.; Otten, C.; Büchler, R.; Berg, S.; Ritter, W.; Mühlen, W.; Gisder, S.; et al. The German bee monitoring project: A long-term study to understand periodically high winter losses of honey bee colonies. Apidologie 2010, 41, 232–247. [Google Scholar] [CrossRef]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 2010, 103 (Suppl. 1), S96–S119. [Google Scholar] [CrossRef] [PubMed]
- Haber, A.I.; Steinhauer, N.A.; vanEngelsdorp, D. Use of chemical and nonchemical methods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in US beekeeping operations. J. Econ. Entomol. 2019, 112, 1509–1525. [Google Scholar] [CrossRef] [PubMed]
- Matović, K.; Žarković, A.; Debeljak, Z.; Vidanović, D.; Vasković, N.; Tešović, B.; Ćirić, J. American foulbrood—Old and always new challenge. Vet. Sci. 2023, 10, 180. [Google Scholar] [CrossRef]
- Mosca, M.; Bubnič, J.; Giannetti, L.; Fortugno, L.; Pietropaoli, M.; Manara, V.; Bonerba, E.; Formato, G. Adoption of partial shook swarm in the integrated control of American and European foulbrood of honey bee (Apis mellifera L.). Agriculture 2023, 13, 363. [Google Scholar] [CrossRef]
- Burgett, M.; Akratanakul, P.; Morse, R.A. Tropilaelaps clareae: A parasite of honeybees in Southeast Asia. Bee World 1983, 64, 25–28. [Google Scholar] [CrossRef]
- Anderson, D.L.; Morgan, M.J. Genetic and morphological variation of bee-parasitic Tropilaelaps mites (Acari: Laelapidae): New and re-defined species. Exp. Appl. Acarol. 2007, 43, 1–24. [Google Scholar] [CrossRef]
- Buawangpong, N.; de Guzman, L.I.; Khongphinitbunjong, K.K.; Amanda, M.; Frake, A.M.; Burgett, M.; Chantawannakul, P. Prevalence and reproduction of Tropilaelaps mercedesae and Varroa destructor in concurrently infested Apis mellifera colonies. Apidologie 2015, 46, 779–786. [Google Scholar] [CrossRef]
- Ritter, W.; Schneider-Ritter, U. Differences in biology and means of controlling Varroa jacobsoni and Tropilaelaps clareae, two novel parasitic mites of Apis mellifera. In Africanized Honey Bees and Bee Mites; Needham, G.R., Page, R.E., Delfinado-Baker, M., Bowman, C.E., Eds.; Ellis Horwood: Chichester, UK, 1988; pp. 383–392. [Google Scholar]
- Uzunov, A.; Janashia, I.; Chen, C.; Costa, C.; Kovačić, M. A scientific note on ‘Rapid brood decapping’—A method for assessment of honey bee (Apis mellifera) brood infestation with Tropilaelaps mercedesae. Apidologie 2025, 56, 40. [Google Scholar] [CrossRef]
- Neumann, P.; Ellis, J.D. The small hive beetle (Aethina tumida Murray, Coleoptera: Nitidulidae): Distribution, biology, and control of an invasive species. J. Apic. Res. 2008, 47, 181–183. [Google Scholar] [CrossRef]
- Mutinelli, F.; Montarsi, F.; Federico, G.; Granato, A.; Maroni Ponti, A.; Grandinetti, G.; Ferrè, N.; Franco, S.; Duquesne, V.; Rivolta, M.; et al. Detection of Aethina tumida Murray (Coleoptera: Nitidulidae) in Italy: Outbreaks and early reaction measures. J. Apic. Res. 2014, 53, 569–575. [Google Scholar] [CrossRef]
- Ellis, J. The honey bee crisis. Outlooks Pest Manag. 2012, 23, 35–40. [Google Scholar] [CrossRef]
- Abou-Shaara, H.F.; Al-Ghamdi, A.A.; Mohamed, A.A. Honey bee colonies performance enhanced by newly modified beehives. J. Apic. Sci. 2013, 57, 45–57. [Google Scholar] [CrossRef]
