Honey Robbing: Causes, Impacts and Preventive Measures
Simple Summary
Abstract
1. Introduction
2. Characteristics of Honey Robbing
2.1. Identification of Honey Robbing
2.2. Time and Scope of Occurrence of Honey Robbing
3. Causes of Honey Robbing
3.1. Environmental Factors
3.2. Colony Management
3.3. Biological Factors
4. Impact of Honey Robbing on Beekeeping
4.1. Impact on the Robbed Colony
4.2. Impact on the Robbing Colony
4.3. Impact on the Beekeeping Industry
5. Strategies to Prevent and Manage Honey Robbing
5.1. Improving Colony-Management Practices
5.2. Strengthening Resource Security
5.3. Adjusting the Structure of the Colony
5.4. Introducing Preventive Measures After Honey Robbing
6. Research Progress on Honey Robbing
6.1. Hotspots and Challenges in Honey Robbing Research
6.2. Possible Future Research Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ryan Willingham, J.K.; James, E. Robbing Behavior in Honey Bees. EDIS 2015, 2015, 3. [Google Scholar] [CrossRef]
- Rittschof, C.C.; Nieh, J.C. Honey robbing: Could human changes to the environment transform a rare foraging tactic into a maladaptive behavior? Curr. Opin. Insect Sci. 2021, 45, 84–90. [Google Scholar] [CrossRef]
- Garbuzov, M.; Balfour, N.J.; Shackleton, K.; Al Toufailia, H.; Scandian, L.; Ratnieks, F.L.W. Multiple methods of assessing nectar foraging conditions indicate peak foraging difficulty in late season. Insect Conserv. Diver. 2020, 13, 532–542. [Google Scholar] [CrossRef]
- Grume, G.J.; Biedenbender, S.P.; Rittschof, C.C.; Foraging, Q.; Robbing, S. Honey robbing causes coordinated changes in foraging and nest defence in the honey bee, Apis mellifera. Anim. Behav. 2021, 173, 53–65. [Google Scholar] [CrossRef]
- Seeley, T.D.; Seeley, R.H.; Akratanakul, P. Colony defense strategies of the honeybees in Thailand. Ecol. Monogr. 1982, 52, 43–63. [Google Scholar] [CrossRef]
- Paar, J.; Oldroyd, B.P.; Huettinger, E.; Kastberger, G. Drifting of workers in nest aggregations of the giant honeybee. Apidologie 2002, 33, 553–561. [Google Scholar] [CrossRef]
- von Zuben, L.G.; Schorkopf, D.L.P.; Elias, L.G.; Vaz, A.L.L.; Favaris, A.P.; Clososki, G.C.; Bento, J.M.S.; Nunes, T.M. Interspecific chemical communication in raids of the robber bee (Lestrimelitta limao). Insectes Sociaux 2016, 63, 339–347. [Google Scholar] [CrossRef]
- Free, J.B. The behaviour of robber honeybees. Behaviour 1954, 7, 233–240. [Google Scholar] [CrossRef]
- Muszynska, J. Characterization of robber bees. Pszczel. Zesz. Nauk. 1993, 37, 3–9. [Google Scholar]
- Tashakkori, R.; Buchanan, G.B.; Craig, L.M.; IEEE. Analyses of Audio and Video Recordings for Detecting a Honey Bee Hive Robbery. In Proceedings of the Annual IEEE SoutheastCon Conference, Electr Network, Raleigh, NC, USA, 28–29 March 2020; pp. 1–6. [Google Scholar]
- Okada, I. Observations on the robbing behaviour of honeybees, with special reference to European and Japanese species. Honeybee Sci. 1983, 4, 29–36. [Google Scholar]
- Butler, C.G.; Free, J.B. The behaviour of worker honeybees at the hive entrance. Behaviour 1951, 4, 262–291. [Google Scholar] [CrossRef]
- Jiang, D.D. Rapid treatment of bee poaching among mesquite bees. Apic. China 2016, 67, 39. (In Chinese) [Google Scholar]
- Zheng, H.; Cao, L.; Huang, S.; Neumann, P.; Hu, F. Current status of the beekeeping industry in China. In Asian Beekeeping in the 21st Century; Springer: Singapore, 2018; pp. 129–158. [Google Scholar]
- Xiong, C. Analysis of the causes of spring decline in northern bee colonies. Apic. China 2023, 74, 20–21. (In Chinese) [Google Scholar]
- Wang, J.B. Problems that should be paid attention to the safety of bee colony in summer. Apic. China 2020, 71, 16. (In Chinese) [Google Scholar]
