Fabrication and Properties of Hard Coatings by a Hybrid PVD Method
Abstract
1. Introduction
2. Origins of the Hybrid PVD Deposition Technology
3. Hybrid PVD Technique for Synthesizing Nano-Composite Coatings
4. Hybrid PVD Technique for Synthesizing Nano-Multilayered Coatings
4.1. Optimization of Hybrid PVD Deposition Parameters
4.2. Hybrid Nitride Coatings with Similar Crystalline Lattices
4.3. Hybrid Nitride Coatings with Dissimilar Crystalline Lattices
4.4. Hybrid Hard Oxide Coatings with Template Lattices
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PVD | Physical vapor deposition |
CAE | Cathodic arc evaporation |
MS | Magnetron sputtering |
HiPIMS | High-power impulse magnetron sputtering |
UBMS | Unbalanced magnetron sputtering |
ABSTM | Arc-Bond Sputter |
FCC | Face-centered cubic |
References
- Dabees, S.; Mirzaei, S.; Kaspar, P.; Holcman, V.; Sobola, D. Characterization and evaluation of engineered coating techniques for different cutting tools-review. Materials 2022, 15, 5633. [Google Scholar] [CrossRef] [PubMed]
- Seenath, A.A.; Sarhan, A.A.D. A State-of-the-Art review on cutting tool materials and coatings in enhancing the tool performance in machining the superior nickel-based superalloys. Arab. J. Sci. Eng. 2024, 49, 10203–10236. [Google Scholar] [CrossRef]
- Warcholinski, B.; Gilewicz, A.; Tarnowska, M. The surface assessment and the properties of selected multilayer coatings. Lubricants 2023, 11, 371. [Google Scholar] [CrossRef]
- Petrović, B.; Mitić, D.; Miličić Lazić, M.; Lazarević, M.; Trajkovska Petkoska, A.; Nasov, I.; Živković, S.; Jokanović, V. TiN-Ag multilayer protective coatings for surface modification of AISI 316 stainless steel medical implants. Coatings 2025, 15, 820. [Google Scholar] [CrossRef]
- Tang, V.-T.; Chang, Y.-Y.; Chen, Y.-R. Enhancement of a magnetically controlled cathodic arc source for the deposition of multi-component hard nitride coatings. Materials 2025, 18, 2276. [Google Scholar] [CrossRef]
- Akhter, R.; Bendavid, A.; Munroe, P. The influence of substrate bias on the surface morphology, microstructure and mechanical behaviour of TiNiN coatings. Appl. Surf. Sci. 2022, 590, 153107. [Google Scholar] [CrossRef]
- Kheyrodin, M.; Mahboubi, F.; Elmkhah, H. The effect of negative bias voltage on the microstructure and hot corrosion behavior of heat-treated NiCoCrAlY coatings applied via the cathodic arc evaporation physical vapor deposition method. J. Mater. Eng. Perform. 2024, 33, 283–300. [Google Scholar] [CrossRef]
- Kuprin, A.S.; Ovcharenko, V.D.; Gilewicz, A.; Tolmachova, G.N.; Kolodiy, I.V.; Vasilenko, R.L.; Kuznetsova, T.; Lapitskaya, V.; Warcholinski, B. Structural, mechanical and tribological properties of Cr-V-N coatings deposited by cathodic arc evaporation. Tribol. Int. 2022, 165, 107246. [Google Scholar] [CrossRef]
- Xian, L.; Fan, H.; Xian, G.; Li, L.; Luo, Y.; Zhao, H. Comparison study of the microstructure, mechanical and tribological properties of TiAlN, AlCrBN and TiAlN/AlCrBN coatings by cathodic arc evaporation. Int. J. Refract. Met. Hard Mater. 2025, 128, 107017. [Google Scholar] [CrossRef]
- Gilewicz, A.; Kuznetsova, T.; Aizikovich, S.; Lapitskaya, V.; Khabarava, A.; Nikolaev, A.; Warcholinski, B. Comparative investigations of AlCrN coatings formed by cathodic arc evaporation under different nitrogen pressure or arc current. Materials 2021, 14, 304. [Google Scholar] [CrossRef]
- Lothrop, A.; Yang, Q.; Huang, X.; Wu, X. Characterization of (AlCrTiVZr)N high-entropy coating produced by cathodic arc evaporation. J. Mater. Eng. Perform. 2024, 33, 7240–7252. [Google Scholar] [CrossRef]
- Warcholinski, B.; Gilewicz, A.; Myslinski, P.; Dobruchowska, E.; Murzynski, D.; Kochmanski, P.; Rokosz, K.; Raaen, S. Effect of nitrogen pressure and substrate bias voltage on the properties of Al–Cr–B–N coatings deposited using cathodic arc evaporation. Tribol. Int. 2021, 154, 106744. [Google Scholar] [CrossRef]
- Ali, M.; Hamzah, E.; Hamid, M.A.; Hashim, A.H. Whether macro-droplets generate or develop in depositing hard coatings by cathodic arc evaporation technique. Int. J. Refract. Met. Hard Mater. 2023, 115, 106296. [Google Scholar] [CrossRef]
