Domestic Filth Flies in New Haven, Connecticut: A Case Study on the Effects of Urbanization and Climate Change by Comparing Fly Populations after 78 Years
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Power, M.E.; Melnick, J.L.; Bishop, M.B. A Study of the 1942 Fly Population of New Haven. Yale J. Biol. Med. 1943, 15, 693–705. [Google Scholar] [PubMed]
- Power, M.E.; Melnick, J.L. A Three-year Survey of the Fly Population in New Haven During Epidemic and Non-epidemic Years for Poliomyelitis. Yale J. Biol. Med. 1945, 18, 55–69. [Google Scholar] [PubMed]
- Paul, J.R.; Trask, J.D.; Bishop, M.B.; Melnick, J.L.; Casey, A.E. The detection of poliomyelitis virus in flies. Science 1941, 94, 395–396. [Google Scholar] [CrossRef] [PubMed]
- Melnick, J.L.; Penner, L.R. The survival of poliomyelitis and Coxsackie viruses following their ingestion by flies. J. Exp. Med. 1952, 96, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Trask, J.D.; Paul, J.R.; Melnick, J.L.; Technical Assistance of John, T.R.; Marshall, B. The detetction of poliomyelitis virus in flies collected during epidemics of poliomyelitis: I. Methods, results, and types of flies involved. J. Exp. Med. 1943, 77, 531–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graczyk, T.K.; Knight, R.; Gilman, R.H.; Cranfield, M.R. The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect. 2001, 3, 231–235. [Google Scholar] [CrossRef]
- Khamesipour, F.; Lankarani, K.B.; Honarvar, B.; Kwenti, T.E. A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health 2018, 18, 1049. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, B. Flies and Disease—Ecology, Classification and Biotic Association; Princeton University Press: Princeton, NJ, USA, 1971. [Google Scholar]
- da Cruz, L.; Dadour, I.R.; McAllister, I.L.; Jackson, A.; Isaacs, T. Seasonal variation in trachoma and bush flies in north-western Australian Aboriginal communities. Clin. Exp. Ophthalmol. 2002, 30, 80–83. [Google Scholar] [CrossRef]
- Forsey, T.; Darougar, S. Transmission of chlamydiae by the housefly. Br. J. Ophthalmol. 1981, 65, 147–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoffolano, J.G. Chapter Two—Fly foregut and transmission of microbes. In Advances in Insect Physiology; Jurenka, R., Ed.; Academic Press: London, UK, 2019; Volume 57, pp. 27–95. [Google Scholar]
- Greenberg, B. Forensic Entomology: Case Studies. Bull. Entomol. Soc. Am. 1985, 31, 25–28. [Google Scholar] [CrossRef]
- Catts, E.P.; Goff, M.L. Forensic Entomology in Criminal Investigations. Annu. Rev. Entomol. 1992, 37, 253–272. [Google Scholar] [CrossRef] [PubMed]
- Amendt, J.; Richards, C.S.; Campobasso, C.P.; Zehner, R.; Hall, M.J. Forensic entomology: Applications and limitations. Forensic Sci. Med. Pathol. 2011, 7, 379–392. [Google Scholar] [CrossRef]
- Rader, R.; Cunningham, S.A.; Howlett, B.G.; Inouye, D.W. Non-Bee Insects as Visitors and Pollinators of Crops: Biology, Ecology, and Management. Annu. Rev. Entomol. 2020, 65, 391–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, D.; Voss, S.; Finch, J.; Rader, R.; Cook, J.; Spurr, C. The Role of Flies as Pollinators of Horticultural Crops: An Australian Case Study with Worldwide Relevance. Insects 2020, 11, 341. [Google Scholar] [CrossRef] [PubMed]
- Cabrini, I.; Grella, M.D.; Andrade, C.F.S.; Thyssen, P.J. Richness and composition of Calliphoridae in an Atlantic Forest fragment: Implication for the use of dipteran species as bioindicators. Biodivers. Conserv. 2013, 22, 2635–2643. [Google Scholar] [CrossRef]
- Gaston, K.; Fuller, R. Commonness, population depletion and conservation biology. Trends Ecol. Evol. 2008, 23, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J. Valuing Common Species. Science 2010, 327, 154–155. [Google Scholar] [CrossRef]
- Conrad, K.F.; Warren, M.S.; Fox, R.; Parsons, M.S.; Woiwod, I.P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 2006, 132, 279–291. [Google Scholar] [CrossRef]
- Seress, G.; Bókony, V.; Pipoly, I.; Szép, T.; Nagy, K.; Liker, A. Urbanization, nestling growth and reproductive success in a moderately declining house sparrow population. J. Avian Biol. 2012, 43, 403–414. [Google Scholar] [CrossRef]