- Schulz, D.J.; Huang, Z.Y.; Robinson, G.E. Effects of colony food shortage on behavioral development in honey bees. Behav. Ecol. Sociobiol. 1998, 42, 295–303. [Google Scholar] [CrossRef]
- Theisen-Jones, H.; Bienefeld, K. The Asian honey bee (Apis cerana) is significantly in decline. Bee World 2016, 93, 90–97. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Zhang, S.W.; Wang, Z.L.; Yan, W.Y.; Zeng, Z.J. Cross-modal interaction between visual and olfactory learning in Apis cerana. J. Comp. Physiol. A 2014, 200, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Samson-Robert, O.; Labrie, G.; Chagnon, M.; Fournier, V. Neonicotinoid-Contaminated Puddles of Water Represent a Risk of Intoxication for Honey Bees. PLoS ONE 2014, 9, e108443. [Google Scholar] [CrossRef] [PubMed]
- Leska, A.; Nowak, A.; Nowak, I.; Górczynska, A. Effects of Insecticides and Microbiological Contaminants on Apis mellifera Health. Molecules 2021, 26, 5080. [Google Scholar] [CrossRef]
- Njoroge, T.M.; Calla, B.; Berenbaum, M.R.; Stone, C.M. Specific phytochemicals in floral nectar up-regulate genes involved in longevity regulation and xenobiotic metabolism, extending mosquito life span. Ecol. Evol. 2021, 11, 8363–8380. [Google Scholar] [CrossRef]
- Hernández, I.G.; Palottini, F.; Macri, I.; Galmarini, C.R.; Farina, W.M. Appetitive behavior of the honey bee Apis mellifera in response to phenolic compounds naturally found in nectars. J. Exp. Biol. 2019, 222, jeb189910. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, X.J.; Zhu, X.J.; Chen, L.; Zhou, S.J.; Huang, Z.Y.; Zhou, B.F. Low-Temperature Stress during Capped Brood Stage Increases Pupal Mortality, Misorientation and Adult Mortality in Honey Bees. PLoS ONE 2016, 11, e0154547. [Google Scholar] [CrossRef] [PubMed]
- Ostwald, M.M.; da Silva, C.R.B.; Seltmann, K.C. How does climate change impact social bees and bee sociality? J. Anim. Ecol. 2024, 93, 1610–1621. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Abdellah, I.M.; Eletmany, M.R. Climate change impacts on honeybee spread and activity: A scientific review. Chelonian Res. Found. 2023, 18, 531–554. [Google Scholar]
- Buchori, D.; Rizali, A.; Larasati, A.; Hidayat, P.; Ngo, H.; Gemmil-Herren, B. Natural habitat fragments obscured the distance effect on maintaining the diversity of insect pollinators and crop productivity in tropical agricultural landscapes. Heliyon 2019, 5, e01425. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; Brennan, G.L.; Lowe, A.; Creer, S.; Ford, C.R.; de Vere, N. Shifts in honeybee foraging reveal historical changes in floral resources. Commun. Biol. 2021, 4, 37. [Google Scholar] [CrossRef]
- Neumüller, U.; Burger, H.; Schwenninger, H.R.; Hopfenmüller, S.; Krausch, S.; Weiss, K.; Ayasse, M. Prolonged blooming season of flower plantings increases wild bee abundance and richness in agricultural landscapes. Biodivers. Conserv. 2021, 30, 3003–3021. [Google Scholar] [CrossRef]
- Adams, E.C. How to become a beekeeper: Learning and skill in managing honeybees. Cult. Geogr. 2018, 25, 31–47. [Google Scholar] [CrossRef]
- Sperandio, G.; Simonetto, A.; Carnesecchi, E.; Costa, C.; Hatjina, F.; Tosi, S.; Gilioli, G. Beekeeping and honey bee colony health: A review and conceptualization of beekeeping management practices implemented in Europe. Sci. Total Environ. 2019, 696, 133795. [Google Scholar] [CrossRef]
- Vanengelsdorp, D.; Evans, J.D.; Donovall, L.; Mullin, C.; Frazier, M.; Frazier, J.; Tarpy, D.R.; Hayes, J.; Pettis, J.S. “Entombed Pollen”: A new condition in honey bee colonies associated with increased risk of colony mortality. J. Invertebr. Pathol. 2009, 101, 147–149. [Google Scholar] [CrossRef]