- He, Q.; Saciotto, V.; DePaiva, J.M.; Guimaraes, M.C.; Kohlscheen, J.; Martins, M.M.; Veldhuis, S.C. Enhancing tool performance in high-speed end milling of Ti-6Al-4V alloy: The role of AlCrN PVD coatings and resistance to chipping wear. J. Manuf. Mater. Process. 2024, 8, 68. [Google Scholar] [CrossRef]
- Rao, A.U.; Tiwari, S.K.; Goyat, M.S.; Chawla, A.K. Recent developments in magnetron-sputtered silicon nitride coatings of improved mechanical and tribological properties for extreme situations. J. Mater. Sci. 2023, 58, 9755–9804. [Google Scholar] [CrossRef]
- Bai, H.; Li, J.; Gao, J.; Ni, J.; Bai, Y.; Jian, J.; Zhao, L.; Bai, B.; Cai, Z.; He, J.; et al. Comparison of CrN Coatings Prepared Using High-Power Impulse Magnetron Sputtering and Direct Current Magnetron Sputtering. Materials 2023, 16, 6303. [Google Scholar] [CrossRef]
- Zin, V.; Montagner, F.; Deambrosis, S.M.; Miorin, E.; Comisso, N.; Rancan, M.; Paradisi, E.; Mortalò, C. High power impulse magnetron sputtering plasma nitriding of biomedical grade CoCrMo alloy. Mater. Des. 2025, 252, 113802. [Google Scholar] [CrossRef]
- Lu, X.; Yang, L.; Lu, Y.; Yan, Z.; Hao, J.; Liu, W. Enhanced mechanical and tribological properties of high-entropy alloys reinforced molybdenum nitride coatings via high power impulse magnetron sputtering. J. Alloys Compd. 2025, 1038, 182789. [Google Scholar] [CrossRef]
- Kapran, A.; Ballage, C.; Hubička, Z.; Minea, T. Effect of magnetron configuration on the spatial distribution of sputtered species in high-power impulse magnetron sputtering (HiPIMS) plasmas. Vacuum 2025, 238, 114324. [Google Scholar] [CrossRef]
- Krýsová, H.; Cichoň, S.; Kapran, A.; Volfová, L.; Chvostová, D.; Imrich, T.; Neumann-Spallart, M.; Krýsa, J.; Hubička, Z. Deposition of Fe2O3:Sn semiconducting thin films by reactive pulsed HiPIMS + ECWR co-sputtering from Fe and Sn targets. J. Photochem. Photobiol. A Chem. 2024, 454, 115676. [Google Scholar] [CrossRef]
- Castro, J.D.; Ans, M.; Cavaleiro, D.; Carvalho, S. Tribological and mechanical properties of ZrxNy films obtained by HiPIMS in DOMS mode. Tribol. Int. 2023, 189, 108960. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Sytchenko, A.D.; Gorshkov, V.A.; Loginov, P.A.; Sheveyko, A.N.; Nozhkina, A.V.; Levashov, E.A. Complex study of protective Cr3C2–NiAl coatings deposited by vacuum electro-spark alloying, pulsed cathodic arc evaporation, magnetron sputtering, and hybrid technology. Ceram. Int. 2022, 48, 10921–10931. [Google Scholar] [CrossRef]
- Fredebeul-Beverungen, N.; Steinhorst, M.; Roch, T. Comparison of magnetron-sputtered and cathodic arc-deposited Ti and Cr thin films on stainless steel for bipolar plates. Materials 2024, 17, 2864. [Google Scholar] [CrossRef]
- Lun, W.; Chen, G.; Wu, Z.; Li, H.; Lin, Y.; Lin, L.; Zheng, A.; Liu, C.; Zeng, Z.; Zhu, D. Conductivity and corrosion resistance of TiSiC/MeN multilayer films. Ceram. Int. 2024, 50, 48064–48073. [Google Scholar] [CrossRef]
- Window, B.; Savvides, N. Unbalanced dc magnetrons as sources of high ion fluxes. J. Vac. Sci. Technol. A 1986, 4, 453–456. [Google Scholar] [CrossRef]
- Savvides, N.; Window, B. Unbalanced magnetron ion-assisted deposition and property modification of thin films. J. Vac. Sci. Technol. A 1986, 4, 504–508. [Google Scholar] [CrossRef]
- Window, B.; Savvides, N. Charged particle fluxes from planar magnetron sputtering sources. J. Vac. Sci. Technol. A 1986, 4, 196–202. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Cooke, K.E.; Teer, D.G. A study of TiMoN nano-multilayer coatings deposited by CFUBMSIP using DC and HIPIMS power. Appl. Surf. Sci. 2012, 258, 2062–2067. [Google Scholar] [CrossRef]
- Münz, W.D.; Hurkmans, T.; Keiren, G.; Trinh, T. Comparison of TiAlN coatings grown by unbalanced magnetron and arc bond sputtering techniques. J. Vac. Sci. Technol. A 1993, 11, 2583–2589. [Google Scholar] [CrossRef]
- Sproul, W.D. Ion-assisted deposition in unbalanced-magnetron sputtering systems. Mater. Sci. Eng. A 1993, 163, 187–192. [Google Scholar] [CrossRef]
