Optimized In Vitro CRISPR/Cas9 Gene Editing Tool in the West Nile Virus Mosquito Vector, Culex quinquefasciatus
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture Maintenance
2.2. Generation of Culex-Optimized CRISPR/Cas9 Plasmids
2.3. sgRNA Design
2.4. Cloning of dcr-2 and piwi4 sgRNA Containing Plasmids
2.5. Delivery of CRISPR/Cas9 Plasmid
2.6. Delivery of Synthetic sgRNA
2.7. T7 Endonuclease I (T7E1) Assay
3. Results
3.1. Superior dcr-2 Editing in Hsu Cells Using a Culex-Optimized Plasmid
3.2. Transfection of Culex-Optimized CRISPR/Cas9 Construct and a Synthetic sgRNA Mediates Efficient Editing of dcr-2 Gene in Hsu Cells
3.3. Editing of piwi4 Using the Culex-optimized CRISPR/Cas9 Construct in Hsu Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.S.; Higgs, S.; Vanlandingham, D.L. Emergence and re-emergence of mosquito-borne arboviruses. Curr. Opin. Virol. 2019, 34, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.U.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 2015, 4, e08347. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Petersen, L.R. Epidemiology of West Nile Virus in the United States: Implications for Arbovirology and Public Health. J. Med. Entomol. 2019, 56, 1456–1462. [Google Scholar] [CrossRef]
- Bakonyi, T.; Haussig, J.M. West Nile virus keeps on moving up in Europe. Eurosurveillance 2020, 25, 2001938. [Google Scholar] [CrossRef] [PubMed]
- Nash, D.; Mostashari, F.; Fine, A.; Miller, J.; O’Leary, D.; Murray, K.; Huang, A.; Rosenberg, A.; Greenberg, A.; Sherman, M.; et al. The outbreak of West Nile virus infection in the New York City area in 1999. New Engl. J. Med. 2001, 344, 1807–1814. [Google Scholar] [CrossRef]
- Colborn, J.M.; Smith, K.A.; Townsend, J.; Damian, D.; Nasci, R.S.; Mutebi, J.P. West Nile virus outbreak in Phoenix, Arizona--2010: Entomological observations and epidemiological correlations. J. Am. Mosq. Control. Assoc. 2013, 29, 123–132. [Google Scholar] [CrossRef]
- Andreadis, T.G. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America. J. Am. Mosq. Control. Assoc. 2012, 28, 137–151. [Google Scholar] [CrossRef]
- Brugman, V.A.; Hernandez-Triana, L.M.; Medlock, J.M.; Fooks, A.R.; Carpenter, S.; Johnson, N. The Role of Culex pipiens L. (Diptera: Culicidae) in Virus Transmission in Europe. Int. J. Environ. Res. Public Health 2018, 15, 389. [Google Scholar] [CrossRef]
- Liang, G.; Li, X.; Gao, X.; Fu, S.; Wang, H.; Li, M.; Lu, Z.; Zhu, W.; Lu, X.; Wang, L.; et al. Arboviruses and their related infections in China: A comprehensive field and laboratory investigation over the last 3 decades. Rev. Med. Virol. 2018, 28, e1959. [Google Scholar] [CrossRef]
- Yap, G.; Mailepessov, D.; Lim, X.F.; Chan, S.; How, C.B.; Humaidi, M.; Yeo, G.; Chong, C.S.; Lam-Phua, S.G.; Lee, R.; et al. Detection of Japanese Encephalitis Virus in Culex Mosquitoes in Singapore. Am. J. Trop. Med. Hyg. 2020, 103, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Diaz, A.; Coffey, L.L.; Burkett-Cadena, N.; Day, J.F. Reemergence of St. Louis Encephalitis Virus in the Americas. Emerg. Infect. Dis. 2018, 24, 2150. [Google Scholar] [CrossRef] [PubMed]
