Employment of Micro- and Nano-WS2 Structures to Enhance the Tribological Properties of Copper Matrix Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. X-ray Diffraction Analysis
2.3. Optical Contact Angle Measurements
2.4. Density Measurements
2.5. Electrical Properties Evaluation
2.6. Tribological Analysis
3. Results
3.1. X-ray Diffraction
3.2. Optical Contact Angle
3.3. Relative Density
3.4. Electrical Resistivity
3.5. Micro-Scratch Test
3.6. Indentation Hardness
3.7. Wear Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Sawa, K.; Shobert, E. Sliding Electrical Contacts (Graphitic Type Lubrication). In Electrical Contacts; Slade, P.G., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 1041–1079. ISBN 9781315216829. [Google Scholar]
- Moberly, L.E.; Johnson, J.L. Application in Space Environments. IEEE Trans. Aerosp. 1965, AS-3, 252–257. [Google Scholar] [CrossRef]
- Poljanec, D.; Kalin, M. Effect of polarity and various contact pairing combinations of electrographite, polymer-bonded graphite and copper on the performance of sliding electrical contacts. Wear 2019, 426–427, 1163–1175. [Google Scholar] [CrossRef]
- Grandin, M.; Wiklund, U. Wear phenomena and tribofilm formation of copper/copper-graphite sliding electrical contact materials. Wear 2018, 398–399, 227–235. [Google Scholar] [CrossRef]
- Bares, J.A.; Argibay, N.; Dickrell, P.L.; Bourne, G.R.; Burris, D.L.; Ziegert, J.C.; Sawyer, W.G. In situ graphite lubrication of metallic sliding electrical contacts. Wear 2009, 267, 1462–1469. [Google Scholar] [CrossRef]
- Slade, P.G. (Ed.) Electrical Contacts: Principles and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9781315216829. [Google Scholar]
- Lince, J.R. Effective Application of Solid Lubricants in Spacecraft Mechanisms. Lubricants 2020, 8, 74. [Google Scholar] [CrossRef]
- Vazirisereshk, M.R.; Martini, A.; Strubbe, D.A.; Baykara, M.Z. Solid lubrication with MOS2: A review. Lubricants 2019, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, N.; Krishnaraj, V.; Davim, J.P. Metal Matrix Composites Synthesis, Wear Characteristics, Machinability Study of MMC Brake Drum; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783319029849. [Google Scholar]
- Sawa, K. Sliding Electrical Contacts and Materials. In Encyclopedia of Tribology; Wang, Q.J., Chung, Y.-W., Eds.; Springer: Boston, MA, USA, 2013; pp. 3133–3141. ISBN 978-0-387-92897-5. [Google Scholar]
- Xiao, J.K.; Zhang, W.; Zhang, C. Microstructure evolution and tribological performance of Cu-WS2 self-lubricating composites. Wear 2018, 412–413, 109–119. [Google Scholar] [CrossRef]
- Selvi, E.; Ma, Y.; Aksoy, R.; Ertas, A.; White, A. High pressure X-ray diffraction study of tungsten disulfide. J. Phys. Chem. Solids 2006, 67, 2183–2186. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Avasthi, B.N. Layer type tungsten dichalcogenide compounds: Their preparation, structure, properties and uses. J. Mater. Sci. 1985, 20, 3801–3815. [Google Scholar] [CrossRef]
- Wong, K.C.; Lu, X.; Cotter, J.; Eadie, D.T.; Wong, P.C.; Mitchell, K.A.R. Surface and friction characterization of MoS2 and WS2 third body thin films under simulated wheel/rail rolling-sliding contact. Wear 2008, 264, 526–534. [Google Scholar] [CrossRef]
- Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992, 360, 444–446. [Google Scholar] [CrossRef]
- Margolin, A.; Deepak, F.L.; Popovitz-Biro, R.; Bar-Sadan, M.; Feldman, Y.; Tenne, R. Fullerene-like WS2 nanoparticles and nanotubes by the vapor-phase synthesis of WCln and H2S. Nanotechnology 2008, 19. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, L.; Leshchinsky, V.; Lvovsky, M.; Nepomnyashchy, O.; Volovik, Y.; Tenne, R. Mechanism of friction of fullerenes. Ind. Lubr. Tribol. 2002, 54, 171–176. [Google Scholar] [CrossRef]
- Rapoport, L.; Fleischer, N.; Tenne, R. Fullerene-like WS2 nanoparticles: Superior lubricants for harsh conditions. Adv. Mater. 2003, 15, 651–655. [Google Scholar] [CrossRef]
- Tevet, O.; Von-huth, P.; Popovitz-biro, R.; Rosentsveig, R.; Wagner, H.D.; Tenne, R. Friction mechanism of individual multilayered nanoparticles. Proc. Natl. Acad. Sci. USA 2011, 108, 19901–19906. [Google Scholar] [CrossRef] [Green Version]