- Luo, Q.; Rainforth, W.M.; Donohue, L.A.; Wadsworth, I.; Münz, W.D. Tribological investigation of TiAlCrN and TiAlN/CrN coatings grown by combined steered-arc/unbalanced magnetron deposition. Vacuum 1999, 53, 123–126. [Google Scholar] [CrossRef]
- Paritong, H.; Wadsworth, I.; Donohue, L.A.; Münz, W.D. Corrosion resistant Nb coatings grown by combined steered arc/unbalanced magnetron deposition. Trans. IMF 1998, 76, 144–148. [Google Scholar] [CrossRef]
- Donohue, L.A.; Cawley, J.; Brooks, J.S.; Münz, W.D. Deposition and characterization of TiAlZrN films produced by a combined steered arc and unbalanced magnetron sputtering technique. Surf. Coat. Technol. 1995, 74–75, 123–134. [Google Scholar] [CrossRef]
- Lembke, M.I.; Titchmarsh, J.M.; Lewis, D.B.; Münz, W.D. Investigation of the oxidation behaviour of A TiAlCrYN pvd hard coating. MRS Online Proc. Libr. 2011, 648, 657. [Google Scholar] [CrossRef]
- Luo, Q.; Zhou, Z.; Rainforth, W.M.; Hovsepian, P.E. TEM-EELS study of low-friction superlattice TiAlN/VN coating: The wear mechanisms. Tribol. Lett. 2006, 24, 171–178. [Google Scholar] [CrossRef]
- Luo, Q. Temperature dependent friction and wear of magnetron sputtered coating TiAlN/VN. Wear 2011, 271, 2058–2066. [Google Scholar] [CrossRef]
- Lewis, D.B.; Hovsepian, P.E.; Schönjahn, C.; Ehiasarian, A.; Smith, I.J. Industrial scale manufactured superlattice hard PVD coatings. Surf. Eng. 2001, 17, 15–27. [Google Scholar] [CrossRef]
- Münz, W.D. Manufacturing of nanoscale multilayered hard coatings deposited by cathodic arc/unbalanced magnetron sputtering. MRS Bull. 2003, 28, 173–179. [Google Scholar] [CrossRef]
- Kim, K.H.; Choi, S.-r.; Yoon, S.-y. Superhard Ti–Si–N coatings by a hybrid system of arc ion plating and sputtering techniques. Surf. Coat. Technol. 2002, 161, 243–248. [Google Scholar] [CrossRef]
- Park, I.-W.; Choi, S.R.; Suh, J.H.; Park, C.-G.; Kim, K.H. Deposition and mechanical evaluation of superhard Ti–Al–Si–N nanocomposite films by a hybrid coating system. Thin Solid Film. 2004, 447–448, 443–448. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G. Hierarchical adaptive nano-structured PVD coatings for extreme tribological applications: The quest for non-equilibrium states and emergent behavior. Sci. Technol. Adv. Mater. 2012, 13, 043001. [Google Scholar] [CrossRef]
- Ning, L.; Veldhuis, S.C.; Yamamoto, K. Investigation of wear behavior and chip formation for cutting tools with nano-multilayered TiAlCrN/NbN PVD coating. Int. J. Mach. Tools Manuf. 2008, 48, 656–665. [Google Scholar] [CrossRef]
- Takahara, K.; Akari, K.; Kawaguchi, H.; Tamagaki, H. Current and future PVD systems and coating technologies. Kobelco Technol. Rev. 2005, 55, 81–85. Available online: https://api.semanticscholar.org/CorpusID:138619728 (accessed on 14 August 2025).
- Vlček, J.; Potocký, Š.; Čížek, J.; Houška, J.; Kormunda, M.; Zeman, P.; Peřina, V.; Zemek, J.; Setsuhara, Y.; Konuma, S. Reactive magnetron sputtering of hard Si–B–C–N films with a high-temperature oxidation resistance. J. Vac. Sci. Technol. A 2005, 23, 1513–1522. [Google Scholar] [CrossRef]
- Vlček, J.; Hřeben, S.; Kalaš, J.; Čapek, J.; Zeman, P.; Čerstvý, R.; Peřina, V.; Setsuhara, Y. Magnetron sputtered Si–B–C–N films with high oxidation resistance and thermal stability in air at temperatures above 1500 °C. J. Vac. Sci. Technol. A 2008, 26, 1101–1108. [Google Scholar] [CrossRef]
- Vetter, J. Innovative PVD processes for advanced coatings based on HiPIMS and arc: Scalable pulsed power plasma and high ionization triple. In Proceedings of the Functional Coatings and Surface Engineering, Montreal, QC, Canada, 2–5 June 2014; pp. 1–20. [Google Scholar]
- Vepřek, S.; Reiprich, S. A concept for the design of novel superhard coatings. Thin Solid Film. 1995, 268, 64–71. [Google Scholar] [CrossRef]
- Procházka, J.; Karvánková, P.; Vepřek-Heijman, M.G.J.; Vepřek, S. Conditions required for achieving superhardness of ≥45 GPa in nc-TiN/a-Si3N4 nanocomposites. Mater. Sci. Eng. A 2004, 384, 102–116. [Google Scholar] [CrossRef]
