Genetic Diversity in Invasive Populations of Argentine Stem Weevil Associated with Adaptation to Biocontrol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Weevil Sampling
2.2. Genome Assembly
2.3. Reduced-Representation Genome Sequencing, Processing and Analysis
2.4. Reproducibility and Data Availability
3. Results
3.1. The Argentine Stem Weevil Genome Is Repetitive and Polymorphic
3.2. Genetic Variation Is Associated with Geography in NZ Populations of Argentine Stem Weevil
3.3. Genetic Variation Is not Associated with Parasitism by M. hyperodae
3.4. Genetic Differentiation between ASW Populations North and South of the Main Divide
3.5. Separate Incursions of ASW into New Zealand
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gurr, G.M.; Barlow, N.D.; Memmott, J.; Wratten, S.D.; Greathead, D.J. A History of Methodological, Theoretical and Empirical Approaches to Biological Control. In Biological Control: Measures of Success; Gurr, G., Wratten, S., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 3–37. [Google Scholar] [CrossRef]
- Holt, R.D.; Hochberg, M.E. When Is Biological Control Evolutionarily Stable (or Is It)? Ecology 1997, 78, 1673–1683. [Google Scholar] [CrossRef]
- Pastoret, P.-P. Biological control of vertebrate pests: The history of myxomatosis—An experiment in evolution. Vet. J. 2000, 159, 219. [Google Scholar] [CrossRef] [Green Version]
- Lively, C.M.; Dybdahl, M.F. Parasite adaptation to locally common host genotypes. Nature 2000, 405, 679–681. [Google Scholar] [CrossRef] [PubMed]
- Goldson, S.L.; Barker, G.M.; Chapman, H.M.; Popay, A.J.; Stewart, A.V.; Caradus, J.R.; Barratt, B.I.P. Severe Insect Pest Impacts on New Zealand Pasture: The Plight of an Ecological Outlier. J. Insect Sci 2020, 20, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Barker, G.; Addison, P.J. Argentine stem weevil populations and damage in ryegrass swards of contrasting Acremonium infection. In Proceedings of the 6th Australasian Conference on Grassland Invertebrate Ecology; Prestidge, R.A., Ed.; AgResearch: Hamilton, New Zealand, 1993. [Google Scholar]
- Prestidge, R.A.; Barker, G.M.; Pottinger, R.P. The economic cost of Argentine stem weevil in pastures in New Zealand. In Proceedings of the 44th New Zealand Weed and Pest Control Conference, New Zealand, 8 January 1991; pp. 165–170. [Google Scholar]
- Ferguson, C.M.; Barratt, B.I.P.; Bell, N.; Goldson, S.L.; Hardwick, S.; Jackson, M.; Jackson, T.A.; Phillips, C.B.; Popay, A.J.; Rennie, G.; et al. Quantifying the economic cost of invertebrate pests to New Zealand’s pastoral industry. N. Z. J. Agric. Res. 2019, 62, 255–315. [Google Scholar] [CrossRef] [Green Version]
- Goldson, S.L.; McNeill, M.R.; Stufkens, M.W.; Proffitt, J.R.; Pottinger, R.P.; Farrell, J.A. Importation and quarantine of Microctonus hyperodae a South American parasitoid of Argentine stem weevil. In Proceedings of the Forty Third New Zealand Weed and Pest Control Conference, Palmerston North, New Zealand, 8 January 1990; pp. 334–338. [Google Scholar] [CrossRef] [Green Version]
- Barlow, N.D.; Goldson, S.L. Alien invertebrates in New Zealand. In Biological Invasions: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species; Pimentel, D., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 195–216. [Google Scholar] [CrossRef]
- Johnson, L.J.; de Bonth, A.C.M.; Briggs, L.R.; Caradus, J.R.; Finch, S.C.; Fleetwood, D.J.; Fletcher, L.R.; Hume, D.E.; Johnson, R.D.; Popay, A.J.; et al. The exploitation of epichloae endophytes for agricultural benefit. Fungal Divers. 2013, 60, 171–188. [Google Scholar] [CrossRef]
- Kauppinen, M.; Saikkonen, K.; Helander, M.; Pirttilä, A.M.; Wäli, P.R. Epichloë grass endophytes in sustainable agriculture. Nat. Plants 2016, 2, 1–7. [Google Scholar] [CrossRef]
