Life History Parameters of the Invasive Cotton Mealybug Phenacoccus solenopsis on Tomato at Four Constant Temperatures
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biondi, A.; Guedes, R.N.C.; Wan, F.H.; Desneux, N. Ecology Worldwide Spread, and Management of the Invasive South American Tomato Pinworm, Tuta absoluta: Past, Present, and Future. Annu. Rev. Entomol. 2018, 63, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Gruda, N.; Bisbis, M.; Tanny, J. Influence of climate change on protected cultivation: Impacts and sustainable adaptation strategies—A review. J. Clean. Prod. 2019, 225, 481–495. [Google Scholar] [CrossRef]
- Hulme, P.E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 2009, 46, 10–18. [Google Scholar] [CrossRef]
- Hodgson, C.J.; Abbas, G.; Arif, M.J.; Saeed, S.; Karar, H. Phenacoccus solenopsis Tinsley (Sternorrhyncha: Coccoidea: Pseudococcidae) a new invasive species attacking cotton in Pakistan and India with a discussion on seasonal morphological variation. Zootaxa 2008, 1913, 1–35. [Google Scholar] [CrossRef]
- EFSA Panel on Plant Health (PLH); Bragard, C.; Di Serio, F.; Gonthier, P.; Jaques Miret, J.A.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; Parnell, S.; et al. Pest categorisation of Phenacoccus solenopsis. EFSA J. 2021, 19, e06801. [Google Scholar] [PubMed]
- Ricupero, M.; Biondi, A.; Russo, A.; Zappalà, L.; Mazzeo, G. The Cotton Mealybug Is Spreading along the Mediterranean: First Pest Detection in Italian Tomatoes. Insects 2021, 12, 675. [Google Scholar] [CrossRef]
- Abbes, K.; Harbi, A.; Wanassi, T.; Ricupero, M.; Mazzeo, G.; Russo, A.; Biondi, A.; Zappalà, L.; Chermiti, B. The cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) is spreading in North Africa: First report in Tunisia. Orient. Insects 2023, 58, 172–186. [Google Scholar] [CrossRef]
- Kapantaidaki, D.E.; Partsinevelos, G.; Milonas, P. First report of the cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) in Greece. EPPO Bull. 2024, 54, 49–56. [Google Scholar] [CrossRef]
- Abbes, K.; Harbi, A.; Guerrieri, E.; Chermiti, B. Using Age-Stage Two-Sex Life Tables to Assess the suitability of three solanaceous host plants for the invasive cotton mealybug Phenacoccus solenopsis Tinsley. Plants 2024, 13, 1381. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. 2023. Available online: https://www.fao.org/faostat (accessed on 11 July 2024).
- Broufas, G.; Pappas, M.; Koveos, D. Effect of relative humidity on longevity, ovarian maturation, and egg production in the olive fruit fly (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 2009, 102, 70–75. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, Y.; Li, X.; Liu, Z.; Wu, J.; Musa, A.; Ma, Q.; Yu, H.; Cui, X.; Wang, L. Geographical distribution and determining factors of different invasive ranks of alien species across China. Sci. Total Environ. 2020, 722, 137929. [Google Scholar] [CrossRef]
- He, W.M.; Li, J.J.; Peng, P.H. A congeneric comparison shows that experimental warming enhances the growth of invasive Eupatorium adenophorum. PLoS ONE 2012, 7, e35681. [Google Scholar] [CrossRef]
- Bale, J.S. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Kalaitzaki, A.; Amara, A.; Dervisoglou, S.; Perdikis, D.; Τzοbanoglou, D.; Koufakis, I.; Tsagkarakis, A. Effect of host plant species and temperature on the development and survival of the plant bug Closterotomus trivialis (Costa) (Hemiptera: Miridae). Phytoparasitica 2023, 51, 19–28. [Google Scholar] [CrossRef]