- Zhang, R.F.; Veprek, S. Phase stabilities of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1−xSixNy solid solutions studied by ab initio calculation and thermodynamic modeling. Thin Solid Film. 2008, 516, 2264–2275. [Google Scholar] [CrossRef]
- Yang, J.; Cao, H.; Li, Y.; Liu, F.; Tang, Y.; Zhao, N.; Qi, F.; Ouyang, X. Microstructure, mechanical properties, and corrosion resistance of TiSiN coating prepared by FCVA technique with different N2 flow rates. Vacuum 2023, 209, 111811. [Google Scholar] [CrossRef]
- Schalk, N.; Moritz, Y.; Nayak, G.K.; Holec, D.; Hugenschmidt, C.; Burwitz, V.V.; Mathes, L.; Schiester, M.; Saringer, C.; Czettl, C.; et al. Nanocomposite versus solid solution formation in the TiSiN system. Acta Mater. 2024, 275, 120063. [Google Scholar] [CrossRef]
- Maksakova, O.; Smyrnova, K.; Ludrovcová, B.; Sahul, M.; Haršáni, M.; Truchlý, M.; Sahul, M.; Vopát, T.; Pašák, M.; Kozak, A.; et al. Tribological and micromechanical performance of hard yet tough TiSiN/WN coatings: An experimental analysis of multilayer effects. Int. J. Refract. Met. Hard Mater. 2025, 131, 107212. [Google Scholar] [CrossRef]
- Lu, C.-H.; Hao, D.; Yeh, N.-C. A perspective of recent advances in PECVD-grown graphene thin films for scientific research and technological applications. Mater. Chem. Phys. 2024, 319, 129318. [Google Scholar] [CrossRef]
- Almaev, A.V.; Yakovlev, N.N.; Chernikov, E.V.; Erzakova, N.N.; Mochalov, L.A.; Kudryashov, M.A.; Kudryashova, Y.; Nesov, S.N. Gas sensitivity of PECVD β-Ga2O3 films with large active surface. Mater. Chem. Phys. 2024, 320, 129430. [Google Scholar] [CrossRef]
- Pham, D.P.; Kim, H.; Choi, J.; Oh, D.; Chung, Y.-B.; Jeon, W.-S.; Jo, J.; Dao, V.-A.; Dhungel, S.K.; Yi, J. In-situ PECVD-based stoichiometric SiO2 layer for semiconductor devices. Opt. Mater. 2023, 137, 113536. [Google Scholar] [CrossRef]
- Ma, Y.; Li, L.; Qian, J.; Qu, W.; Luo, R.; Wu, F.; Chen, R. Materials and structure engineering by magnetron sputtering for advanced lithium batteries. Energy Storage Mater. 2021, 39, 203–224. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, J.; Lu, Z.; Wang, R.; Xu, Z. A review on the application of magnetron sputtering technologies for solid oxide fuel cell in reduction of the operating temperature. Int. J. Hydrogen Energy 2024, 50, 1179–1193. [Google Scholar] [CrossRef]
- Atta, S.; NarendraKumar, U.; Kumar, K.V.A.N.P.S.; Yadav, D.P.; Dash, S. Recent developments and applications of TiN-based films synthesized by magnetron sputtering. J. Mater. Eng. Perform. 2023, 32, 9979–10015. [Google Scholar] [CrossRef]
- Lee, D.K.; Kang, D.S.; Suh, J.H.; Park, C.-G.; Kim, K.H. Synthesis and mechanical evaluation of quaternary Ti–Cr–Si–N coatings deposited by a hybrid method of arc ion plating and sputtering techniques. Surf. Coat. Technol. 2005, 200, 1489–1494. [Google Scholar] [CrossRef]
- Kang, I.S.; Kim, J.S.; Kang, M.C.; Lee, K.Y. Tool condition and machined surface monitoring for micro-lens array fabrication in mechanical machining. J. Mater. Process. Technol. 2008, 201, 585–589. [Google Scholar] [CrossRef]
- Kang, I.S.; Kim, J.S.; Kim, J.H.; Kang, M.C.; Seo, Y.W. A mechanistic model of cutting force in the micro end milling process. J. Mater. Process. Technol. 2007, 187–188, 250–255. [Google Scholar] [CrossRef]
- Safin Kaosar Saad, K.; Saba, T.; Bin Rashid, A. Application of PVD coatings in medical implantology for enhanced performance, biocompatibility, and quality of life. Heliyon 2024, 10, 35541. [Google Scholar] [CrossRef]
- Jeon, J.-H.; Choi, S.R.; Chung, W.S.; Kim, K.H. Synthesis and characterization of quaternary Ti–Si–C–N coatings prepared by a hybrid deposition technique. Surf. Coat. Technol. 2004, 188–189, 415–419. [Google Scholar] [CrossRef]
- Genzel, C.; Reimers, W. Depth-resolved X-ray residual stress analysis in PVD (Ti, Cr) N hard coatings. Int. J. Mater. Res. 2003, 94, 655–661. [Google Scholar] [CrossRef]