- Gaston, K.J.; Fuller, R.A. Biodiversity and extinction:losing the common and the widespread. Prog. Phys. Geogr. Earth Environ. 2007, 31, 213–225. [Google Scholar] [CrossRef]
- Dufrene, M.; Legendre, P. Species Assemblages and Indicator Species: The Need for a Flexible Asymmetrical Approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Hilty, J.; Merenlender, A. Faunal indicator taxa selection for monitoring ecosystem health—Lessons from the US Forest Service. Biol. Conserv. 2000, 92, 185–197. [Google Scholar] [CrossRef]
- De Sousa, J.R.P.; Esposito, M.C.; Carvalho Filho, F.d.S.; Juen, L. The potential uses of sarcosaprophagous flesh flies and blowflies for the evaluation of the regeneration and conservation of forest clearings: A case study in the Amazon forest. J. Insect Sci. 2014, 14, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulson, D.; Derwent, L.C.; Hanley, M.E.; Dunn, D.W.; Abolins, S.R. Predicting calyptrate fly populations from the weather, and probable consequences of climate change. J. Appl. Ecol. 2005, 42, 795–804. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- van Klink, R.; Bowler, D.E.; Gongalsky, K.B.; Swengel, A.B.; Gentile, A.; Chase, J.M. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 2020, 368, 417–420. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Further evidence for a global decline of the entomofauna. Austral Entomol. 2021, 60, 9–26. [Google Scholar] [CrossRef]
- Wagner, D.L.; Grames, E.M.; Forister, M.L.; Berenbaum, M.R.; Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 2021, 118, e2023989118. [Google Scholar] [CrossRef]
- Wagner, D.L.; Van Driesche, R.G. Threats posed to rare or endangered insects by invasions of nonnative species. Annu. Rev. Entomol. 2010, 55, 547–568. [Google Scholar] [CrossRef]
- Laurence, B.R. Old world blowflies in the new world. Parasitol. Today 1986, 2, 77–79. [Google Scholar] [CrossRef]
- Meyerson, L.A.; Mooney, H.A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 2007, 5, 199–208. [Google Scholar] [CrossRef]
- Owings, C.G.; Picard, C.J. New Distribution Record for Lucilia cuprina (Diptera: Calliphoridae) in Indiana, United States. J. Insect Sci. 2018, 18, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrd, J.H.; Butler, J.F. Effects of temperature on Chrysomya rufifacies (Diptera:Calliphoridae) development. J. Med. Entomol. 1997, 34, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Rosati, J.; Vanlaerhoven, S. New record of Chrysomya rufifacies (Diptera: Calliphoridae) in Canada: Predicted range expansion and potential effects on native species. Can. Entomol. 2007, 139, 670–677. [Google Scholar] [CrossRef]
- Wagner, D.L. Moth decline in the northeastern United States. News Lepid. Soc. 2012, 54, 52–56. [Google Scholar]
- Petruff, T.A.; McMillan, J.R.; Shepard, J.J.; Andreadis, T.G.; Armstrong, P.M. Increased mosquito abundance and species richness in Connecticut, United States 2001–2019. Sci. Rep. 2020, 10, 19287. [Google Scholar] [CrossRef] [PubMed]
- Von Holle, B.; Motzkin, G. Historical land use and environmental determinants of nonnative plant distribution in coastal southern New England. Biol. Conserv. 2007, 136, 33–43. [Google Scholar] [CrossRef]
- Amendt, J. Insect Decline—A Forensic Issue? Insects 2021, 12, 324. [Google Scholar] [CrossRef]
- Gillespie, M.A.K.; Alfredsson, M.; Barrio, I.C.; Bowden, J.J.; Convey, P.; Culler, L.E.; Coulson, S.J.; Krogh, P.H.; Koltz, A.M.; Koponen, S.; et al. Status and trends of terrestrial arthropod abundance and diversity in the North Atlantic region of the Arctic. Ambio 2020, 49, 718–731. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.; Magni, P.; O’Brien, R.C.; Dadour, I. Forensically relevant blow flies (Diptera: Calliphoridae) of Central Connecticut, USA. Forensic Sci. Int. 2021, 327, 110940. [Google Scholar] [CrossRef]
- Bishopp, F.C. Fly Traps and Their Operation; USDA Farmers’ Bulletin No. 734; U.S. Department of Agriculture: Washington, DC, USA, 1921.