- Schlesener, D.C.H.; Wollmann, J.; Krüger, A.P.; Martins, L.N.; Teixeira, C.M.; Bernardi, D.; Garcia, F.R.M. Effect of temperature on reproduction, development, and phenotypic plasticity of Drosophila suzukii in Brazil. Entomol. Exp. Appl. 2020, 168, 817–826. [Google Scholar] [CrossRef]
- Wiman, N.G.; Dalton, D.T.; Anfora, G.; Biondi, A.; Chiu, J.C.; Daane, K.M.; Gerdeman, B.; Gottardello, A.; Hamby, K.A.; Isaacs, R.; et al. Drosophila suzukii population response to environment and management strategies. J. Pest Sci. 2016, 89, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Price, P.W. Insect Ecology, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1997; 888p. [Google Scholar]
- Liu, Z.; Peng, Y.; Xu, D.; Zhuo, Z. Meta-Analysis and MaxEnt Model Prediction of the Distribution of Phenacoccus solenopsis Tinsley in China under the Context of Climate Change. Insects 2024, 15, 675. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.S.; Shi, Z.; Yi, T.C.; Xiao, R.; Shoaib, A.A.; Elabasy, A.S.; Jin, D.C. Biology, ecology, and management of cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Pest Manag. Sci. 2021, 77, 5321–5333. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 1985, 24, 225–240. [Google Scholar]
- Huang, Y.B.; Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 2012, 19, 263–273. [Google Scholar] [CrossRef]
- Bradley, E.; Tibshirani, R.J. An introduction to the bootstrap. Monogr. Stat. Appl. Probab. 1993, 57, 158. [Google Scholar]
- Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. 2023. Available online: https://140.120.197.173/Ecology/Download/TWOSEX-MSChart-setup.rar (accessed on 5 June 2024).
- Akköprü, E.P.; Atlıhan, R.; Okut, H.; Chi, H. Demographic Assessment of Plant Cultivar Resistance to Insect Pests: A Case Study of the Dusky-Veined Walnut Aphid (Hemiptera: Callaphididae) on Five Walnut Cultivars. J. Econ. Entomol. 2015, 108, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Chi, H. TIMING-MSChart: A Computer Program for the Population Projection Based on Age-Stage, Two-Sex Life Table. 2023. Available online: https://140.120.197.173/Ecology/Download/TIMING-MSChart-exe.rar (accessed on 5 June 2024).
- Tuan, S.J.; Lee, C.C.; Chi, H. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest. Manag. Sci. 2014, 70, 805–813, Erratum in Pest. Manag. Sci. 2014, 7, 1936. [Google Scholar] [CrossRef] [PubMed]
- Chi, H. Life-Table Analysis Incorporating Both Sexes and Variable Development Rates Among Individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Goodman, D. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 1982, 119, 803–823. [Google Scholar] [CrossRef]
- Chi, H.; You, M.S.; Atlihan, R.; Smith, C.L.; Kavousi, A.; Özgökçe, M.S.; Güncan, A.; Tuan, S.J.; Fu, J.W.; Xu, Y.Y.; et al. Age-Stage, two-sex life table: An introduction to theory, data analysis, and application. Entomol. Gen. 2020, 40, 103–124. [Google Scholar] [CrossRef]
- Lu, Y.; Guan, X.; Zeng, L. Effect of temperature on the development of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Sci. Res. Essays. 2011, 6, 6459–6464. [Google Scholar]
- Kumar, S.; Kontodimas, C. Temperature dependent development of Phenacoccus solenopsis under laboratory conditions. Entomol. Hell. 2012, 21, 25–38. [Google Scholar] [CrossRef]