- Alburaki, M.; Corona, M. Polyurethane honey bee hives provide better winter insulation than wooden hives. J. Apic. Res. 2021, 61, 190–196. [Google Scholar] [CrossRef]
- Meixner, M.D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 2010, 103 (Suppl. 1), S80–S95. [Google Scholar] [CrossRef]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef]
- Hassler, E.E.; Cazier, J.A.; Hopkins, B.; Wilkes, J.T.; Smith, K.; Rünzel, M. A century of discovery: Mining 100 years of honey bee research. J. Apic. Res. 2020, 60, 3–12. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Woodcock, P.; Macura, B.; Collins, A. Making literature reviews more reliable through application of lessons from systematic reviews. Conserv. Biol. 2015, 29, 1596–1605. [Google Scholar] [CrossRef]
- Kulhanek, K.; Steinhauer, N.; Wilkes, J.; Wilson, M.; Spivak, M.; Sagili, R.R.; Tarpy, D.R.; McDermott, E.; Garavito, A.; Rennich, K.; et al. Survey-derived best management practices for backyard beekeepers improve colony health and reduce mortality. PLoS ONE 2021, 16, e0245490. [Google Scholar] [CrossRef]
- Aurell, D.; Bruckner, S.; Wilson, M.; Steinhauer, N.; Williams, G.R. A national survey of managed honey bee colony losses in the USA: Results from the Bee Informed Partnership for 2020–21 and 2021–22. J. Apic. Res. 2023, 63, 1–14. [Google Scholar] [CrossRef]
- Underwood, R.M.; Lawrence, B.L.; Turley, N.E.; Cambron-Kopco, L.D.; Kietzman, P.M.; Traver, B.E.; López-Uribe, M.M. A longitudinal experiment demonstrates that honey bee colonies managed organically are as healthy and productive as those managed conventionally. Sci. Rep. 2023, 13, 6072. [Google Scholar] [CrossRef] [PubMed]
- Frey, E.; Rosenkranz, P. Autumn invasion rates of Varroa destructor (Mesostigmata: Varroidae) into honey bee (Hymenoptera: Apidae) colonies and the resulting increase in mite populations. J. Econ. Entomol. 2014, 107, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Dynes, T.L.; Berry, J.A.; Delaplane, K.S.; Brosi, B.J.; de Roode, J.C. Reduced density and visually complex apiaries reduce parasite load and promote honey production and overwintering survival in honey bees. PLoS ONE 2019, 14, e0216286. [Google Scholar] [CrossRef] [PubMed]
- St. Clair, A.L.; Beach, N.J.; Dolezal, A.G. Honey bee hive covers reduce food consumption and colony mortality during overwintering. PLoS ONE 2022, 17, e0266219. [Google Scholar] [CrossRef]
- Guler, A. The effects of the shook swarm technique on honey bee (Apis mellifera L.) colony productivity and honey quality. J. Apic. Res. 2008, 47, 27–34. [Google Scholar] [CrossRef]
- Loftus, J.C.; Smith, M.L.; Seeley, T.D. How honey bee colonies survive in the wild: Testing the importance of small nests and frequent swarming. PLoS ONE 2016, 11, e0150362. [Google Scholar] [CrossRef]
- vanEngelsdorp, D.; Hayes, J., Jr.; Underwood, R.M.; Pettis, J.S. A survey of honey bee colony losses in the United States, fall 2008 to spring 2009. J. Apic. Res. 2010, 49, 7–14. [Google Scholar] [CrossRef]
- Kulhanek, K.; Steinhauer, N.; Rennich, K.; Caron, D.M.; Sagili, R.R.; Pettis, J.S.; Ellis, J.D.; Wilson, M.E.; Wilkes, J.T.; Tarpy, D.R.; et al. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J. Apic. Res. 2017, 56, 328–340. [Google Scholar] [CrossRef]