- Steinhauer, N.; VanEngelsdorp, D.; Saegerman, C. Prioritizing changes in management practices associated with reduced winter honey bee colony losses for US beekeepers. Sci. Total Environ. 2021, 753, 141629. [Google Scholar] [CrossRef] [PubMed]
- DeGrandi-Hoffman, G.; Collins, A.; Martin, J.H.; Schmidt, J.O.; Spangler, H.G. Nest defense behavior in colonies from crosses between africanized and European honeybees (Apis mellifera L) (Hymenoptera: Apidae). J. Insect Behav. 1998, 11, 37–45. [Google Scholar] [CrossRef]
- Collins, A.M.; Rinderer, T.E. Genetics of defensive behavior I. In The African Honey Bee; CRC Press: Boca Raton, FL, USA, 2019; pp. 309–328. [Google Scholar]
- Chen, X.D. Bee theft and its prevention in a queen colony of the HRJB species. J. Bee 1998, 9, 13–14. (In Chinese) [Google Scholar]
- Cronin, A.L.; Federici, P.; Doums, C.; Monnin, T. The influence of intraspecific competition on resource allocation during dependent colony foundation in a social insect. Oecologia 2012, 168, 361–369. [Google Scholar] [CrossRef]
- Schneider, J.; Atallah, J.; Levine, J.D. Social structure and indirect genetic effects: Genetics of social behaviour. Biol. Rev. 2017, 92, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- Alaux, C.; Sinha, S.; Hasadsri, L.; Hunt, G.J.; Guzmán-Novoa, E.; DeGrandi-Hoffman, G.; Uribe-Rubio, J.L.; Southey, B.R.; Rodriguez-Zas, S.; Robinson, G.E. Honey bee aggression supports a link between gene regulation and behavioral evolution. Proc. Natl. Acad. Sci. USA 2009, 106, 15400–15405. [Google Scholar] [CrossRef] [PubMed]
- Barron, A.B. Death of the bee hive: Understanding the failure of an insect society. Curr. Opin. Insect Sci. 2015, 10, 45–50. [Google Scholar] [CrossRef]
- Kuszewska, K.; Woyciechowski, M. Risky robbing is a job for short-lived and infected worker honeybees. Apidologie 2014, 45, 537–544. [Google Scholar] [CrossRef]
- Lucas, C.; Ben-Shahar, Y. The foraging gene as a modulator of division of labour in social insects. J. Neurogenet. 2021, 35, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Charbonneau, D.; Dornhaus, A. Workers ’specialized’ on inactivity: Behavioral consistency of inactive workers and their role in task allocation. Behav. Ecol. Sociobiol. 2015, 69, 1459–1472. [Google Scholar] [CrossRef]
- Rittschof, C.C.; Vekaria, H.J.; Palmer, J.H.; Sullivan, P.G. Biogenic amines and activity levels alter the neural energetic response to aggressive social cues in the honey bee (Apis mellifera). J. Neurosci. Res. 2019, 97, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Nouvian, M.; Reinhard, J.; Giurfa, M. The defensive response of the honeybee. J. Exp. Biol. 2016, 219, 3505–3517. [Google Scholar] [CrossRef]
- Peck, D.T.; Seeley, T.D. Mite bombs or robber lures? The roles of drifting and robbing in transmission from collapsing honey bee colonies to their neighbors. PLoS ONE 2019, 14, e0218392. [Google Scholar] [CrossRef] [PubMed]
- Kulhanek, K.; Garavito, A.; VanEngelsdorp, D. Accelerated Varroa destructor population growth in honey bee (Apis mellifera) colonies is associated with visitation from non-natal bees. Sci. Rep. 2021, 11, 7092. [Google Scholar] [CrossRef] [PubMed]
- Arun Kumar, A.K.; Sharma, S.K. Impact of robbing and its management in Apis mellifera L. colonies during toria (Brassica campestris var. toria) bloom. Pest Manag. Econ. Zool. 2005, 13, 43–47. [Google Scholar]
- Seiler, K.; Kaufmann, A. Kontamination von Honig mit Sulfathiazol durch Räuberei unter Bienen. Mitteilungen Aus Leb. Hyg. 2002, 93, 437–446. [Google Scholar]