- Whitworth, T. Keys to the Genera and Species of Blowflies (Diptera: Calliphoridae) of America, North of Mexico (Updates and Edits as of Spring 2017). Proc. Entomol. Soc. Wash. 2006, 108, 689–725. [Google Scholar]
- Dodge, H.R. Diptera: Pictorial Key to Principal Families of Public Health Importance; U.S. Department of Health: Atlanta, GA, USA, 1953.
- ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- UCONN. MAGIC:1954 Land Use Land Cover; UCONN: Storrs, CT, USA, 1954. [Google Scholar]
- Rae, D.W. City: Urbanism and Its End; Yale University Press: London, UK, 2003. [Google Scholar]
- EPA: What Climate Change Means for Connecticut. Available online: https://19january2017snapshot.epa.gov/sites/production/files/2016-09/documents/climate-change-ct.pdf (accessed on 24 May 2021).
- UCONN Center for Land Use Education & Research, Connecticut and Long Island Sound Land Cover and Change—1985 to 2015. Available online: http://clear.uconn.edu/projects/landscape/about/layers.htm#top (accessed on 24 May 2021).
- Maples, S. Urban Tree Canopy Neighborhood Metrics for New Haven, CT. Available online: https://uri.yale.edu/maps/urban-tree-canopy-metrics (accessed on 8 June 2021).
- U.S. Geological Survey. New Haven Quadrangle Topographic Map 1:62,500, 01/01/1892; U.S. Geological Survey: Reston, VA, USA, 1892.
- U.S. Geological Survey. New Haven Quadrangle Topographic Map 1:125,000, 01/01/1942; U.S. Geological Survey: Reston, VA, USA, 1942. [Google Scholar]
- U.S. Geological Survey. New Haven Quadrangle Topographic Map 1:24,000; U.S. Geological Survey: Reston, VA, USA, 1954. [Google Scholar]
- Grassberger, M.; Friedrich, E.; Reiter, C. The blowfly Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae) as a new forensic indicator in Central Europe. Int. J. Leg. Med. 2003, 117, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.G. The Blowflies of North. America; Thomas Say Foundation: Baltimore, MD, USA, 1948. [Google Scholar]
- Rueda, L.; Ortega, L.; Segura Guerrero, N.; Acero, V.; Bello, F. Lucilia sericata strain from Colombia: Experimental Colonization, Life Tables and Evaluation of Two Artifcial Diets of the Blowfy Lucilia sericata (Meigen) (Diptera: Calliphoridae), Bogotá, Colombia Strain. Biol. Res. 2010, 43, 197–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zumpt, F. Myiasis in Man and Animals in the Old World; A Textbook for Physicians, Veterinarians and Zoologists; Butterworth: London, UK, 1965. [Google Scholar]
- Nuorteva, P. Synanthropy of blowflies (Dipt., Calliphoridae) in Finland. Ann. Entomol. Fenn. 1963, 29, 1–49. [Google Scholar]
- Brundage, A.; Bros, S.; Honda, J.Y. Seasonal and habitat abundance and distribution of some forensically important blow flies (Diptera: Calliphoridae) in Central California. Forensic Sci. Int. 2011, 212, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Schnack, J.; Mariluis, J.; Spinelli, G.; Muzón, J. Ecological aspects on urban blowflies in midwest Argentinean Patagonia (Diptera: Calliphoridae). Rev. Soc. Entomológica Argent. 1998, 57, 127–130. [Google Scholar]
- Mariluis, J.; Schnack, J.; Mulieri, P.; Patitucci, L. Calliphoridae (Diptera) from wild, suburban, and urban sites at three Southeast Patagonian localities: Calliphoridae (Diptera) de ambientes no habitados, suburbanos y urbanos en tres localidades del sudeste patagónico. Rev. Soc. Entomológica Argent. 2008, 67, 107–114. [Google Scholar]
- Stevens, J.; Wall, R. Species, sub-species and hybrid populations of the blowflies Lucilia cuprina and Lucilia sericata (Diptera:Calliphoridae). Proc. Biol. Sci. 1996, 263, 1335–1341. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Adler, P.H. Seasonal colonization and decomposition of rat carrion in water and on land in an open field in South Carolina. J. Med. Entomol. 1998, 35, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Greenberg, B. Survival after submergence in the pupae of five species of blow flies (Diptera: Calliphoridae). J. Med. Entomol. 1994, 31, 757–759. [Google Scholar] [CrossRef] [PubMed]