- Smilga-Spalvina, A.; Spalvins, K.; Veidenbergs, I. Field study: Factors influencing virgin queen bee acceptance rate in Apis mellifera colonies. Czech J. Anim. Sci. 2024, 69, 155–164. [Google Scholar] [CrossRef]
- Akyol, E.; Yeninar, H.; Karatepe, M.; Karatepe, B.; Özkök, D. Effects of queen ages on Varroa destructor infestation level in honey bee (Apis mellifera caucasica) colonies and colony performance. Ital. J. Anim. Sci. 2007, 6, 143–149. [Google Scholar] [CrossRef]
- Giacobino, A.; Molineri, A.; Cagnolo, N.B.; Merke, J.; Orellano, E.; Bertozzi, E.; Masciangelo, G.; Pietronave, H.; Pacini, A.; Salto, C. Queen replacement: The key to prevent winter colony losses in Argentina. J. Apic. Res. 2016, 55, 335–341. [Google Scholar] [CrossRef]
- Kovačić, M.; Puškadija, Z.; Dražić, M.M.; Uzunov, A.; Meixner, M.D.; Büchler, R. Effects of selection and local adaptation on resilience and economic suitability in Apis mellifera carnica. Apidologie 2020, 51, 1062–1073. [Google Scholar] [CrossRef]
- Holmes, L.A.; Ovinge, L.P.; Kearns, J.D.; Ibrahim, A.; Wolf Veiga, P.; Guarna, M.M.; Pernal, S.F.; Hoover, S.E. Queen quality, performance, and winter survival of imported and domestic honey bee queen stocks. Sci. Rep. 2023, 13, 17273. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, A.; Fournier, V.; Giovenazzo, P. Apis mellifera (Hymenoptera: Apidae) drone sperm quality in relation to age, genetic line, and time of breeding. Can. Entomol. 2015, 147, 702–711. [Google Scholar] [CrossRef]
- Delaney, D.A.; Keller, J.J.; Caren, J.R.; Tarpy, D.R. The physical, insemination, and reproductive quality of honey bee queens (Apis mellifera L.). Apidologie 2011, 42, 1–13. [Google Scholar] [CrossRef]
- Guichard, M.; Dietemann, V.; Neuditschko, M.; Dainat, B. Advances and perspectives in selecting resistance traits against the parasitic mite Varroa destructor in honey bees. Genet. Sel. Evol. 2020, 52, 71. [Google Scholar] [CrossRef]
- Cobey, S.; Tarpy, D.R.; Woyke, J. Standard methods for instrumental insemination of Apis mellifera queens. J. Apic. Res. 2013, 52, 1–18. [Google Scholar] [CrossRef]
- Brodschneider, R.; Crailsheim, K. Nutrition and health in honey bees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- DeGrandi-Hoffman, G.; Chen, Y.; Rivera, R.; Carroll, M.; Chambers, M.; Hidalgo, G.; de Jong, E.W. Honey bee colonies provided with natural forage have lower pathogen loads and higher overwinter survival than those fed protein supplements. Apidologie 2016, 47, 186–196. [Google Scholar] [CrossRef]
- Branchiccela, B.; Castelli, L.; Corona, M.; Díaz-Cetti, S.; Invernizzi, C.; Martínez de la Escalera, G.; Mendoza, Y.; Santos, E.; Silva, C.; Zunino, P.; et al. Impact of nutritional stress on honeybee colony health. Sci. Rep. 2019, 9, 10156. [Google Scholar] [CrossRef]
- Gregorc, A.; Sampson, B. Diagnosis of Varroa mite (Varroa destructor) and sustainable control in honey bee (Apis mellifera) colonies—A review. Diversity 2019, 11, 243. [Google Scholar] [CrossRef]
- Bubnič, J.; Moosbeckhofer, R.; Prešern, J.; Moškrič, A.; Formato, G.; Pietropaoli, M.; Gregorc, A.; Muz, M.N.; Maja Ivana Smodiš Škerl, M.I. Three pillars of Varroa control. Apidologie 2021, 52, 1–29. [Google Scholar] [CrossRef]