- Fand, B.B.; Kumar, M.; Kamble, A.L. Predicting the Potential Geographic Distribution of Cotton Mealybug Phenacoccus solenopsis in India Based on MAXENT Ecological Niche Model. J. Environ. Biol. 2014, 35, 973–982. [Google Scholar] [PubMed]
- Kumar, S.; Sidhu, J.K.; Hamm, J.C.; Kular, J.S.; Mahal, M.S. Effects of temperature and relative humidity on the life table of Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on cotton. Fla. Entomol. 2013, 96, 19–28. [Google Scholar] [CrossRef]
- Shankarganesh, K.; Rameash, K.; Selvi, C.; Bagyaraj, S. Antioxidant Enzymes in Cotton Mealy Bug Phenacoccus Solenopsis Tinsley Exposed to High Temperature. Indian J. Entomol. 2022, 84, 101–104. [Google Scholar] [CrossRef]
- El Aalaoui, M.; Sbaghi, M. Life table parameters and predation potential of the coccinellid Hyperaspis trifurcata, feeding on the invasive cactus scale Dactylopius opuntiae. Int. J. Trop. Insect Sci. 2023, 43, 2021–2031. [Google Scholar] [CrossRef]
- Iftikhar, A.; Aziz, M.A.; Naeem, M.; Ahmad, M.; Mukhtar, T. Effect of temperature on demography and predation rate of Menochilus sexmaculatus (Coleoptera: Coccinellidae) reared on Phenacoccus solenopsis (Hemiptera: Pseudococcidae). Pak. J. Zool. 2018, 50, 1885–1893. [Google Scholar] [CrossRef]
- Ramezani, L.; Tamoli Torfi, E.; Zarghami, S.; Rezai, N. Effect of temperature on development time and life table parameters of Nephus hiekei Fürsch, the important predator of Phenacoccus solenopsis Tinsley. J. Asia-Pac. Entomol. 2021, 24, 266–271. [Google Scholar] [CrossRef]
- Zilaei, M.; Ramezani, L.; Zarghami, S. Effect of temperature on biological characteristics and life table parameters of Dicrodiplosis manihoti Harris on cotton mealybug, Phenacoccus solenopsis Tinsley. J. Asia-Pac. Entomol. 2022, 25, 101918. [Google Scholar] [CrossRef]
- Vijaya, P.; Ram, P. Influence of temperature on the biology of Aenasius arizonensis (Girault) (Hymenoptera: Encyrtidae), a parasitoid of solenopsis mealybug, Phenacoccus solenopsis Tinsley. Biocontrol Sci. 2017, 30, 210–216. [Google Scholar] [CrossRef]
Parameters | Definition | Equation * | Reference |
---|---|---|---|
The age-specific survival rate (lx) | Probability that a newly laid egg will survive to age x | [21] | |
The age-specific fecundity (mx) | Mean fecundity of individuals at age x | [21] | |
The age-stage life expectancy (exj) | Time that an individual of age x and stage j is expected to live | [26,27] | |
The reproductive value (vxj) | Contribution of individuals of age x and stage j to the future population | [26,27] | |
The net reproductive rate (R0) | Total mean number of offspring that an average individual (including females, males, and those who died in the immature stage) can produce during their lifetime | [21,28] | |
The intrinsic rate of increase (r) | Number of deaths subtracted by the number of births per generation time | [21,28] | |
The finite rate of increase (λ) | Population growth rate at a stable distribution | [29] | |
The mean generation time (T) | Time required for a population to grow to R0-times its initial size at a stable distribution | [21] |
Temperatures | ||||
---|---|---|---|---|
Developmental Stage | 20 ± 1 °C | 25 ± 1 °C | 30 ± 1 °C | 35 ± 1 °C |
Egg | 1.00 ± 0.00 a (n = 75) | 1.00 ± 0.00 a (n = 75) | 1.00 ± 0.00 a (n = 75) | 1.00 ± 0.00 a (n = 75) |