- Aktarer, S.M.; Sert, Y.; Küçükömeroğlu, T. Investigation of structural, hardness, adhesion, and tribological properties of CrN and AlCrN coatings deposited on cylinder liner. Mater. Des. 2025, 253, 113972. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Cai, H.; Huang, Z.; Xue, Y.; Pei, L.; Kang, B. Effect of B element doping on high-temperature tribological properties of WS2-based composite coatings. Lubricants 2025, 13, 332. [Google Scholar] [CrossRef]
- An, J.; Zhang, X. Crbn-based molecular Glues: Breakthroughs and perspectives. Bioorganic Med. Chem. 2024, 104, 117683. [Google Scholar] [CrossRef]
- Petzold, G.; Gainza, P.; Annunziato, S.; Lamberto, I.; Trenh, P.; McAllister, L.A.; DeMarco, B.; Schwander, L.; Bunker, R.D.; Zlotosch, M.; et al. Mining the CRBN target space redefines rules for molecular glue–induced neosubstrate recognition. Science 2025, 389, 6736. [Google Scholar] [CrossRef]
- Kumar, S.; Charoo, M.S. Combined effect of laser surface texturing and CrCN coating on the friction between piston ring and cylinder liner interface. J. Mater. Eng. Perform. 2025, 1–13. [Google Scholar] [CrossRef]
- Kainz, C.; Tkadletz, M.; Stark, A.; Schell, N.; Czettl, C.; Pohler, M.; Schalk, N. Thermal stability of a cathodic arc evaporated Cr0.74Ta0.26N coating. Materialia 2022, 22, 101434. [Google Scholar] [CrossRef]
- Park, J.H.; Chung, W.S.; Cho, Y.-R.; Kim, K.H. Synthesis and mechanical properties of Cr–Si–N coatings deposited by a hybrid system of arc ion plating and sputtering techniques. Surf. Coat. Technol. 2004, 188–189, 425–430. [Google Scholar] [CrossRef]
- Lee, J.D.; Wang, Q.M.; Kim, S.-H.; Wang, T.-G.; Shin, D.-W.; Kim, K.H. Microstructure and mechanical properties of quaternary Cr–Si–O–N films by a hybrid coating system. Surf. Coat. Technol. 2012, 206, 3721–3727. [Google Scholar] [CrossRef]
- Choi, E.Y.; Kang, M.C.; Kwon, D.H.; Shin, D.W.; Kim, K.H. Comparative studies on microstructure and mechanical properties of CrN, Cr–C–N and Cr–Mo–N coatings. J. Mater. Process. Technol. 2007, 187–188, 566–570. [Google Scholar] [CrossRef]
- Jeon, J.-H.; Jang, C.S.; Yoon, S.-Y.; Shin, B.-C.; Kim, K.H. Effects of Si addition on the characteristic evolution and syntheses of nanocomposite Cr–Si–C–N coatings prepared by a hybrid coating system. Surf. Coat. Technol. 2005, 200, 1635–1639. [Google Scholar] [CrossRef]
- Cai, F.; Yang, Q.; Huang, X.; Wei, R. Microstructure and corrosion behavior of CrN and CrSiCN coatings. J. Mater. Eng. Perform. 2010, 19, 721–727. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, F.-q.; Leng, Y.-x.; Wei, R.-h.; Huang, N. Microstructure and tribological properties of Ti(Cr)SiCN coating deposited by plasma enhanced magnetron sputtering. Vacuum 2013, 89, 168–173. [Google Scholar] [CrossRef]
- Park, I.-W.; Kang, D.S.; Moore, J.J.; Kwon, S.C.; Rha, J.J.; Kim, K.H. Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N, and Cr–Al–Si–N coatings by a hybrid coating system. Surf. Coat. Technol. 2007, 201, 5223–5227. [Google Scholar] [CrossRef]
- Hong, S.G.; Shin, D.-W.; Kim, K.H. Syntheses and mechanical properties of quaternary Cr-Mo-Si-N coatings by a hybrid coating system. Mater. Sci. Eng. A 2008, 487, 586–590. [Google Scholar] [CrossRef]
- Heo, S.J.; Kim, K.H.; Kang, M.C.; Suh, J.H.; Park, C.-G. Syntheses and mechanical properties of Mo–Si–N coatings by a hybrid coating system. Surf. Coat. Technol. 2006, 201, 4180–4184. [Google Scholar] [CrossRef]
- Krella, A. Resistance of PVD coatings to erosive and wear processes: A review. Coatings 2020, 10, 921. [Google Scholar] [CrossRef]
- Maros, M.B.; Siddiqui, S.A. Tribological study of simply and duplex-coated CrN-X42Cr13 tribosystems under dry sliding wear and progressive loading scratching. Ceramics 2022, 5, 1084–1101. [Google Scholar] [CrossRef]
- Klocke, F.; Nobel, C.; Veselovac, D. Influence of tool coating, tool material, and cutting speed on the machinability of low-leaded brass alloys in turning. Mater. Manuf. Process. 2016, 31, 1895–1903. [Google Scholar] [CrossRef]
- Yang, T.; Yin, J.; Ying, P.; Lin, C.; Zhang, P.; Wu, J.; Kovalev, A.; Huang, M.; Wang, T.; Grigoriev, A.Y.; et al. Influence of molybdenum addition on the structure, mechanical properties, and cutting performance of AlTiN coatings. Lubricants 2024, 12, 429. [Google Scholar] [CrossRef]