- Jack, C.J.; Ellis, J.D. Integrated pest management control of Varroa destructor (Acari: Varroidae), the most damaging pest of Apis mellifera L. (Hymenoptera: Apidae) colonies. J. Insect Sci. 2021, 21, 6. [Google Scholar] [CrossRef]
- Berry, J.A.; Bartlett, L.J.; Bruckner, S.; Baker, C.; Kris Braman, S.; Delaplane, K.S.; Williams, G.R. Assessing repeated oxalic acid vaporization in honey bee (Apis mellifera) colonies for control of the ectoparasitic mite Varroa destructor. J. Insect Sci. 2022, 22, 15. [Google Scholar] [CrossRef] [PubMed]
- Wallner, K. Varroacides and their residues in bee products. Apidologie 1999, 30, 235–248. [Google Scholar] [CrossRef]
- Martel, A.C.; Zeggane, S.; Aurières, C.; Drajnudel, P.; Faucon, J.P.; Aubert, M. Acaricide residues in honey and wax after treatment of honey bee colonies with Apivar® or Asuntol®50. Apidologie 2007, 38, 534–544. [Google Scholar] [CrossRef]
- Brodschneider, R.; Schlagbauer, J.; Arakelyan, I.; Ballis, A.; Brus, J.; Brusbardis, V.; Cadahía, L.; Charrière, J.-D.; Chlebo, R.; Coffey, M.F. Spatial clusters of Varroa destructor control strategies in Europe. J. Pest Sci. 2023, 96, 759–783. [Google Scholar] [CrossRef]
- Gregorc, A.; Planinc, I. Acaricidal effect of oxalic acid in honeybee (Apis mellifera) colonies. Apidologie 2001, 32, 333–340. [Google Scholar] [CrossRef]
- Gregorc, A.; Planinc, I. The control of Varroa destructor using oxalic acid. Vet. J. 2002, 163, 306–310. [Google Scholar] [CrossRef]
- Rademacher, E.; Harz, M. Oxalic acid for the control of varroosis in honey bee colonies—A review. Apidologie 2006, 37, 98–120. [Google Scholar] [CrossRef]
- Al Toufailia, H.; Scandian, L.; Ratnieks, F.L. Towards integrated control of Varroa: 2) Comparing application methods and doses of oxalic acid on the mortality of phoretic Varroa destructor mites and their honey bee hosts. J. Apic. Res. 2015, 54, 108–120. [Google Scholar] [CrossRef]
- Jack, C.J.; van Santen, E.; Ellis, J.D. Determining the dose of oxalic acid applied via vaporization needed for the control of the honey bee (Apis mellifera) pest Varroa destructor. J. Apic. Res. 2021, 60, 414–420. [Google Scholar] [CrossRef]
- Satta, A.; Floris, I.; Eguaras, M.; Cabras, P.; Garau, V.L.; Melis, M. Formic acid-based treatments for control of Varroa destructor in a Mediterranean area. J. Econ. Entomol. 2005, 98, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Pietropaoli, M.; Formato, G. Acaricide efficacy and honey bee toxicity of three new formic acid-based products to control Varroa destructor. J. Apic. Res. 2019, 58, 824–830. [Google Scholar] [CrossRef]
- Hendriksma, H.P.; Cornelissen, B.; Panziera, D. Liquid and solid matrix formic acid treatment comparison against Varroa mites in honey bee colonies. J. Apic. Res. 2023, 62, 320–328. [Google Scholar] [CrossRef]
- Giacomelli, A.; Pietropaoli, M.; Carvelli, A.; Iacoponi, F.; Formato, G. Combination of thymol treatment (Apiguard®) and caging the queen technique to fight Varroa destructor. Apidologie 2016, 47, 606–616. [Google Scholar] [CrossRef]
- Büchler, R.; Uzunov, A.; Kovačić, M.; Prešern, J.; Pietropaoli, M.; Hatjina, F.; Pavlov, B.; Charistos, L.; Formato, G.M.; Galarza, E.; et al. Summer brood interruption as an integrated management strategy for effective Varroa control in Europe. J. Apic. Res. 2020, 59, 764–773. [Google Scholar] [CrossRef]