- Barker, G.M.; Addison, P.J. Early Impact of Endoparasitoid Microctonus hyperodae (Hymenoptera: Braconidae) After Its Establishment in Listronotus bonariensis (Coleoptera: Curculionidae) Populations of Northern New Zealand Pastures. J. Econ. Entomol. 2006, 99, 273–287. [Google Scholar] [CrossRef]
- Goldson, S.L.; Barron, M.C.; Kean, J.M.; van Koten, C. Argentine stem weevil (Listronotus bonariensis, Coleoptera: Curculionidae) population dynamics in Canterbury, New Zealand dryland pasture. Bull. Entomol. Res. 2011, 101, 295–303. [Google Scholar] [CrossRef]
- Barker, G.M. Biology of the Introduced Biocontrol Agent Microctonus hyperodae (Hymenoptera: Braconidae) and Its Host Listronotus bonariensis (Coleoptera: Curculionidae) in Northern New Zealand. Environ. Entomol 2013, 42, 902–914. [Google Scholar] [CrossRef] [Green Version]
- Popay, A.J.; McNeill, M.R.; Goldson, S.L.; Ferguson, C.M. The current status of Argentine stem weevil (Listronotus bonariensis) as a pest in the North Island of New Zealand. N. Z. Plant. Prot. 2011, 64, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Goldson, S.L.; Tomasetto, F. Apparent Acquired Resistance by a Weevil to Its Parasitoid Is Influenced by Host Plant. Front. Plant. Sci. 2016, 7, 1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomasetto, F.; Tylianakis, J.M.; Reale, M.; Wratten, S.; Goldson, S.L. Intensified agriculture favors evolved resistance to biological control. Proc. Natl. Acad. Sci. USA 2017, 201618416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casanovas, P.; Goldson, S.L.; Tylianakis, J.M. Asymmetry in reproduction strategies drives evolution of resistance in biological control systems. PLoS ONE 2018, 13, e0207610. [Google Scholar] [CrossRef]
- Pennisi, E. In a first, natural selection defeats a biocontrol insect. Science 2017, 356, 570. [Google Scholar] [CrossRef]
- Williams, C.L.; Goldson, S.L.; Baird, D.B.; Bullock, D.W. Geographical origin of an introduced insect pest, Listronotus bonariensis (Kuschel), determined by RAPD analysis. Heredity 1994, 72, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Vink, C.J.; Kean, J.M. PCR gut analysis reveals that Tenuiphantes tenuis (Araneae: Linyphiidae) is a potentially significant predator of Argentine stem weevil, Listronotus bonariensis (Coleoptera: Curculionidae), in New Zealand pastures. N. Z. J. Zool. 2013, 40, 304–313. [Google Scholar] [CrossRef]
- Kahle, D.; Wickham, H. ggmap: Spatial Visualization with ggplot2. R J. 2013, 5, 144–161. [Google Scholar] [CrossRef] [Green Version]
- Goldson, S.L.; Emberson, R.M. Reproductive morphology of the Argentine stem weevil, Hyperodes bonariensis (Coleoptera: Curculionidae). N. Z. J. Zool. 1981, 8, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. Available online: https://www.osti.gov/biblio/1241166-bbmap-fast-accurate-splice-aware-aligner (accessed on 6 March 2020).
- Chapman, J.A.; Ho, I.; Sunkara, S.; Luo, S.; Schroth, G.P.; Rokhsar, D.S. Meraculous: De Novo Genome Assembly with Short Paired-End Reads. PLoS ONE 2011, 6, e23501. [Google Scholar] [CrossRef]
- Chapman, J.A.; Ho, I.Y.; Goltsman, E.; Rokhsar, D.S. Meraculous2: Fast accurate short-read assembly of large polymorphic genomes. arXiv 2017, arXiv:1608.01031. Available online: http://arxiv.org/abs/1608.01031 (accessed on 27 June 2017).
- Goltsman, E.; Ho, I.; Rokhsar, D. Meraculous-2D: Haplotype-sensitive Assembly of Highly Heterozygous genomes. arXiv 2017, arXiv:1703.09852. Available online: http://arxiv.org/abs/1703.09852 (accessed on 27 June 2017).
- Harrop, T. HMW DNA Extraction for Insects. Available online: https://www.protocols.io/view/hmw-dna-extraction-for-insects-pnwdmfe/metrics (accessed on 16 June 2020).