- Singh, A.; Ghosh, S.; Aravindan, S. Investigation of oxidation behaviour of AlCrN and AlTiN coatings deposited by arc enhanced HIPIMS technique. Appl. Surf. Sci. 2020, 508, 144812. [Google Scholar] [CrossRef]
- Chang, C.-L.; Luo, G.-J.; Yang, F.-C.; Tang, J.-F. Effects of duty cycle on microstructure of TiN coatings prepared using CAE/HiPIMS. Vacuum 2021, 192, 110449. [Google Scholar] [CrossRef]
- Fan, Q.; Zhang, S.; Lin, J.; Cao, F.; Liu, Y.; Xue, R.; Wang, T. Microstructure, mechanical and tribological properties of gradient CrAlSiN coatings deposited by magnetron sputtering and arc ion plating technology. Thin Solid Film. 2022, 760, 139490. [Google Scholar] [CrossRef]
- Kameneva, A.; Kichigin, V.; Bublik, N. Structure and electrochemical behavior of AlN, AlTiN, and AlTiSiN physical vapor deposition coatings in 3% NaCl solution. J. Mater. Eng. Perform. 2022, 31, 10402–10411. [Google Scholar] [CrossRef]
- Chung, H.; Kim, D.W.; Cho, W.J.; Han, H.N.; Ikeda, Y.; Ishibashi, S.; Körmann, F.; Sohn, S.S. Effect of solid-solution strengthening on deformation mechanisms and strain hardening in medium-entropy V1-xCrxCoNi alloys. J. Mater. Sci. Technol. 2022, 108, 270–280. [Google Scholar] [CrossRef]
- Huang, J.; Xue, J.; Li, M.; Cheng, Y.; Lai, Z.; Hu, J.; Zhou, F.; Qu, N.; Liu, Y.; Zhu, J. Exploration of solid solutions and the strengthening of aluminum substrates by alloying atoms: Machine learning accelerated density functional theory calculations. Materials 2023, 16, 6757. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, P.; Yu, J.; Ying, P.; Yang, T.; Wu, J.; Wang, T.; Myshkin, N.; Levchenko, V. Tribological properties of MoN/TiN multilayer coatings prepared via high-power impulse magnetron sputtering. Lubricants 2025, 13, 319. [Google Scholar] [CrossRef]
- Yu, Z.-H.; Cao, S.; Yang, R.; Hu, Q.-M. Enhanced solid solution hardening by off-center substitutional solute atoms in α-Ti. Mater. Des. 2025, 251, 113709. [Google Scholar] [CrossRef]
- Zhou, X.; Fang, H.; Li, R.; Yuan, T.; Yan, Q. Joint effect of Mo and Cr on microstructure and properties of Ti–Al–Mo–Cr–B alloys. Mater. Chem. Phys. 2024, 313, 128715. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, F.; Wang, Q.; Fu, Y.; Zhou, Z. Tribocorrosion characteristics of CrMoSiCN/Ag coatings on Ti6Al4V alloys in seawater. Ceram. Int. 2021, 47, 31780–31797. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, F.; Zhang, M.; Wang, Q.; Zhou, Z. Structure and tribocorrosion behavior of CrMoSiCN nanocomposite coating with low C content in artificial seawater. Friction 2021, 9, 1599–1615. [Google Scholar] [CrossRef]
- Ji Hwan, Y.; Kwon, S.H.; Choi, J.; Wang, Q.M.; Kim, K. Synthesis and mechanical properties of Cr-Mo-Si-C-N coatings by a hybrid coating system. J. Ceram. Process. Res. 2009, 10, S112–S115. [Google Scholar]
- Wolfe, D.E.; Ryan, C.J.; DeSalle, C.M.; Stepanoff, S.P.; Aronson, B.I.; Boring, Z.M.; Reiss, J.A.; Albert, P.E.; Nicastro, J.K.; Fjeldsted, A.P. A comprehensive review of modern engineered ceramics coatings for optimised resistance to wear and corrosion. Adv. Appl. Ceram. 2023, 122, 81–100. [Google Scholar] [CrossRef]
- Hassan, A.; Wołoszyk, K.; Krata, P. FRP-based reinforcement coatings of steel with application prospects in ships and offshore structures: A review. Ships Offshore Struct. 2024, 20, 740–754. [Google Scholar] [CrossRef]
- Horikawa, N.; Guennec, B.; Kashi, T.; Miyajima, T.; Kinoshita, T.; Okamura, S.; Sakaida, A.; Kawano, Y.; Iwai, Y. Industrial arc ion plating and unbalanced magnetron sputtering coating deposition: Static and fatigue performances of TiAlN-Coated SKH51 tool steel. J. Mater. Eng. Perform. 2022, 31, 8808–8822. [Google Scholar] [CrossRef]
- Li, M.; Yu, Y.; Zou, C.; Tian, C.; Xiang, Y. Tribological and Corrosion Performance of CrAlN/CrN Coatings in Artificial Seawater under Varied Nitrogen Pressures. Coatings 2023, 13, 2090. [Google Scholar] [CrossRef]
- Roy, A.; Wang, S.; Komvopoulos, K. A review of plasma-assisted deposition methods for amorphous carbon thin and ultrathin films with a focus on the cathodic vacuum arc technique. J. Mater. Res. 2023, 38, 586–616. [Google Scholar] [CrossRef]