- Mortensen, A.N.; Jochym, M.; Dearden, P.K.; Sainsbury, J.P. Old strategies as modern solutions: Shook swarming reduced Varroa destructor infestation rates of managed honey bee (Apis mellifera) colonies. J. Apic. Res. 2023, 62, 1–7. [Google Scholar] [CrossRef]
- Ellis, A.M.; Hayes, G.W.; Ellis, J.D. The efficacy of small cell foundation as a varroa mite (Varroa destructor) control. Exp. Appl. Acarol. 2009, 47, 311–316. [Google Scholar] [CrossRef]
- Berry, J.A.; Afik, O.; Nolan, M.P.; Delaplane, K.S. Revisiting powdered sugar for Varroa control on honey bees (Apis mellifera L.). J. Apic. Res. 2012, 51, 367–368. [Google Scholar] [CrossRef]
- Morfin, N.; Foster, L.J.; Guzman-Novoa, E.; Westendorp, P.V.; Currie, R.W.; Higo, H. Varroa destructor economic injury levels and pathogens associated with colony losses in Western Canada. Front. Bee Sci. 2024, 2, 1355401. [Google Scholar] [CrossRef]
- Peng, C.Y.S.; Mussen, E.; Fong, A.; Cheng, P.; Wong, G.; Montague, M.A. Laboratory and field studies on the effects of the antibiotic tylosin on honey bee Apis mellifera L. (Hymenoptera: Apidae) development and prevention of American foulbrood disease. J. Invertebr. Pathol. 1996, 67, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Alippi, A.M.; Albo, G.N.; Leniz, D.; Rivera, I.; Zanelli, M.L.; Roca, A.E. Comparative study of tylosin, erythromycin, and oxytetracycline to control American foulbrood of honey bees. J. Apic. Res. 1999, 38, 149–158. [Google Scholar] [CrossRef]
- Pettis, J.S.; Feldlaufer, M.F. Efficacy of lincomycin and tylosin in controlling American foulbrood in honey bee colonies. J. Apic. Res. 2005, 44, 106–108. [Google Scholar] [CrossRef]
- Hansen, H.; Brødsgaard, C.J. Control of American foulbrood by the shaking method. Apiacta 2003, 38, 140–145. [Google Scholar]
- Pernal, S.F.; Albright, R.L.; Melathopoulos, A.P. Evaluation of the shaking technique for the economic management of American foulbrood disease of honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 2008, 101, 1095–1104. [Google Scholar] [CrossRef]
- Locke, B.; Low, M.; Forsgren, E. An integrated management strategy to prevent outbreaks and eliminate infection pressure of American foulbrood disease in a commercial beekeeping operation. Prev. Vet. Med. 2019, 167, 48–52. [Google Scholar] [CrossRef]
- Dickel, F.; Bos, N.M.P.; Hughes, H.; Martín-Hernández, R.; Higes, M.; Kleiser, A.; Freitak, D. The oral vaccination with Paenibacillus larvae bacterin can decrease susceptibility to American foulbrood infection in honey bees—A safety and efficacy study. Front. Vet. Sci. 2022, 9, 946237. [Google Scholar] [CrossRef]
- Thompson, H.M.; Waite, R.J.; Wilkins, S.; Brown, M.A.; Bigwood, T.; Shaw, M.; Ridgway, C.; Sharman, M. Effects of shook swarm and supplementary feeding on oxytetracycline levels in honey extracted from treated colonies. Apidologie 2006, 37, 51–57. [Google Scholar] [CrossRef]
- Mosca, M.; Gyorffy, A.; Pietropaoli, M.; Giannetti, L.; Cersini, A.; Fortugno, L.; Formato, G. IPM strategy to control EFB in Apis mellifera: Oxytetracycline treatment combined with partial shook swarm and queen caging. Vet. Sci. 2024, 11, 28. [Google Scholar] [CrossRef]