- Uflyand, I.E.; Zhinzhilo, V.A.; Burlakova, V.E. Metal-containing nanomaterials as lubricant additives: State-of-the-art and future development. Friction 2019, 7, 93–116. [Google Scholar] [CrossRef] [Green Version]
- Erdemir, A. A crystal-chemical approach to lubrication by solid oxides. Tribol. Lett. 2000, 8, 97–102. [Google Scholar] [CrossRef]
- Shalom, H.; Sui, X.M.; Elianov, O.; Brumfeld, V.; Rosentsveig, R.; Pinkas, I.; Feldman, Y.; Kampf, N.; Wagner, H.D.; Lachman, N.; et al. Nanocomposite of poly(L-lactic acid) with inorganic nanotubes of WS 2. Lubricants 2019, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Kaplan-Ashiri, I.; Tenne, R. On the Mechanical Properties of WS2 and MoS2 Nanotubes and Fullerene-Like Nanoparticles: In Situ Electron Microscopy Measurements. JOM 2016, 68, 151–167. [Google Scholar] [CrossRef]
- Feldman, Y.; Frey, G.L.; Homyonfer, M.; Lyakhovitskaya, V.; Margulis, L.; Cohen, H.; Hodes, G.; Hutchison, J.L.; Tenne, R. Bulk synthesis of inorganic fullerene-like MS2 (M = Mo, W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 1996, 118, 5362–5367. [Google Scholar] [CrossRef]
- Feldman, Y.; Lyakhovitskaya, V.; Tenne, R. Kinetics of nested inorganic fullerene-like nanoparticle formation. J. Am. Chem. Soc. 1998, 120, 4176–4183. [Google Scholar] [CrossRef]
- Jang, B.Z.; Zhamu, A. Processing of nanographene platelets (NGPs) and NGP nanocomposites: A review. J. Mater. Sci. 2008, 43, 5092–5101. [Google Scholar] [CrossRef]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’ko, Y.K.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Cataldi, P.; Athanassiou, A.; Bayer, I.S. Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl. Sci. 2018, 8, 1438. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Suàrez, A.; Prolongo, S.G. Graphene Nanoplatelets. Appl. Sci. 2020, 10, 1753. [Google Scholar] [CrossRef] [Green Version]
- Saboori, A.; Dadkhah, M.; Fino, P.; Pavese, M. An overview of metal matrix nanocomposites reinforced with graphene nanoplatelets; mechanical, electrical and thermophysical properties. Metals 2018, 8, 423. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhan, Z. Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties. J. Alloys Compd. 2016, 658, 663–671. [Google Scholar] [CrossRef]
- Tabandeh-Khorshid, M.; Kumar, A.; Omrani, E.; Kim, C.; Rohatgi, P. Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites. Compos. Part B Eng. 2020, 183, 107664. [Google Scholar] [CrossRef]
- Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications. Appl. Phys. A Mater. Sci. Process. 2014, 117, 103–110. [Google Scholar] [CrossRef]
- Gnilitskyi, I.; Rota, A.; Gualtieri, E.; Valeri, S.; Orazi, L. Tribological properties of high-speed uniform femtosecond laser patterning on stainless steel. Lubricants 2019, 7, 83. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.K.; Zhang, L.; Zhou, K.C.; Wang, X.P. Microscratch behavior of copper-graphite composites. Tribol. Int. 2013, 57, 38–45. [Google Scholar] [CrossRef]
- Zhao, L.; Yao, P.; Gong, T.; Zhou, H.; Deng, M.; Wang, Z.; Zhang, Z.; Xiao, Y.; Luo, F. Effect of Adding Tungsten Disulfide to a Copper Matrix on the Formation of Tribo-Film and on the Tribological Behavior of Copper/Tungsten Disulfide Composites. Tribol. Lett. 2019, 67, 98. [Google Scholar] [CrossRef]
- Jazaa, Y.; Lan, T.; Padalkar, S.; Sundararajan, S. The effect of agglomeration reduction on the tribological behavior of WS2 and MoS2 nanoparticle additives in the boundary lubrication regime. Lubricants 2018, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Rapoport, L.; Lvovsky, M.; Lapsker, I.; Leshinsky, V.; Volovik, Y.; Feldman, Y.; Zak, A.; Tenne, R. Slow release of fullerene-like WS2 nanoparticles as a superior solid lubrication mechanism in composite matrices. Adv. Eng. Mater. 2001, 3, 71–75. [Google Scholar] [CrossRef]