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roach, M.J.; Schmidt, S.A.; Borneman, A.R. Purge Haplotigs: Allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinform. 2018, 19, 460. [Google Scholar] [CrossRef] [PubMed]
- Smit, A.F.A.; Hubley, R. RepeatModeler Open-1.0. Available online: http://www.repeatmasker.org (accessed on 6 March 2020).
- Love, J.; Palmer, J.; Stajich, J.; Esser, T.; Kastman, E.; Bogema, D.; Winter, D. Nextgenusfs/Funannotate: Funannotate v1.7.4. Available online: https://zenodo.org/record/3679386#.Xwvdxud5tPY (accessed on 6 March 2020).
- Smit, A.F.A.; Hubley, R.; Green, P. RepeatMasker Open-4.0. Available online: http://www.repeatmasker.org (accessed on 6 March 2020).
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef] [Green Version]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Dodds, K.G.; McEwan, J.C.; Brauning, R.; Anderson, R.M.; van Stijn, T.C.; Kristjánsson, T.; Clarke, S.M. Construction of relatedness matrices using genotyping-by-sequencing data. BMC Genom. 2015, 16, 1047. [Google Scholar] [CrossRef] [Green Version]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4. [Google Scholar] [CrossRef]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org (accessed on 8 December 2016).
- Lischer, H.E.L.; Excoffier, L. PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 2012, 28, 298–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foll, M.; Gaggiotti, O. A Genome-Scan Method to Identify Selected Loci Appropriate for Both Dominant and Codominant Markers: A Bayesian Perspective. Genetics 2008, 180, 977–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautier, M.; Klassmann, A.; Vitalis, R. rehh 2.0: A reimplementation of the R package rehh to detect positive selection from haplotype structure. Mol. Ecol. Resour. 2017, 17, 78–90. [Google Scholar] [CrossRef]
- Excoffier, L.; Dupanloup, I.; Huerta-Sánchez, E.; Sousa, V.C.; Foll, M. Robust Demographic Inference from Genomic and SNP Data. PLoS Genet. 2013, 9, e1003905. [Google Scholar] [CrossRef] [Green Version]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Köster, J.; Rahmann, S. Snakemake—A scalable bioinformatics workflow engine. Bioinformatics 2012, 28, 2520–2522. [Google Scholar] [CrossRef] [Green Version]
- Kurtzer, G.M.; Sochat, V.; Bauer, M.W. Singularity: Scientific containers for mobility of compute. PLoS ONE 2017, 12, e0177459. [Google Scholar] [CrossRef]
- Hubley, R.; Finn, R.D.; Clements, J.; Eddy, S.R.; Jones, T.A.; Bao, W.; Smit, A.F.A.; Wheeler, T.J. The Dfam database of repetitive DNA families. Nucleic Acids Res. 2016, 44, D81–D89. [Google Scholar] [CrossRef] [Green Version]
- Sabeti, P.C.; Varilly, P.; Fry, B.; Lohmueller, J.; Hostetter, E.; Cotsapas, C.; Xie, X.; Byrne, E.H.; McCarroll, S.A.; Gaudet, R.; et al. Genome-wide detection and characterization of positive selection in human populations. Nature 2007, 449, 913–918. [Google Scholar] [CrossRef]
- Gautier, M.; Vitalis, R. rehh: An R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics 2012, 28, 1176–1177. [Google Scholar] [CrossRef]
- Goldson, S.L.; McNeill, M.R.; Phillips, C.B.; Proffitt, J.R. Host specificity testing and suitability of the parasitoid Microctonus hyperodae (Hym.: Braconidae, Euphorinae) as a biological control agent of Listronotus bonariensis (Col.: Curculionidae) in New Zealand. Entomophaga 1992, 37, 483–498. [Google Scholar] [CrossRef]
- Brooking, T.; Pawson, E. Silences of Grass: Retrieving the Role of Pasture Plants in the Development of New Zealand and the British Empire. J. Imp. Commonw. Hist. 2007, 35, 417–435. [Google Scholar] [CrossRef]