- Magni, P.A.; Senigaglia, V.; Robinson, S.C.; Dadour, I.R. The effect of submersion in different types of water on the survival and eclosion of blow-fly intra-puparial forms (Diptera: Calliphoridae). Forensic Sci. Int. 2021, 319, 110663. [Google Scholar] [CrossRef]
- Williams, R.W. A Study of the Filth Flies in New York City-1953. J. Econ. Entomol. 1953, 47, 556–563. [Google Scholar] [CrossRef]
- Williams, K.A.; Lamb, J.; Villet, M.H. Phylogenetic radiation of the greenbottle flies (Diptera, Calliphoridae, Luciliinae). Zookeys 2016, 568, 59–86. [Google Scholar] [CrossRef] [Green Version]
- Tantawi, T.I.; Whitworth, T.L.; Sinclair, B.J. Revision of the Nearctic Calliphora Robineau-Desvoidy (Diptera: Calliphoridae). Zootaxa 2017, 4226, 301–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, S.A.; Whitworth, T.; Roscoe, L. Blow flies (Diptera; Calliphoridae) of eastern Canada with a key to Calliphoridae subfamilies and genera of eastern North America, and a key to the eastern Canadian species of Calliphorinae, Luciliinae and Chrysomyiinae. Can. J. Arthropod Identif. 2011, 11, 1–93. [Google Scholar] [CrossRef]
- Tabor, K.L.; Brewster, C.C.; Fell, R.D. Analysis of the Successional Patterns of Insects on Carrion in Southwest Virginia. J. Med. Entomol. 2004, 41, 785–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruner, S.V.; Slone, D.H.; Capinera, J.L. Forensically important calliphoridae (diptera) associated with pig carrion in rural north-central Florida. J. Med. Entomol. 2007, 44, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Weidner, L.; Tomberlin, J.; Hamilton, G. Development of Lucilia coeruleiviridis (Diptera: Calliphoridae) in New Jersey, USA. Fla. Entomol. 2014, 97, 849–851. [Google Scholar] [CrossRef]
- Bugajski, K.N.; Tolle, C. Effect of wáter on blow fly (Diptera: Calliphoridae) colonization of pigs in Northwest Indiana. Proc. Ind. Acad. Sci. 2014, 123, 67–71. [Google Scholar]
- Jordaens, K.; Sonet, G.; Braet, Y.; De Meyer, M.; Backeljau, T.; Goovaerts, F.; Bourguignon, L.; Desmyter, S. DNA barcoding and the differentiation between North American and West European Phormia regina (Diptera, Calliphoridae, Chrysomyinae). Zookeys 2013, 365, 149–174. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.H.; Allen, J.C. The development of the black blow fly, Phormia regina (Meigen). Forensic Sci. Int. 2001, 120, 79–88. [Google Scholar] [CrossRef]
- Savage, E.P.; Schoof, H.F. The Species Composition of Fly Populations at Several Types of Problem Sites in Urban Areas. Ann. Entomol. Soc. Am. 1955, 48, 251–257. [Google Scholar] [CrossRef]
- Denno, R.F.; Cothran, W.R. Competitive Interactions and Ecological Strategies of Sarcophagid and Calliphorid Flies Inhabiting Rabbit Carrion. Ann. Entomol. Soc. Am. 1976, 69, 109–113. [Google Scholar] [CrossRef]
- Hans, K.R.; Vanlaerhoven, S.L. Impact of Comingled Heterospecific Assemblages on Developmentally Based Estimates of the Post-Mortem Interval—A Study with Lucilia sericata (Meigen), Phormia regina (Meigen) and Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae). Insects 2021, 12, 280. [Google Scholar] [CrossRef] [PubMed]
- Downey, T.W. Polioviruses and Flies: Studies on the Epidemiology of Enteroviruses in an Urban Area. Yale J. Biol. Med. 1963, 35, 341–352. [Google Scholar]
- Weidner, L.M.; Gemmellaro, M.D.; Tomberlin, J.K.; Hamilton, G.C. Evaluation of bait traps as a means to predict initial blow fly (Diptera: Calliphoridae) communities associated with decomposing swine remains in New Jersey, USA. Forensic Sci. Int. 2017, 278, 95–100. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, K.; Boudreau, D.R.; Moreau, G. Small Bait Traps May Not Accurately Reflect the Composition of Necrophagous Diptera Associated to Remains. Insects 2021, 12, 261. [Google Scholar] [CrossRef] [PubMed]