- Swetnam, D.M.; Stuart, J.B.; Young, K.; Maharaj, P.D.; Fang, Y.; Garcia, S.; Barker, C.M.; Smith, K.; Godsey, M.S.; Savage, H.M.; et al. Movement of St. Louis encephalitis virus in the Western United States, 2014–2018. PLoS Negl. Trop. Dis. 2020, 14, e0008343. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, N.M. Challenges and opportunities in controlling mosquito-borne infections. Nature 2018, 559, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Weiss, D.J.; Cameron, E.; Bisanzio, D.; Mappin, B.; Dalrymple, U.; Battle, K.; Moyes, C.L.; Henry, A.; Eckhoff, P.A.; et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 2015, 526, 207–211. [Google Scholar] [CrossRef]
- Killeen, G.F.; Tatarsky, A.; Diabate, A.; Chaccour, C.J.; Marshall, J.M.; Okumu, F.O.; Brunner, S.; Newby, G.; Williams, Y.A.; Malone, D.; et al. Developing an expanded vector control toolbox for malaria elimination. BMJ Glob Health 2017, 2, e000211. [Google Scholar] [CrossRef]
- Lopes, R.P.; Lima, J.B.P.; Martins, A.J. Insecticide resistance in Culex quinquefasciatus Say, 1823 in Brazil: A review. Parasites Vectors 2019, 12, 591. [Google Scholar] [CrossRef]
- Lee, W.S.; Webster, J.A.; Madzokere, E.T.; Stephenson, E.B.; Herrero, L.J. Mosquito antiviral defense mechanisms: A delicate balance between innate immunity and persistent viral infection. Parasites Vectors 2019, 12, 165. [Google Scholar] [CrossRef]
- Bonning, B.C.; Saleh, M.C. The Interplay Between Viruses and RNAi Pathways in Insects. Annu. Rev. Entomol. 2021, 66, 61–79. [Google Scholar] [CrossRef]
- Blair, C.D. Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. Future Microbiol. 2011, 6, 265–277. [Google Scholar] [CrossRef]
- Gainetdinov, I.; Colpan, C.; Arif, A.; Cecchini, K.; Zamore, P.D. A Single Mechanism of Biogenesis, Initiated and Directed by PIWI Proteins, Explains piRNA Production in Most Animals. Mol. Cell 2018, 71, 775–790.e5. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Fejes Toth, K.; Aravin, A.A. piRNA Biogenesis in Drosophila melanogaster. Trends Genet. TIG 2017, 33, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Petit, M.; Mongelli, V.; Frangeul, L.; Blanc, H.; Jiggins, F.; Saleh, M.C. piRNA pathway is not required for antiviral defense in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2016, 113, E4218–E4227. [Google Scholar] [CrossRef] [PubMed]
- Blair, C.D. Deducing the Role of Virus Genome-Derived PIWI-Associated RNAs in the Mosquito-Arbovirus Arms Race. Front. Genet. 2019, 10, 1114. [Google Scholar] [CrossRef]
- Schnettler, E.; Donald, C.L.; Human, S.; Watson, M.; Siu, R.W.C.; McFarlane, M.; Fazakerley, J.K.; Kohl, A.; Fragkoudis, R. Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells. J. Gen. Virol. 2013, 94, 1680–1689. [Google Scholar] [CrossRef]
- Tassetto, M.; Kunitomi, M.; Whitfield, Z.J.; Dolan, P.T.; Sanchez-Vargas, I.; Garcia-Knight, M.; Ribiero, I.; Chen, T.; Olson, K.E.; Andino, R. Control of RNA viruses in mosquito cells through the acquisition of vDNA and endogenous viral elements. Elife 2019, 8, e41244. [Google Scholar] [CrossRef]
- Varjak, M.; Maringer, K.; Watson, M.; Sreenu, V.B.; Fredericks, A.C.; Pondeville, E.; Donald, C.L.; Sterk, J.; Kean, J.; Vazeille, M.; et al. Aedes aegypti Piwi4 Is a Noncanonical PIWI Protein Involved in Antiviral Responses. mSphere 2017, 2, e00144-17. [Google Scholar] [CrossRef]