- Sade, H.; Moshkovich, A.; Lellouche, J.P.; Rapoport, L. Testing of WS2 nanoparticles functionalized by a humin-like shell as lubricant additives. Lubricants 2018, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.B.; Zhang, S.W. The tribological properties of multi-layered graphene as additives of PAO2 oil in steel-steel contacts. Lubricants 2016, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Pape, F.; Poll, G. Investigations on graphene platelets as dry lubricant and as grease additive for sliding contacts and rolling bearing application. Lubricants 2020, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Qian, G.; Feng, Y.; Chen, Y.M.; Mo, F.; Wang, Y.Q.; Liu, W.H. Effect of WS2 addition on electrical sliding wear behaviors of Cu-graphite-WS2 composites. Trans. Nonferrous Met. Soc. China 2015, 25, 1986–1994. [Google Scholar] [CrossRef]
- Qian, G.; Feng, Y.; Chen, F.; Liu, W.; Zhang, X.; Liu, Y. Effect of current polarity on electrical sliding wear behavior of Cu-WS2-graphite-WS2 nanotube composites in air and vacuum conditions. Sci. China Technol. Sci. 2013, 56, 2839–2846. [Google Scholar] [CrossRef]
- Federal Aviation Administration. Pilot’s Handbook of Aeronautical Knowledge; Federal Aviation Administration: Washington, DC, USA, 2016; p. 524. [Google Scholar]
- Alemour, B.; Badran, O.; Hassan, M.R. A review of using conductive composite materials in solving lightening strike and ice accumulation problems in aviation. J. Aerosp. Technol. Manag. 2019, 11, 1–23. [Google Scholar] [CrossRef]
- Haynes, W.M. CRC Handbook of Chemistry and Physics; Haynes, W.M., Lide, D.R., Bruno, T.J., Eds.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781315380476. [Google Scholar]
- Zak, A.; Sallacanecker, L.; Efrati, R.; Drangai, L.; Fleischer, N.; Tenne, R. Large-scale synthesis of WS2 multiwall nanotubes and their dispersion. Sens. Transducers J. 2009, 12, 1–10. [Google Scholar]
- Pradhan, G.; Sharma, A.K. Linear and nonlinear optical response of sulfur-deficient nanocrystallite WS2 thin films. J. Mater. Sci. 2019, 54, 14809–14824. [Google Scholar] [CrossRef]
- Panigrahi, P.K.; Pathak, A. Microwave-assisted synthesis of WS2 nanowires through tetrathiotungstate precursors. Sci. Technol. Adv. Mater. 2008, 9. [Google Scholar] [CrossRef]
- Zhou, J.; Ma, C.; Kang, X.; Zhang, L.; Liu, X.L. Effect of WS2 particle size on mechanical properties and tribological behaviors of Cu-WS2 composites sintered by SPS. Trans. Nonferrous Met. Soc. China 2018, 28, 1176–1185. [Google Scholar] [CrossRef]
- Sharma, S.S.; Bhagat, S.; Singh, J.; Singh, R.C.; Sharma, S.S. Excitation-dependent photoluminescence from WS2 nanostructures synthesized via top-down approach. J. Mater. Sci. 2017, 52, 11326–11336. [Google Scholar] [CrossRef]
- An, V.; Irtegov, Y.; De Izarra, C. Study of tribological properties of nanolamellar WS2 and MoS2 as additives to lubricants. J. Nanomater. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Hazarika, S.J.; Mohanta, D. Inorganic fullerene-type WS2 nanoparticles: Processing, characterization and its photocatalytic performance on malachite green. Appl. Phys. A Mater. Sci. Process. 2017, 123, 381. [Google Scholar] [CrossRef]
- Huh, S.H. X-ray diffraction of multi-layer graphenes: Instant measurement and determination of the number of layers. Carbon N. Y. 2014, 78, 617–621. [Google Scholar] [CrossRef]
- Khalaj, M.; Zarabi Golkhatmi, S.; Alem, S.A.A.; Baghchesaraee, K.; Hasanzadeh Azar, M.; Angizi, S. Recent Progress in the Study of Thermal Properties and Tribological Behaviors of Hexagonal Boron Nitride-Reinforced Composites. J. Compos. Sci. 2020, 4, 116. [Google Scholar] [CrossRef]
- Malizia, A.; Rossi, R.; Cacciotti, I. Improvement of the shadow tracking setup as a method to measure the velocities values of dark dust in order to reduce the risks of radioactive releases or explosions. Rev. Sci. Instrum. 2018, 89, 083306. [Google Scholar] [CrossRef] [PubMed]
- Klotz, B.R.; Kellogg, F.R.; Klier, E.M.; Dowding, R.J.; Cho, K.C. Characterization, Processing, and Consolidation of Nanoscale Tungsten Powder. 2009. Available online: https://www.researchgate.net/publication/235189436_Characterization_Processing_and_Consolidation_of_Nanoscale_Tungsten_Powder (accessed on 10 December 2020).