- Kosari Mehr, A.; Kosari Mehr, A. Magnetron sputtering issues concerning growth of magnetic films: A technical approach to background, solutions, and outlook. Appl. Phys. A 2023, 129, 662. [Google Scholar] [CrossRef]
- Borowski, P.; Myśliwiec, J. Recent advances in magnetron sputtering: From fundamentals to industrial applications. Coatings 2025, 15, 922. [Google Scholar] [CrossRef]
- Tien, C.; Chiang, C.; Lin, S. Optimization of electron-beam evaporation process parameters for ZrN thin films by plasma treatment and taguchi method. Plasma 2023, 6, 478–491. [Google Scholar] [CrossRef]
- Wang, J.; Cai, F.; Fang, L.; Zheng, J.; Zhang, S. Investigations on microstructure and mechanical properties of AlCrB(O)N coatings deposited under various nitrogen partial pressures. Vacuum 2022, 196, 110726. [Google Scholar] [CrossRef]
- Xue, L.; Hu, X.; Xi, Y.; Qiu, L.; Pan, X.; Zhang, Y. Effect of N2 partial pressure on ZrN coating orientation and tribocorrosion behavior and mechanism. Ceram. Int. 2024, 50, 24847–24863. [Google Scholar] [CrossRef]
- Aissani, L.; Fellah, M.; Chadli, A.H.; Samad, M.A.; Cheriet, A.; Salhi, F.; Nouveau, C.; Weiß, S.; Obrosov, A.; Alhussein, A. Investigating the effect of nitrogen on the structural and tribo-mechanical behavior of vanadium nitride thin films deposited using R.F. magnetron sputtering. J. Mater. Sci. 2021, 56, 17319–17336. [Google Scholar] [CrossRef]
- Ju, Y.; Ai, L.; Qi, X.; Li, J.; Song, W. Review on hydrophobic thin films prepared using magnetron sputtering deposition. Materials 2023, 16, 3764. [Google Scholar] [CrossRef]
- Muhammed, M.; Javidani, M.; Ebrahimi Sadrabadi, T.; Heidari, M.; Levasseur, T.; Jahazi, M. A comprehensive review of cathodic arc evaporation physical vapour deposition (CAE-PVD) coatings for enhanced tribological performance. Coatings 2024, 14, 246. [Google Scholar] [CrossRef]
- Ji, L.; Liu, H.; Huang, C.; Liu, X.; Chu, D.; Liu, Y.; Yao, P. Effect of arc deposition process on mechanical properties and microstructure of TiAlSiN gradient coatings. Ceram. Int. 2024, 50, 40014–40029. [Google Scholar] [CrossRef]
- Poplavsky, A.; Kudriavtsev, Y.; Kolpakov, A.; Pilyuk, E.; Manokhin, S.; Goncharov, I. The effect of vacuum annealing on the structure and properties of the electrically conductive a-CN coating. Vacuum 2021, 184, 109919. [Google Scholar] [CrossRef]
- Devarajan, D.K.; Rangasamy, B.; Amirtharaj Mosas, K.K. State-of-the-Art developments in advanced hard ceramic coatings using PVD techniques for high-temperature tribological applications. Ceramics 2023, 6, 301–329. [Google Scholar] [CrossRef]
- Dorri, S.; Nyqvist, O.; Palisaitis, J.; Vorobiev, A.; Devishvili, A.; Sandström, P.; Persson, P.O.Å.; Ghafoor, N.; Eriksson, F.; Birch, J. Artificial superlattices with abrupt interfaces by monolayer-controlled growth kinetics during magnetron sputter epitaxy, case of hexagonal CrB2/TiB2 heterostructures. Mater. Des. 2025, 251, 113661. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.D.; Pelenovich, V.; Wan, Q.; Guo, J.L.; Chen, Y.M.; Zhang, J.; Xue, L.J.; Li, Z.G.; Yang, B. Influences of modulation period on structure and properties of AlTiSiN/AlCrSiN nanocomposite multilayer coatings. Vacuum 2021, 193, 110516. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Yan, S.J.; Han, B.; Yang, B.; Lin, B.Z.; Zhang, Z.D.; Ai, Z.W.; Pelenovich, V.O.; Fu, D.J. Influence of modulation period and modulation ratio on structure and mechanical properties of TiBN/CrN coatings deposited by multi-arc ion plating. Appl. Surf. Sci. 2015, 351, 1116–1121. [Google Scholar] [CrossRef]
- Mahajan, U.; Dhonde, M.; Sahu, K.; Ghosh, P.; Shirage, P. Titanium nitride (TiN) as a promising alternative to plasmonic metals: A comprehensive review of synthesis and applications. Mater. Adv. 2024, 5, 846–895. [Google Scholar] [CrossRef]