- McKenzie, J.A.; Batterham, P. The genetic, molecular and phenotypic consequences of selection for insecticide resistance. Trends Ecol. Evol. 1994, 9, 166–169. [Google Scholar] [CrossRef]
- Green, L.; Battlay, P.; Fournier-Level, A.; Good, R.T.; Robin, C. Cis- and trans-acting variants contribute to survivorship in a naïve Drosophila melanogaster population exposed to ryanoid insecticides. Proc. Natl. Acad. Sci. USA 2019, 116, 10424–10429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega, F.E.; Brown, S.M.; Chen, H.; Shen, E.; Nair, M.B.; Ceja-Navarro, J.A.; Brodie, E.L.; Infante, F.; Dowd, P.F.; Pain, A. Draft genome of the most devastating insect pest of coffee worldwide: The coffee berry borer, Hypothenemus hampei. Sci. Rep. 2015, 5, 12525. [Google Scholar] [CrossRef] [Green Version]
- Keeling, C.I.; Yuen, M.M.; Liao, N.Y.; Roderick Docking, T.; Chan, S.K.; Taylor, G.A.; Palmquist, D.L.; Jackman, S.D.; Nguyen, A.; Li, M.; et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol. 2013, 14, R27. [Google Scholar] [CrossRef] [Green Version]
Location | GPS Co-Ordinates (lat, lon) | Date Collected | Number Genotyped |
---|---|---|---|
Coromandel | −37.20194, 175.59417 | June 2015 | 16 |
Ruakura | −37.76750, 175.32361 | June 2015 | 16 |
Taranaki | −39.61500, 174.30278 | July 2015 | 15 |
Wellington | −41.13647, 175.35163 | July 2015 | 16 |
Greymouth | −42.89506, 172.71926 | September 2016 | 16 |
Lincoln | −43.64397, 172.44292 | July 2014 | 15 |
Ophir | −45.10955, 169.58753 | August 2017 | 15 |
Mararoa Downs | −45.50672, 167.97596 | May 2016 | 16 |
Mossburn | −45.66966, 168.23884 | January 2016 | 16 |
Fortrose | −46.57064, 168.79993 | November 2016 | 16 |
Short Read | Single Individual, Long Read | Pooled, Long Read | Combined, Long Read | Final Draft | |
---|---|---|---|---|---|
Assembly length (Gb) | 1.3 | 1.2 | 1.2 | 1.7 | 1.1 |
N50 | 53,046 | 4523 | 2958 | 5281 | 2681 |
N50 length (kb) | 7.1 | 74.4 | 112.6 | 86.4 | 122.3 |
Gaps (%) | 3.5 | 0 | 0 | 0 | 0 |
GC content (%) | 30.6 | 31.3 | 31.4 | 31.4 | 31.3 |
Complete, single-copy BUSCOs (%) | 32.7 | 72.2 | 71 | 69.2 | 78.8 |
Complete, multiple-copy BUSCOs (%) | 17.2 | 7.5 | 5.9 | 17.4 | 5.1 |
Minimum 1 repeat content (%) | n.d. | 71 | 71.4 | 71.4 | 71.3 |
Location | Parasitoid | Number Genotyped | Number after Filtering |
---|---|---|---|
Ruakura | Present | 50 | 46 |
Ruakura | Not detected | 50 | 40 |
Lincoln | Present | 50 | 49 |
Lincoln | Not detected | 50 | 44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrop, T.W.R.; Le Lec, M.F.; Jauregui, R.; Taylor, S.E.; Inwood, S.N.; van Stijn, T.; Henry, H.; Skelly, J.; Ganesh, S.; Ashby, R.L.; et al. Genetic Diversity in Invasive Populations of Argentine Stem Weevil Associated with Adaptation to Biocontrol. Insects 2020, 11, 441. https://doi.org/10.3390/insects11070441
Harrop TWR, Le Lec MF, Jauregui R, Taylor SE, Inwood SN, van Stijn T, Henry H, Skelly J, Ganesh S, Ashby RL, et al. Genetic Diversity in Invasive Populations of Argentine Stem Weevil Associated with Adaptation to Biocontrol. Insects. 2020; 11(7):441. https://doi.org/10.3390/insects11070441
Chicago/Turabian StyleHarrop, Thomas W. R., Marissa F. Le Lec, Ruy Jauregui, Shannon E. Taylor, Sarah N. Inwood, Tracey van Stijn, Hannah Henry, John Skelly, Siva Ganesh, Rachael L. Ashby, and et al. 2020. "Genetic Diversity in Invasive Populations of Argentine Stem Weevil Associated with Adaptation to Biocontrol" Insects 11, no. 7: 441. https://doi.org/10.3390/insects11070441