First instar | ||||
Female | 8.83 ± 0.07 a (n = 42) | 6.75 ± 0.11 b (n = 48) | 5.17 ± 0.12 c (n = 41) | 3.31 ± 0.06 d (n = 46) |
Male | 8.8 ± 0.20 a (n = 33) | 6.50 ± 0.33 b (n = 27) | 6.08 ± 0.15 b (n = 34) | 3.27 ± 0.14 c (n = 29) |
Second instar | ||||
Female | 8.14 ± 0.10 a (n = 41) | 7.04 ± 0.19 b (n = 46) | 5.94 ± 0.15 c (n = 39) | 2.98 ± 0.06 d (n = 44) |
Male | 7.9 ± 0.23 a (n = 33) | 5.75 ± 0.16 c (n = 26) | 6.33 ± 0.38 b (n = 32) | 3.00 ± 0.13 d (n = 29) |
First instar | ||||
Female | 7.92 ± 0.07 a (n = 40) | 6.55 ± 0.15 b (n = 46) | 5.7 ± 0.20 c (n = 39) | 3.25 ± 0.05 d (n = 43) |
Male pupae | 5.1 ± 0.38 b (n = 31) | 6 ± 0.46 a (n = 25) | 4.67 ± 0.14 c (n = 31) | 3.36 ± 0.15 d (n = 28) |
Total pre-adult | ||||
Female | 25.89 ± 0.18 a (n = 40) | 21.34 ± 0.23 b (n = 46) | 17.81 ± 0.25 c (n = 39) | 10.55 ± 0.08 d (n = 43) |
Male | 22.8 ± 0.51 a (n = 31) | 19.25 ± 0.67 b (n = 25) | 18.08 ± 0.47 c (n = 31) | 10.64 ± 0.2 d (n = 28) |
Adult longevity | ||||
Female | 33.15 ± 0.16 a (n = 38) | 25.51 ± 0.3 c (n = 44) | 28.21 ± 0.43 b (n = 37) | 19.03 ± 0.26 d (n = 41) |
Male | 4.20 ± 0.29 a (n = 29) | 4.12 ± 0.35 a (n = 25) | 2.75 ± 0.18 c (n = 28) | 3.27 ± 0.14 b (n = 27) |
Total life cycle | ||||
Female | 59.05 ± 0.25 a (n = 38) | 46.85 ± 0.4 b (n = 44) | 46.02 ± 0.52 b (n = 37) | 29.58 ± 0.28 c (n = 41) |
Male | 27 ± 0.56 a (n = 29) | 23.38 ± 0.73 b (n = 25) | 20.83 ± 0.6 c (n = 28) | 13.91 ± 0.25 d (n = 27) |
Parameters | Temperatures | |||
---|---|---|---|---|
20 ± 1 °C | 25 ± 1 °C | 30 ± 1 °C | 35 ± 1 °C | |
APOP (day) | 17.38 ± 0.97 a | 13.66 ± 0.14 c | 15.71 ± 0.35 b | 7.78 ± 0.09 d |
TPOP (day) | 43.28 ± 1 a | 35.00 ± 0.28 b | 33.52 ± 0.42 c | 18.33 ± 0.13 d |
Oviposition days (day) | 9.77 ± 0.59 a | 8.93 ± 0.35 b | 9.37 ± 0.27 a | 8.05 ± 0.25 c |
Fecundity (eggs/female) | 113.35 ± 7 d | 139.27 ± 7.07 c | 183.29 ± 7.13 a | 180.75 ± 5.68 b |
Parameters | Temperatures | |||
---|---|---|---|---|
20 ± 1 °C | 25 ± 1 °C | 30 ± 1 °C | 35 ± 1 °C | |
R0 (offspring/female) | 98.240 ± 11.231 c | 124.413 ± 14.842 b | 153.96 ± 15.325 a | 154.24 ± 14.681 a |
r (day−1) | 0.101 ± 0.003 d | 0.124 ± 0.002 c | 0.134 ± 0.003 b | 0.222 ± 0.003 a |
λ (day−1) | 1.106 ± 0.005 c | 1.133 ± 0.004 b | 1.143 ± 0.004 b | 1.248 ± 0.004 a |
T (day) | 45.142 ± 0.553 a | 38.616 ± 0.373 b | 37.462 ± 0.574 c | 22.672 ± 0.562 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harbi, A.; Abbes, K.; Chermiti, B.; Suma, P. Life History Parameters of the Invasive Cotton Mealybug Phenacoccus solenopsis on Tomato at Four Constant Temperatures. Insects 2025, 16, 16. https://doi.org/10.3390/insects16010016
Harbi A, Abbes K, Chermiti B, Suma P. Life History Parameters of the Invasive Cotton Mealybug Phenacoccus solenopsis on Tomato at Four Constant Temperatures. Insects. 2025; 16(1):16. https://doi.org/10.3390/insects16010016
Chicago/Turabian StyleHarbi, Ahlem, Khaled Abbes, Brahim Chermiti, and Pompeo Suma. 2025. "Life History Parameters of the Invasive Cotton Mealybug Phenacoccus solenopsis on Tomato at Four Constant Temperatures" Insects 16, no. 1: 16. https://doi.org/10.3390/insects16010016
APA StyleHarbi, A., Abbes, K., Chermiti, B., & Suma, P. (2025). Life History Parameters of the Invasive Cotton Mealybug Phenacoccus solenopsis on Tomato at Four Constant Temperatures. Insects, 16(1), 16. https://doi.org/10.3390/insects16010016