- Mahmood, R.; Wagchoure, E.S.; Raja, S.; Sarwar, G.; Aslam, M. Effect of thymol and formic acid against ectoparasitic brood mite Tropilaelaps clareae in Apis mellifera colonies. Pak. J. Zool. 2011, 43, 41–46. [Google Scholar]
- Pettis, J.S.; Rose, R.; Chaimanee, V. Chemical and cultural control of Tropilaelaps mercedesae mites in honeybee (Apis mellifera) colonies in Northern Thailand. PLoS ONE 2017, 12, e0188063. [Google Scholar] [CrossRef]
- Levot, G.W. An insecticidal refuge trap to control adult small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae) in honey bee colonies. J. Apic. Res. 2008, 47, 222–228. [Google Scholar] [CrossRef]
- Levot, G.W.; Somerville, D. Efficacy and safety of the insecticidal small hive beetle refuge trap APITHOR™ in bee hives. Aust. J. Entomol. 2012, 51, 198–204. [Google Scholar] [CrossRef]
- Kleckner, K.; De Carolis, A.; Jack, C.; Stuhl, C.; Formato, G.; Ellis, J.D. A novel acute toxicity bioassay and field trial to evaluate compounds for small hive beetle control. Appl. Sci. 2022, 12, 9905. [Google Scholar] [CrossRef]
General Apiary Management | Varroosis | AFB * | Tropilaelapsis * | Aethinosis * | |||||
---|---|---|---|---|---|---|---|---|---|
n = 128 | n = 424 | n = 72 | n = 65 | n = 34 | |||||
Colony management | 46.9% | “Soft” acaricides | 58.5% | Antibiotics | 41.7% | “Soft” acaricides | 81.5% | In-hive traps | 55.9% |
Feeding and Watering | 35.2% | “Hard” acaricides | 21.0% | Biotechnical methods | 22.2% | “Hard” acaricides | 9.2% | Hive entrance modification | 17.6% |
Queen management | 10.9% | Biotechnical methods | 9.7% | Organic agents | 12.5% | Biotechnical methods | 7.7% | “Soft” acaricides | 8.8% |
Hygiene | 7.0% | Biotechnical methods + “soft” acaricides | 6.6% | Laboratory testing | 6.9% | Breeding for resistance | 1.5% | Colony management | 8.8% |
Colony management | 3.3% | Colony management | 4.2% | Traps outside of hives | 5.9% | ||||
Breeding for resistance | 0.7% | Breeding for resistance | 4.2% | Breeding for resistance | 2.9% | ||||
“Soft” acaricides + “hard” acaricides | 0.2% | Stamping-out | 2.8% | ||||||
Vaccination | 2.8% | ||||||||
Biotechnical methods + antibiotics | 2.8% |
Varroa + Viruses + Nosema Infestation | Honey Yields * | Annual/Winter Losses + Number of Colonies * | |||
---|---|---|---|---|---|
n = 25 | n = 9 | n = 23 | |||
Freezing old brood comb before reuse | 12.0% | Annual queen replacement | 11.1% | Freezing old brood comb before reuse | 13.0% |
Starting new colonies by buying nuclei | 12.0% | Conventional operation | 11.1% | Starting new colonies by buying nuclei | 13.0% |
Starting new colonies from splits | 12.0% | Freezing old brood comb before reuse | 11.1% | Starting new colonies from splits | 13.0% |
Conventional operation | 8.0% | Isolated hives in summer | 11.1% | Domestic queens | 8.7% |
Low colony densities | 8.0% | Low colony densities | 11.1% | Reusing equipment from dead colonies immediately | 8.7% |
Natural forage | 8.0% | Organic operation | 11.1% | Annual queen replacement | 4.4% |
Organic operation | 8.0% | Reusing equipment from dead colonies immediately | 11.1% | Conventional operation | 4.4% |
Small hives | 8.0% | Starting new colonies by buying nuclei | 11.1% | Low colony densities | 4.4% |