- Akbari, O.S.; Antoshechkin, I.; Amrhein, H.; Williams, B.; Diloreto, R.; Sandler, J.; Hay, B.A. The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector. G3 (Bethesda) 2013, 3, 1493–1509. [Google Scholar] [CrossRef]
- Campbell, C.L.; Black, W.C.t.; Hess, A.M.; Foy, B.D. Comparative genomics of small RNA regulatory pathway components in vector mosquitoes. BMC Genom. 2008, 9, 425. [Google Scholar] [CrossRef]
- Lewis, S.H.; Salmela, H.; Obbard, D.J. Duplication and Diversification of Dipteran Argonaute Genes, and the Evolutionary Divergence of Piwi and Aubergine. Genome Biol. Evol. 2016, 8, 507–518. [Google Scholar] [CrossRef]
- Ross, R.J.; Weiner, M.M.; Lin, H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 2014, 505, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Doudna, J.A.; Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Rehman, S.; Tang, X.; Gu, K.; Fan, Q.; Chen, D.; Ma, W. Methodologies for Improving HDR Efficiency. Front. Genet. 2018, 9, 691. [Google Scholar] [CrossRef] [PubMed]
- Scherer, C.; Knowles, J.; Sreenu, V.B.; Fredericks, A.C.; Fuss, J.; Maringer, K.; Fernandez-Sesma, A.; Merits, A.; Varjak, M.; Kohl, A.; et al. An Aedes aegypti-Derived Ago2 Knockout Cell Line to Investigate Arbovirus Infections. Viruses 2021, 13, 1066. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Jin, B.; Li, X.; Zhao, Y.; Gu, J.; Biedler, J.K.; Tu, Z.J.; Chen, X.G. Nix is a male-determining factor in the Asian tiger mosquito Aedes albopictus. Insect Biochem. Mol. Biol. 2020, 118, 103311. [Google Scholar] [CrossRef]
- Bassett, A.R.; Tibbit, C.; Ponting, C.P.; Liu, J.L. Mutagenesis and homologous recombination in Drosophila cell lines using CRISPR/Cas9. Biol Open 2014, 3, 42–49. [Google Scholar] [CrossRef]
- Anderson, M.A.E.; Purcell, J.; Verkuijl, S.A.N.; Norman, V.C.; Leftwich, P.T.; Harvey-Samuel, T.; Alphey, L.S. Expanding the CRISPR Toolbox in Culicine Mosquitoes: In Vitro Validation of Pol III Promoters. ACS Synth. Biol. 2020, 9, 678–681. [Google Scholar] [CrossRef]
- Rozen-Gagnon, K.; Yi, S.; Jacobson, E.; Novack, S.; Rice, C.M. A selectable, plasmid-based system to generate CRISPR/Cas9 gene edited and knock-in mosquito cell lines. Sci. Rep. 2021, 11, 736. [Google Scholar] [CrossRef]
- Viswanatha, R.; Mameli, E.; Rodiger, J.; Merckaert, P.; Feitosa-Suntheimer, F.; Colpitts, T.M.; Mohr, S.E.; Hu, Y.; Perrimon, N. Bioinformatic and cell-based tools for pooled CRISPR knockout screening in mosquitos. Nat. Commun. 2021, 12, 6825. [Google Scholar] [CrossRef]
- Feng, X.; Lopez Del Amo, V.; Mameli, E.; Lee, M.; Bishop, A.L.; Perrimon, N.; Gantz, V.M. Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoes. Nat. Commun. 2021, 12, 2960. [Google Scholar] [CrossRef]
- Hsu, S.H.; Mao, W.H.; Cross, J.H. Establishment of a line of cells derived from ovarian tissue of Culex quinquefasciatus Say. J. Med. Entomol. 1970, 7, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.; Martin-Ruiz, I.; Jimenez, S.; Pirone, L.; Barrio, R.; Sutherland, J.D. Generation of stable Drosophila cell lines using multicistronic vectors. Sci. Rep. 2011, 1, 75. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [PubMed]
- McCarty, N.S.; Graham, A.E.; Studena, L.; Ledesma-Amaro, R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat. Commun. 2020, 11, 1281. [Google Scholar] [CrossRef]