- El Agrebi, N.; Steinhauer, N.; Tosi, S.; Leinartz, L.; De Graaf, D.C.; Saegerman, C. Risk and protective indicators of beekeeping management practices. Sci. Total Environ. 2021, 799, 149381. [Google Scholar] [CrossRef] [PubMed]
- Tavárez, H.S.; Galbraith, S.M.; Bosque Pérez, N.A. La selección de lugares por apicultores de Costa Rica es influenciada por el uso de terreno, sus recursos florales y la calidad de la carretera. J. Agric. Univ. Puerto Rico 2018, 102, 21–37. [Google Scholar] [CrossRef]
- Egerer, M.; Kowarik, I. Confronting the Modern Gordian Knot of Urban Beekeeping. Trends Ecol. Evol. 2020, 35, 956–959. [Google Scholar] [CrossRef] [PubMed]
- Dynes, T.L.; Berry, J.A.; Delaplane, K.S.; Brosi, B.J.; de Roode, J.C. Reduced density and visually complex apiaries reduce parasite load and promote honey production and overwintering survival in honey bees. PLoS ONE 2019, 14, e0216286. [Google Scholar] [CrossRef]
- Sammataro, D.; Weiss, M. Comparison of productivity of colonies of honey bees, Apis mellifera, supplemented with sucrose or high fructose corn syru. J. Insect Sci. 2013, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Přidal, A.; Musila, J.; Svoboda, J. Condition and Honey Productivity of Honeybee Colonies Depending on Type of Supplemental Feed for Overwintering. Animals 2023, 13, 323. [Google Scholar] [CrossRef] [PubMed]
- Gilioli, G.; Sperandio, G.; Hatjina, F.; Simonetto, A. Towards the development of an index for the holistic assessment of the health status of a honey bee colony. Ecol. Indic. 2019, 101, 341–347. [Google Scholar] [CrossRef]
- Tarpy, D.R.; Hatch, S.; Fletcher, D.J.C. The influence of queen age and quality during queen replacement in honeybee colonies. Anim. Behav. 2000, 59, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Khan, K.A.; Khan, S.A.; Ghramh, H.A.; Gul, A. Comparative assessment of various supplementary diets on commercial honey bee (Apis mellifera) health and colony performance. PLoS ONE 2021, 16, e0258430. [Google Scholar] [CrossRef] [PubMed]
- Lloret, F.; Escudero, A.; Maria Iriondo, J.; Martinez-Vilalta, J.; Valladares, F. Extreme climatic events and vegetation: The role of stabilizing processes. Glob. Change Biol. 2012, 18, 797–805. [Google Scholar] [CrossRef]
- Nouvian, M.; Deisig, N.; Reinhard, J.; Giurfa, M. Seasonality, alarm pheromone and serotonin: Insights on the neurobiology of honeybee defence from winter bees. Biol. Lett. 2018, 14, 20180337. [Google Scholar] [CrossRef]
- Degirmenci, L.; Thamm, M.; Scheiner, R. Responses to sugar and sugar receptor gene expression in different social roles of the honeybee (Apis mellifera). J. Insect Physiol. 2018, 106, 65–70. [Google Scholar] [CrossRef]
- Hasenjager, M.J.; Franks, V.R.; Leadbeater, E. From dyads to collectives: A review of honeybee signalling. Behav. Ecol. Sociobiol. 2022, 76, 124. [Google Scholar] [CrossRef]
- Seeley, T.D. The tremble dance of the honey bee: Message and meanings. Behav. Ecol. Sociobiol. 1992, 31, 375–383. [Google Scholar] [CrossRef]
- Lam, C.; Li, Y.L.; Landgraf, T.; Nieh, J. Dancing attraction: Followers of honey bee tremble and waggle dances exhibit similar behaviors. Biol. Open 2017, 6, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Nieh, J.C. A Negative Feedback Signal That Is Triggered by Peril Curbs Honey Bee Recruitment. Curr. Biol. 2010, 20, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Phan, P.T.; Rankin, E.E.W.; Purcell, J. Formica francoeuri responds to pheromones and defensive chemical cues of social bees. Insectes Sociaux 2020, 67, 547–556. [Google Scholar] [CrossRef]
- Lischinsky, J.E.; Lin, D. Neural mechanisms of aggression across species. Nat. Neurosci. 2020, 23, 1317–1328. [Google Scholar] [CrossRef]