- PrinkkilÁ, M.-L.; Hanski, I. Complex competitive interactions in four species of Lucilia blowflies. Ecol. Entomol. 1995, 20, 261–272. [Google Scholar] [CrossRef]
- Stevens, J.; Wall, R. The evolution of ectoparasitism in the genus Lucilia (Diptera:Calliphoridae). Int. J. Parasitol. 1997, 27, 51–59. [Google Scholar] [CrossRef]
- Nuorteva, P. Differences in the ecology of Lucilia ceasar (L.) and Lucilia illustris (Meig.) (Diptera, Calliphoridae) in Finland. Wiadomości. Parazytol. 1964, 10, 583–587. [Google Scholar]
- Hwang, C.; Turner, B.D. Spatial and temporal variability of necrophagous Diptera from urban to rural areas. Med. Vet. Entomol. 2005, 19, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Judd, W.W. Results of a Survey of Calyptrate Flies of Medical Importance Conducted at London, Ontario During 1953. Am. Midl. Nat. 1956, 56, 388–405. [Google Scholar] [CrossRef]
- Maldonado, M.; Centeno, N. Quantifying the Potential Pathogens Transmission of the Blowflies (Diptera: Calliphoridae). Memórias Do Inst. Oswaldo Cruz. 2003, 98, 213–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, C.L.; Gibbons, C.J. Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Geslin, B.; Le Féon, V.; Folschweiller, M.; Flacher, F.; Carmignac, D.; Motard, E.; Perret, S.; Dajoz, I. The proportion of impervious surfaces at the landscape scale structures wild bee assemblages in a densely populated region. Ecol. Evol. 2016, 6, 6599–6615. [Google Scholar] [CrossRef]
- Lagucki, E.; Burdine, J.D.; McCluney, K.E. Urbanization alters communities of flying arthropods in parks and gardens of a medium-sized city. PeerJ 2017, 5, e3620. [Google Scholar] [CrossRef] [Green Version]
- Rozsa, R. Human impacts on tidal wetlands: History and regulations. In Tidal Marshes of Long Island Sound: Ecology, History and Restoration; The Connecticut Arboretum Press: New London, CT, USA, 1995; Volume 34, pp. 42–50. [Google Scholar]
- Climate at a Glance: County Time Series. Available online: https://www.ncdc.noaa.gov/cag/ (accessed on 3 June 2021).
- Bozzi, L. Climate Change and Health in Connecticut: 2020 Report; Yale Center on Climate Change and Health: New Haven, CT, USA, 2020. [Google Scholar]
- Vogt, W.G.; Woodburn, T.L.; Morton, R.; Ellem, B.A. The analysis and standardisation of trap catches of Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Bull. Entomol. Res. 2009, 73, 609–617. [Google Scholar] [CrossRef]
- Patitucci, L.D.; Mulieri, P.R.; Schnack, J.A.; Mariluis, J.C. Species composition and heterogeneity of blowflies assemblages (Diptera: Calliphoridae) in urban–rural gradients at regional scale in Argentinean Patagonia. Stud. Neotrop. Fauna Environ. 2011, 46, 49–58. [Google Scholar] [CrossRef]
- McGlynn, T.P.; Meineke, E.K.; Bahlai, C.A.; Li, E.; Hartop, E.A.; Adams, B.J.; Brown, B.V. Temperature accounts for the biodiversity of a hyperdiverse group of insects in urban Los Angeles. Proc. Biol. Sci. 2019, 286, 20191818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinney, M. McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biological Conservation. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Rocha, E.A.; Fellowes, M.D.E. Urbanisation alters ecological interactions: Ant mutualists increase and specialist insect predators decrease on an urban gradient. Sci. Rep. 2020, 10, 6406. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meillère, A.; Brischoux, F.; Parenteau, C.; Angelier, F. Influence of Urbanization on Body Size, Condition, and Physiology in an Urban Exploiter: A Multi-Component Approach. PLoS ONE 2015, 10, e0135685. [Google Scholar] [CrossRef] [PubMed]
- Ullyett, G.C.; Thompson, W.R. Competition for food and allied phenomena in sheep-blowfly populations. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1950, 234, 77–174. [Google Scholar] [CrossRef]