- Leoni, C.; Bianchi, N.; Vincenzetti, L.; Monticelli, S. An optimized workflow for CRISPR-Cas9 deletion of surface and intracellular factors in primary human T lymphocytes. PLoS ONE 2021, 16, e0247232. [Google Scholar] [CrossRef]
- Mashal, R.D.; Koontz, J.; Sklar, J. Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat. Genet 1995, 9, 177–183. [Google Scholar] [CrossRef]
- Sentmanat, M.F.; Peters, S.T.; Florian, C.P.; Connelly, J.P.; Pruett-Miller, S.M. A Survey of Validation Strategies for CRISPR-Cas9 Editing. Sci. Rep. 2018, 8, 888. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, Y.; Yao, S.; Wei, Y. A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish. PLoS ONE 2014, 9, e98282. [Google Scholar] [CrossRef]
Gene (VectorBase ID) | sgRNA# | sgRNA Sequence-PAM (5′-3′) |
---|---|---|
dcr-2 (CPIJ010534) | sgRNA1 sgRNA2 | TACGTGCTGCGCATAGCGGCAGG CCCGACAGGCCAATCACCCGAGG |
piwi4 (CPIJ002459) | sgRNA1 sgRNA2 | GAGCACAAGAAAATCTTCGGAGG CCTCGGCTGCATGATCCAGGCGG |
Gene (VectorBase ID) | sgRNA# | Oligonucleotides (with BspQI Compatible Overhangs *) |
---|---|---|
dcr-2 (CPIJ010534) | sgRNA1 | 5′-TTCGTACGTGCTGCGCATAGCGGC-3′ 3′-AAGGCCGCTATGCGCAGCACGTAC-5′ |
sgRNA2 | 5′-TTCGCCCGACAGGCCAATCACCCG-3′ 3′-AAGCGGGTGATTGGCCTGTCGGGC-5′ | |
piwi4 (CPIJ002459) | sgRNA1 | 5′-TTCGGAGCACAAGAAAATCTTCGG-3′ 3′-AACCCGAAGATTTTCTTGTGCTCC-5′ |
sgRNA2 | 5′-TTCGCCTCGGCTGCATGATCCAGG-3′ 3′-AACCCTGGATCATGCAGCCGAGGC-5′ |
Temperature | Time/Cycling |
---|---|
98 °C | 1 min |
98–88 °C | 5 s, decrease 0.1 °C/cycle × 99 cycles |
88–78 °C | 10 s, decrease 0.1 °C/cycle × 99 cycles |
78–68 °C | 10 s, decrease 0.1 °C/cycle × 99 cycles |
68–58 °C | 10 s, decrease 0.1 °C/cycle × 99 cycles |
58–48 °C | 10 s, decrease 0.1 °C/cycle × 99 cycles |
48–38 °C | 10 s, decrease 0.1 °C/cycle × 99 cycles |
38–28 °C | 10 s, decrease 0.1 °C/cycle × 99 cycles |
28–18 °C | 10 s, decrease 0.1 °C/cycle × 99 cycles |
12 °C | Hold |
Name | Primer Sequence (5′-3′) |
---|---|
T7-Assay_Dcr2-sgRNA1_F | ATTGTGGTGGCCGTTTTGCT |
T7-Assay_Dcr2-sgRNA1_R | ATGGCGGTACTGCTTCGCAT |
T7-Assay_Dcr2-sgRNA2_F | CAAGCGCACCTTCTTCATCGTG |
T7-Assay_Dcr2-sgRNA2_R | GCTTTGATCGACGAAAACAGCG |
T7-Assay_Piwi4-sgRNA1_F | TTATAGCAGTGAGGGTCGTGAC |
T7-Assay_Piwi4-sgRNA1_R | TTGCTTGTAGTACTCCACGAA |
T7-Assay_Piwi4-sgRNA2_F | GTTCAGGCCGGTGAGCAG |
T7-Assay_Piwi4-sgRNA2_R | GTGATCGAAGAAGCGCGTGTT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, T.Z.B.; Prince, B.C.; Robison, A.; Rückert, C. Optimized In Vitro CRISPR/Cas9 Gene Editing Tool in the West Nile Virus Mosquito Vector, Culex quinquefasciatus. Insects 2022, 13, 856. https://doi.org/10.3390/insects13090856
Torres TZB, Prince BC, Robison A, Rückert C. Optimized In Vitro CRISPR/Cas9 Gene Editing Tool in the West Nile Virus Mosquito Vector, Culex quinquefasciatus. Insects. 2022; 13(9):856. https://doi.org/10.3390/insects13090856
Chicago/Turabian StyleTorres, Tran Zen B., Brian C. Prince, Alexis Robison, and Claudia Rückert. 2022. "Optimized In Vitro CRISPR/Cas9 Gene Editing Tool in the West Nile Virus Mosquito Vector, Culex quinquefasciatus" Insects 13, no. 9: 856. https://doi.org/10.3390/insects13090856
APA StyleTorres, T. Z. B., Prince, B. C., Robison, A., & Rückert, C. (2022). Optimized In Vitro CRISPR/Cas9 Gene Editing Tool in the West Nile Virus Mosquito Vector, Culex quinquefasciatus. Insects, 13(9), 856. https://doi.org/10.3390/insects13090856