- Singh, R.; Gobrogge, K. Aggression Unleashed: Neural Circuits from Scent to Brain. Brain Sci. 2024, 14, 794. [Google Scholar] [CrossRef] [PubMed]
- Rittschof, C.C.; Robinson, G.E. Manipulation of colony environment modulates honey bee aggression and brain gene expression. Genes Brain Behav. 2013, 12, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Sabandal, J.M.; Sabandal, P.R.; Kim, Y.C.; Han, K.A. Concerted Actions of Octopamine and Dopamine Receptors Drive Olfactory Learning. J. Neurosci. 2020, 40, 4240–4250. [Google Scholar] [CrossRef]
- Huang, J.N.; Zhang, Z.N.; Feng, W.J.; Zhao, Y.H.; Aldanondo, A.; Sanchez, M.G.D.; Paoli, M.; Rolland, A.; Li, Z.G.; Nie, H.Y.; et al. Food wanting is mediated by transient activation of dopaminergic signaling in the honey bee brain. Science 2022, 376, 508–512. [Google Scholar] [CrossRef]
- Raza, M.F.; Wang, T.B.; Li, Z.G.; Nie, H.Y.; Giurfa, M.; Husain, A.; Hlavác, P.; Kodrik, M.; Ali, M.A.; Rady, A.; et al. Biogenic amines mediate learning success in appetitive odor conditioning in honeybees. J. King Saud. Univ. Sci. 2022, 34, 101928. [Google Scholar] [CrossRef]
- Haddad, N.J.; Adjlane, N.; Saini, D.; Menon, A.; Krishnamurthy, V.; Jonklaas, D.; Tomkins, J.P.; Loucif-Ayad, W.; Horth, L. Whole-genome sequencing of north African honey bee to assess its beneficial traits. Entomol. Res. 2018, 48, 174–186. [Google Scholar] [CrossRef]
- Bresnahan, S.T.; Lee, E.; Clark, L.; Ma, R.; Rangel, J.; Grozinger, C.M.; Li-Byarlay, H. Examining parent-of-origin effects on transcription and RNA methylation in mediating aggressive behavior in honey bees (Apis mellifera). BMC Genom. 2023, 24, 305. [Google Scholar] [CrossRef]
- He, N.; Zhang, Y.; Duan, X.L.; Li, J.H.; Huang, W.F.; Evans, J.D.; DeGrandi-Hoffman, G.; Chen, Y.P.; Huang, S.K. RNA Interference-Mediated Knockdown of Genes Encoding Spore Wall Proteins Confers Protection against Infection in the European Honey Bee. Microorganisms 2021, 9, 505. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.H.; Wu, J.T.; Zhang, X.D.; Luo, J.; Wang, H.; Ming, D. The Advance of CRISPR-Cas9-Based and NIR/CRISPR-Cas9-Based Imaging System. Front. Chem. 2021, 9, 786354. [Google Scholar] [CrossRef] [PubMed]
- Braga, A.R.; Gomes, D.G.; Rogers, R.; Hassler, E.E.; Freitas, B.M.; Cazier, J.A. A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Comput. Electron. Agric. 2020, 169, 105161. [Google Scholar] [CrossRef]
- Vardakas, P.; Mainardi, G.; Minaud, E.; Patalano, S.; Rebaudo, F.; Requier, F.; Steffan-Dewenter, I.; Hatjina, F. Unveiling beekeepers’ use and preference of precision apiculture systems. J. Apic. Res. 2024, 1–10. [Google Scholar] [CrossRef]
- Dong, S.H.; Gu, G.Y.; Lin, T.; Wang, Z.Q.; Li, J.J.; Tan, K.; Nieh, J.C. An inhibitory signal associated with danger reduces honeybee dopamine levels. Curr. Biol. 2023, 33, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Huang, T.; Ji, Q.; Guo, J.; Zhao, Y. Honey Robbing: Causes, Impacts and Preventive Measures. Insects 2025, 16, 15. https://doi.org/10.3390/insects16010015
Wang X, Huang T, Ji Q, Guo J, Zhao Y. Honey Robbing: Causes, Impacts and Preventive Measures. Insects. 2025; 16(1):15. https://doi.org/10.3390/insects16010015
Chicago/Turabian StyleWang, Xinyu, Ting Huang, Quanzhi Ji, Jun Guo, and Yazhou Zhao. 2025. "Honey Robbing: Causes, Impacts and Preventive Measures" Insects 16, no. 1: 15. https://doi.org/10.3390/insects16010015
APA StyleWang, X., Huang, T., Ji, Q., Guo, J., & Zhao, Y. (2025). Honey Robbing: Causes, Impacts and Preventive Measures. Insects, 16(1), 15. https://doi.org/10.3390/insects16010015