- Carmo, R. How do invasive species affect native species? Experimental evidence from a carrion blowfly (Diptera: Calliphoridae) system. Ecol. Entomol. 2018, 43, 483–493. [Google Scholar] [CrossRef]
- Esposito, M.; Sousa, J.R.P.D.; Carvalho-Filho, F.D.S. Diversidade de Calliphoridae (Insecta: Diptera) na base de extração petrolífera da Bacia do Rio Urucu, na Amazônia brasileira. Acta Amazon. 2010, 40, 579–584. [Google Scholar] [CrossRef]
- Centeno, N.; Almorza, D.; Arnillas, C. Diversity of Calliphoridae (Insecta: Diptera) in Hudson, Argentina. Neotrop. Entomol. Neotrop. Entomol. 2004, 33, 387–390. [Google Scholar] [CrossRef]
- Langer, S.V.; Kyle, C.J.; Illes, M.; Larkin, S.; Beresford, D.V. Urban and Rural Spatial Delineations in Blow Fly Species (Diptera: Calliphoridae) Across Canada: Implications for Forensic Entomology. J. Med. Entomol. 2019, 56, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Tabarelli, M.; Peres, C.A.; Melo, F.P.L. The ‘few winners and many losers’ paradigm revisited: Emerging prospects for tropical forest biodiversity. Biol. Conserv. 2012, 155, 136–140. [Google Scholar] [CrossRef]
- Carthey, A.J.; Banks, P.B. When does an alien become a native species? A vulnerable native mammal recognizes and responds to its long-term alien predator. PLoS ONE 2012, 7, e31804. [Google Scholar] [CrossRef] [PubMed]
- Adams, B.J.; Li, E.; Bahlai, C.A.; Meineke, E.K.; McGlynn, T.P.; Brown, B.V. Local- and landscape-scale variables shape insect diversity in an urban biodiversity hot spot. Ecol. Appl. 2020, 30, e02089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faeth, S.H.; Bang, C.; Saari, S. Urban biodiversity: Patterns and mechanisms. Ann. N. Y. Acad. Sci. 2011, 1223, 69–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelli, L.E.; Gleiser, R.M.; Battán-Horenstein, M. Role of saprophagous fly biodiversity in ecological processes and urban ecosystem services. Ecol. Entomol. 2020, 45, 718–726. [Google Scholar] [CrossRef]
- Ribeiro, C.; Zuben, C. Nutritional ecology of blowflies (Diptera, Calliphoridae): Estimates of critical larval weight for pupation on two different diets. Rev. Bras. Entomol. 2009, 54, 661–664. [Google Scholar] [CrossRef] [Green Version]
- Sivell, O. Phormia regina (Meigen) (Diptera, Calliphoridae) in Britain. Dipterists Digest 2018, 25, 113–118. [Google Scholar]
- Harvey, M.; Gasz, N.; Woolley, Z.; Roberts, L.; Raven, N.; Colbert, A.; Law, K.; Marshall, P.; Voss, S. Dipteran Attraction to a Variety of Baits: Implications for Trapping Studies as a Tool for Establishing Seasonal Presence of Significant Species. J. Med. Entomol. 2019, 56, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, S.D.; Barbosa, T.M.; Oliveira, T.P.B. Diversity of forensically-important dipteran species in different environments in northeastern Brazil, with notes on the attractiveness of animal baits. Fla. Entomol. 2015, 98, 770–775. [Google Scholar] [CrossRef]
- Weidner, L.M.; Jennings, D.E.; Tomberlin, J.K.; Hamilton, G.C. Seasonal and Geographic Variation in Biodiversity of Forensically Important Blow Flies (Diptera: Calliphoridae) in New Jersey, USA. J. Med. Entomol. 2015, 52, 937–946. [Google Scholar] [CrossRef]
- Pedraza-Lara, C.; Garduño-Sánchez, M.A.; Téllez-García, I.; Rodríguez-González, S.; Nuple-Juárez, E.; Guardado-Estrada, M. Species Delimitation of Scavenger Flies in the Valley of Mexico. J. Med. Entomol. 2021, tjab094. [Google Scholar] [CrossRef] [PubMed]
- Pérez, A.E. The Development of an Insect Succession Model Suitable for Time-Since-Death Statistics; Graduate Theses, Dissertations, and Problem Reports; West Virginia University: Morgantown, WV, USA, 2014; Volume 7339. [Google Scholar]
- Payne, J.A.; Crossley, D.A., Jr. Animal Species Associated with Pig Carrion; No. ORNL-TM-1432; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1966.