Swarming | 8.0% | Starting new colonies from splits | 11.1% | Natural forage | 4.4% |
Annual queen replacement | 4.0% | Organic operation | 4.4% | ||
Pollen supplementation | 4.0% | Pollen supplementation | 4.4% | ||
Supplement BEEWELL AminoPlus | 4.0% | Small hives | 4.4% | ||
Swarming + low colony densities | 4.0% | Swarming | 4.4% | ||
Swarming + low colony densities | 4.4% | ||||
Wintering strong colonies | 4.4% |
Varroa Infestation Levels | Honey Yields * | Colony Losses * | |||
---|---|---|---|---|---|
n = 177 | n = 7 | n = 15 | |||
Oxalic acid | 21.5% | Queen caging + oxalic acid | 14.3% | Amitraz | 20.0% |
Tau-fluvalinate | 11.3% | Drone brood removal | 14.3% | Monitor monthly and apply miticides when above 3.0 Varroa mites/100 bees | 20.0% |
Formic acid | 10.7% | Monitor monthly and apply miticides when above 3.0 Varroa mites/100 bees | 14.3% | Oxalic acid | 20.0% |
Thymol | 9.6% | Tau-fluvalinate | 14.3% | No bee colony import | 13.3% |
Coumaphos | 7.3% | Coumaphos | 14.3% | Adult bees mite infestation < 6% | 6.7% |
Amitraz | 5.1% | Formic acid | 14.3% | Apply miticides when above Varroa 4.0 mites/100 bees | 6.7% |
Flumethrine | 5.1% | Apply miticides when above 2.0 Varroa mites/100 bees | 14.3% | Brood removal + oxalic acid | 6.7% |
Queen caging + oxalic acid | 5.1% | Queen caging + oxalic acid | 6.7% | ||
Drone brood removal | 2.8% | ||||
Hop acids | 2.3% | ||||
VarroMed | 2.3% | ||||
Formic acid + oxalic acid ** | 1.7% | ||||
Hyperthermia | 1.7% | ||||
Trapping comb + oxalic acid | 1.1% | ||||
Other | 12.4% |
Positive | Negative | ||||
---|---|---|---|---|---|
Complete or clinical recovery * | Number of spores | Residues in honey * | |||
n = 55 | n = 13 | n = 3 | |||
Shook swarm | 29.1% | Shook swarm | 69.2% | Oxytetracycline | 33.3% |
Tylosin | 21.8% | Requeening with hygienic queens | 15.4% | Tylosin | 33.3% |
Oxytetracycline | 14.5% | Low colony densities | 7.7% | Erythromycin | 33.3% |
Cultivation tests from adult bees | 5.5% | Propolis | 7.7% | ||
Low colony densities | 5.5% | ||||
Burning of clinically infected colonies | 3.6% | ||||
Lincomycin | 3.6% | ||||
Oral vaccination of queen | 3.6% | ||||
Propolis | 3.6% | ||||
Requeening with hygienic queens | 3.6% | ||||
Cultivation tests from honey | 1.8% | ||||
Hygienic behavior | 1.8% | ||||
Partial shook swarm + oxytetracycline | 1.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gratzer, K.; Musalkova, V.; Brodschneider, R. How Science Supports Honey Bees: Identification of Research on Best Practices in Beekeeping. Insects 2025, 16, 1025. https://doi.org/10.3390/insects16101025
Gratzer K, Musalkova V, Brodschneider R. How Science Supports Honey Bees: Identification of Research on Best Practices in Beekeeping. Insects. 2025; 16(10):1025. https://doi.org/10.3390/insects16101025
Chicago/Turabian StyleGratzer, Kristina, Veronika Musalkova, and Robert Brodschneider. 2025. "How Science Supports Honey Bees: Identification of Research on Best Practices in Beekeeping" Insects 16, no. 10: 1025. https://doi.org/10.3390/insects16101025
APA StyleGratzer, K., Musalkova, V., & Brodschneider, R. (2025). How Science Supports Honey Bees: Identification of Research on Best Practices in Beekeeping. Insects, 16(10), 1025. https://doi.org/10.3390/insects16101025