- Yang, C.; Tartaglino, U.; Persson, B.N.J. Influence of surface roughness on superhydrophobicity. Phys. Rev. Lett. 2006, 97, 116103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazarika, S.J.; Mohanta, D. Revealing mechanical, tribological, and surface-wettability features of nanoscale inorganic fullerene-type tungsten disulfide dispersed in a polymer. J. Mater. Res. 2019, 34, 3666–3677. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and rubbing of flat surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
OCA | Mean Value (°) | Standard Deviation |
---|---|---|
Cu | 116.4 | 5.2 |
Cu-2 | 115.7 | 11.2 |
Cu-WS2 | 130.0 | 3.4 |
Cu-WS2-IF | 137.5 | 2.7 |
Cu-WS2-IF-GNP | 123.2 | 10.1 |
Relative Density | Value (%) |
---|---|
Cu | 86.29 |
Cu-2 | 85.83 |
Cu-WS2 | 85.36 |
Cu-WS2-IF | 83.23 |
Cu-WS2-IF-GNP | 81.61 |
Electrical Resistivity | Mean Value (Ω m) | Standard Deviation |
---|---|---|
Cu | 2.96 × 10−8 | 1.45 × 10−9 |
Cu-2 | 3.00 × 10−8 | 5.28 × 10−10 |
Cu-WS2 | 7.08 × 10−8 | 9.28 × 10−10 |
Cu-WS2-IF | 8.84 × 10−8 | 3.31 × 10−8 |
Cu-WS2-IF-GNP | 9.33 × 10−8 | 1.60 × 10−8 |
Micro-Scratch Test | Friction Coefficient | Standard Deviation | Scratch Hardness (MPa) | Standard Deviation |
---|---|---|---|---|
Cu | 0.441 | 0.053 | 654.8 | 91.4 |
Cu-2 | 0.603 | 0.023 | 672.1 | 25.2 |
Cu-WS2 | 0.359 | 0.019 | 787.9 | 66.6 |
Cu-WS2-IF | 0.304 | 0.058 | 543.0 | 31.3 |
Cu-WS2-IF-GNP | 0.340 | 0.061 | 526.9 | 55.9 |
Vickers Hardness | Mean Value (HV) | Standard Deviation |
---|---|---|
Cu | 55.0 | 2.9 |
Cu-2 | 57.5 | 0.2 |
Cu-WS2 | 71.0 | 1.5 |
Cu-WS2-IF | 60.9 | 0.9 |
Cu-WS2-IF-GNP | 63.6 | 3.9 |
Wear Test | Wear Track Width (µm) | |
---|---|---|
Sample | Counter Ball | |
(A) Cu-2 | 1141 | 1340 |
(B) Cu-WS2 | 1255 | 1475 |
(C) Cu-WS2-IF | 586 | 1066 |
(D) Cu-WS2-IF-GNP | 330–841 | 1009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freschi, M.; Di Virgilio, M.; Zanardi, G.; Mariani, M.; Lecis, N.; Dotelli, G. Employment of Micro- and Nano-WS2 Structures to Enhance the Tribological Properties of Copper Matrix Composites. Lubricants 2021, 9, 53. https://doi.org/10.3390/lubricants9050053
Freschi M, Di Virgilio M, Zanardi G, Mariani M, Lecis N, Dotelli G. Employment of Micro- and Nano-WS2 Structures to Enhance the Tribological Properties of Copper Matrix Composites. Lubricants. 2021; 9(5):53. https://doi.org/10.3390/lubricants9050053
Chicago/Turabian StyleFreschi, Marco, Matteo Di Virgilio, Gabriele Zanardi, Marco Mariani, Nora Lecis, and Giovanni Dotelli. 2021. "Employment of Micro- and Nano-WS2 Structures to Enhance the Tribological Properties of Copper Matrix Composites" Lubricants 9, no. 5: 53. https://doi.org/10.3390/lubricants9050053
APA StyleFreschi, M., Di Virgilio, M., Zanardi, G., Mariani, M., Lecis, N., & Dotelli, G. (2021). Employment of Micro- and Nano-WS2 Structures to Enhance the Tribological Properties of Copper Matrix Composites. Lubricants, 9(5), 53. https://doi.org/10.3390/lubricants9050053