- Magni, P.A.; Pérez-Bañón, C.; Borrini, M.; Dadour, I.R. Syritta pipiens (Diptera: Syrphidae), a new species associated with human cadavers. Forensic Sci. Int. 2013, 231, e19–e23. [Google Scholar] [CrossRef] [PubMed]
- Bilaniuk, V.; Beresford, D.V. Sampling adult blow flies (Diptera: Calliphoridae) at pig carcasses with sticky traps: Effects of trap colour, height, and inclination. Can. Soc. Forensic Sci. J. 2010, 43, 181–190. [Google Scholar] [CrossRef]
- Vogt, W.; Gerwen, A.; Morton, R. Influence of Trap Height on Catches of Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae) in Wind-Oriented Fly Traps. Aust. J. Entomol. 2007, 34, 225–227. [Google Scholar] [CrossRef]
- Harrison, J.G.; Shapiro, A.M.; Espeset, A.E.; Nice, C.C.; Jahner, J.P.; Forister, M.L. Species with more volatile population dynamics are differentially impacted by weather. Biol. Lett. 2015, 11, 20140792. [Google Scholar] [CrossRef] [PubMed]
- Luz, R.T.; Azevedo, W.T.A.; Silva, A.S.; Lessa, C.S.S.; Maia, V.C.; Aguiar, V.M. Population Fluctuation, Influence of Abiotic Factors and the Height of Traps on the Abundance and Richness of Calliphoridae and Mesembrinellidae. J. Med. Entomol. 2020, 57, 1748–1757. [Google Scholar] [CrossRef]
- Cirillo, V.J. “I Am the Baby Killer!” House Flies and the Spread of Polio. Am. Entomol. 2016, 62, 83–85. [Google Scholar] [CrossRef]
- Dowdle, W.R.; Birmingham, M.E. The biologic principles of poliovirus eradication. J. Infect. Dis. 1997, 175 (Suppl. 1), S286–S292. [Google Scholar] [CrossRef] [Green Version]
- Paffenbarger, R.S.J.; Watt, J. Poliomyelitis in Hidalgo County, Texas, 1948 epidemiologic observations. Am. J. Epidemiol. 1953, 58, 269–287. [Google Scholar] [CrossRef] [PubMed]
- Gudnadóttir, M.T.G. Studies of the fate of type 1 polioviruses in flies. J. Exp. Med. 1961, 113, 159–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/myth-busters (accessed on 21 June 2021).
- Balaraman, V.; Drolet, B.S.; Mitzel, D.N.; Wilson, W.C.; Owens, J.; Gaudreault, N.N.; Meekins, D.A.; Bold, D.; Trujillo, J.D.; Noronha, L.E.; et al. Mechanical transmission of SARS-CoV-2 by house flies. Parasites Vectors 2021, 14, 214. [Google Scholar] [CrossRef] [PubMed]
- Soltani, A.; Jamalidoust, M.; Hosseinpour, A.; Vahedi, M.; Ashraf, H.; Yousefinejad, S. First molecular-based detection of SARS-CoV-2 virus in the field-collected houseflies. Sci. Rep. 2021, 11, 13884. [Google Scholar] [CrossRef] [PubMed]
2019–2020 Traps | |||||
---|---|---|---|---|---|
Species | Position Based on Sum of Arbitrary Ranks | Sum of Arbitrary Ranks | Count Rank | Sum of Total Specimen Counts | Percent of Overall Count |
Lucilia sericata | 1 | 325 | 1 | 764 | 56.76 |
Lucilia coeruleiviridis | 2 | 317 | 2 | 342 | 25.41 |
Phormia regina | 3 | 208 | 3 | 180 | 13.37 |
Muscina stabulans | 4 | 70 | 5 | 9 | 0.67 |
Hylemya spp. | 5 | 61 | 4 | 13 | 0.97 |
Calliphora vicina | 6 | 60 | 7 | 6 | 0.45 |
Hydrotaea ignava | 7 | 48 | 6 | 8 | 0.59 |
Muscina assimilis | 8 | 41 | 8 | 4 | 0.30 |
Calliphora livida | 9 | 30 | 6 | 8 | 0.59 |
Lucilia silvarum | 10 | 29 | 8 | 4 | 0.30 |
Sarcophaga spp. | 11 | 28 | 9 | 3 | 0.22 |
Fannia spp. | 12 | 20 | 8 | 4 | 0.30 |
Musca domestica | 13 | 10 | 10 | 1 | 0.07 |
1943–1944 Traps | |||||
---|---|---|---|---|---|
Species | Position Based on Sum of Arbitrary Ranks | Sum of Arbitrary Ranks | Volume Rank | Sum of Volume in cc | Percent of Overall Count |
Lucilia sericata | 1 | 803 | 1 | 21,698 | 83.75 |
Phormia regina | 2 | 593 | 3 | 1344 | 5.19 |
Lucilia illustris | 3 | 463 | 2 | 1937 | 7.48 |
Sarcophaga spp. | 4 | 347 | 4 | 304 | 1.17 |
Calliphora vicina | 5 | 187 | 13 | 36 | 0.14 |
Lucilia coeruleiviridis | 6 | 177 | 7 | 100 | 0.39 |
Hylemya spp. | 7 | 155 | 5 | 102 | 0.39 |
Cynomyopsis cadaverina | 8 | 151 | 9 | 68 | 0.26 |
Muscina stabulans | 9 | 143 | 8 | 75 | 0.29 |
Fannia spp. | 10 | 121 | 6 | 101 | 0.39 |
Musca domestica | 11 | 103 | 11 | 49 | 0.19 |
Calliphora vomitoria | 12 | 83 | 12 | 37 | 0.14 |
Hydrotaea ignava | 13 | 70 | 10 | 58 | 0.22 |
Species | 1943–1944 Traps | 2019–2020 Traps | Difference | |||||
---|---|---|---|---|---|---|---|---|
Arbitrary Rank | Volume Rank | Percent of Overall Count | Arbitrary Rank | Count Rank | Percent of Overall Count | z Score | p Value | |
L. sericata | 1 | 1 | 83.75 | 1 | 1 | 56.76 | −25.36 | <0.0001 |
P. regina | 2 | 3 | 5.19 | 3 | 3 | 13.37 | 12.73 | <0.0001 |
L. illustris | 3 | 2 | 7.48 | 0 | 0 | 0 | −10.41 | <0.0001 |
Sarcophaga spp. | 4 | 4 | 1.17 | 11 | 9 | 0.22 | −3.22 | <0.001 |
C. vicina | 5 | 13 | 0.14 | 6 | 7 | 0.45 | 2.82 | <0.01 |
L. coeruleiviridis | 6 | 7 | 0.39 | 2 | 2 | 25.41 | 70.77 | <0.0001 |
Hylemya spp. | 7 | 5 | 0.39 | 5 | 4 | 0.97 | 3.21 | <0.001 |
Cy. cadaverina | 8 | 9 | 0.26 | 0 | 0 | 0 | −1.87 | Not sig |
M. stabulans | 9 | 8 | 0.29 | 4 | 5 | 0.67 | 2.45 | Not sig |
Fannia spp. | 10 | 6 | 0.39 | 12 | 8 | 0.30 | −0.52 | Not sig |
M. domestica | 11 | 11 | 0.19 | 13 | 10 | 0.07 | −1.00 | Not sig |
C. vomitoria | 12 | 12 | 0.14 | 0 | 0 | 0 | −1.37 | Not sig |
H. ignava | 13 | 10 | 0.22 | 7 | 6 | 0.59 | 2.71 | <0.01 |
C. livida | 0 | 0 | 0 | 10 | 6 | 0.59 | 12.37 | <0.0001 |
M. assimilis | 14 | 14 | Unknown * | 8 | 8 | 0.30 | n/a | n/a |
L. silvarum | 14 | 14 | Unknown * | 9 | 8 | 0.30 | n/a | n/a |
Species Found in Both the 1940s Traps and the 2019–2020 Traps | Species Found in the 1940s Traps but not in the 2019–2020 Traps | Species Found in 2019–2020 Traps but not in 1940s Traps |
---|---|---|
Lucilia sericata Phormia regina Lucilia coeruleiviridis Lucilia silvarum Calliphora vicina Sarcophaga spp. Muscina stabulons Hylemya spp. Fannia spp. Muscina domestica Muscina assimilis Hydrotaea ignava | Lucilia illustris † Calliphora vomitoria † Cochliomyia macellaria Cynomyopsis cadaverina Protophormia terraenovae Pollenia rudis † Helina spp. Myospila meditabunda Scathophaga spp. Stomoxys calcitrans Chrysomyza splendida Euxesta notata Delphinia picta Ptecticus trivitattus Syritta pipiens Toxomerus geminatus | Calliphora livida |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, J.; Magni, P.A.; O’Brien, R.C.; Dadour, I.R. Domestic Filth Flies in New Haven, Connecticut: A Case Study on the Effects of Urbanization and Climate Change by Comparing Fly Populations after 78 Years. Insects 2021, 12, 972. https://doi.org/10.3390/insects12110972
Pinto J, Magni PA, O’Brien RC, Dadour IR. Domestic Filth Flies in New Haven, Connecticut: A Case Study on the Effects of Urbanization and Climate Change by Comparing Fly Populations after 78 Years. Insects. 2021; 12(11):972. https://doi.org/10.3390/insects12110972
Chicago/Turabian StylePinto, Julie, Paola A. Magni, R. Christopher O’Brien, and Ian R. Dadour. 2021. "Domestic Filth Flies in New Haven, Connecticut: A Case Study on the Effects of Urbanization and Climate Change by Comparing Fly Populations after 78 Years" Insects 12, no. 11: 972. https://doi.org/10.3390/insects12110972
APA StylePinto, J., Magni, P. A., O’Brien, R. C., & Dadour, I. R. (2021). Domestic Filth Flies in New Haven, Connecticut: A Case Study on the Effects of Urbanization and Climate Change by Comparing Fly Populations after 78 Years. Insects, 12(11), 972. https://doi.org/10.3390/insects12110972