- Peng, Y.; Peng, J.; Wang, Z.; Xiao, Y.; Qiu, X. Diamond-like carbon coatings in the biomedical field: Properties, applications and future development. Coatings 2022, 12, 1088. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Xu, Y.X.; Wang, Q.; Chen, L.; Kim, K.H. Improving the mechanical and anti-wear properties of AlTiN coatings by the hybrid arc and sputtering deposition. Surf. Coat. Technol. 2019, 378, 125022. [Google Scholar] [CrossRef]
- Fan, Q.; Guo, M.; Wu, Z.; Hao, X.; Cao, F.; Liu, Y.; Wang, T. Effects of bias voltage on the microstructure and properties of AlCrN/AlTiN nanoscale multilayer coatings. Vacuum 2023, 215, 112327. [Google Scholar] [CrossRef]
- Varghese, V.; Akhil, K.; Ramesh, M.R.; Chakradhar, D. Investigation on the performance of AlCrN and AlTiN coated cemented carbide inserts during end milling of maraging steel under dry, wet and cryogenic environments. J. Manuf. Process. 2019, 43, 136–144. [Google Scholar] [CrossRef]
- Orjuela, F.A.; Vallejo, F.F.; Hahn, H.; Olaya, J.J.; Alfonso, J.E.; Velasco, L. Nitrogen flux effect on the mechanical properties of AlCrTiN Nanostructured coatings obtained by R.F. magnetron sputtering. Ceram. Int. 2023, 49, 17867–17875. [Google Scholar] [CrossRef]
- Biksa, A.; Yamamoto, K.; Dosbaeva, G.; Veldhuis, S.C.; Fox-Rabinovich, G.S.; Elfizy, A.; Wagg, T.; Shuster, L.S. Wear behavior of adaptive nano-multilayered AlTiN/MexN PVD coatings during machining of aerospace alloys. Tribol. Int. 2010, 43, 1491–1499. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, S.; Wu, Z.; Lin, Y.; Zheng, A.; Liu, C.; Tu, R.; Wang, Q. Fabrication of self-lubricative AlTiN/WNx films for Ti-6Al-4V machining by HiPIMS. Vacuum 2025, 238, 114337. [Google Scholar] [CrossRef]
- Geng, D.; Li, H.; Chen, Z.; Xu, Y.X.; Wang, Q. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique. J. Mater. Sci. Technol. 2022, 100, 150–160. [Google Scholar] [CrossRef]
- Mei, H.; Wang, R.; Geng, D.; Yan, K.; Shen, Y.; Zhu, Q.; Ding, J.C.; Zou, C.; Gong, W.; Wang, Q. Microstructure and mechanical properties of AlTiN/MoVCuN nano-multilayered coatings deposited by BPMS. J. Mater. Res. Technol. 2025, 35, 2547–2557. [Google Scholar] [CrossRef]
- Ma, J.; Xing, L.; Tan, J.; Wang, H.; He, X.; Yin, X. Temperature-dependent degradation of Al2O3—CrAl-O—Cr-O—Al-O multilayer coatings on ferritic-martensitic steels in oxygen-saturated lead–bismuth eutectic. Mater. Des. 2025, 254, 114101. [Google Scholar] [CrossRef]
- Geng, D.; Xu, Y.X.; Wang, Q. Hybrid deposition of Cr–O/Al–O hard coatings combining cathodic arc evaporation and high power impulse magnetron sputtering. Surf. Coat. Technol. 2023, 456, 129235. [Google Scholar] [CrossRef]
Coating | H (GPa) | Friction Coefficient | Doping Si Content | H (GPa) | Friction Coefficient | Doping Si Content | H (GPa) | Friction Coefficient | Application |
---|---|---|---|---|---|---|---|---|---|
TiN | 24.91 | 0.92 | 7.7 at.% | 45.03 | 0.84 | 9.5 at.% | 33.98 | 0.72 | These coatings are widely applied to carbide tools and heavy-duty gears, providing anti-friction, corrosion protection, and address diverse industrial needs in cutting and extreme conditions. |
TiAlN | 34.99 | 0.92 | 9.0 at.% | 54.98 | 0.72 | 31.0 at.% | 32.89 | 0.61 | |
TiCrN | 27.83 | 0.72 | 8.0 at.% | 42.01 | 0.51 | 20.0 at.% | 25.99 | 0.35 | |
TiCN | 29.84 | 0.75 | 8.9 at.% | 55.11 | 0.61 | 15.5 at.% | 26.92 | 0.51 | |
CrN | 21.85 | 0.51 | 9.3 at.% | 33.94 | 0.30 | 12.5 at.% | 14.90 | 0.25 | |
CrCN | 21.89 | 0.61 | 9.2 at.% | 42.94 | 0.41 | 15.6 at.% | 27.01 | 0.20 | |
MoN | 21.89 | 0.72 | 10.0 at.% | 36.96 | 0.51 | 15.0 at.% | 27.81 | 0.41 | |
CrMoN | 32.88 | 0.49 | 12.1 at.% | 50.31 | 0.41 | 16.9 at.% | 44.02 | 0.30 | |
CrMoCN | 40.97 | 0.47 | 9.3 at.% | 53.48 | 0.41 | 15.8 at.% | 44.06 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Wang, Q.; Xu, Y.; Li, L.; Kim, K.H. Fabrication and Properties of Hard Coatings by a Hybrid PVD Method. Lubricants 2025, 13, 390. https://doi.org/10.3390/lubricants13090390
Zhang R, Wang Q, Xu Y, Li L, Kim KH. Fabrication and Properties of Hard Coatings by a Hybrid PVD Method. Lubricants. 2025; 13(9):390. https://doi.org/10.3390/lubricants13090390
Chicago/Turabian StyleZhang, Rui, Qimin Wang, Yuxiang Xu, Lisheng Li, and Kwang Ho Kim. 2025. "Fabrication and Properties of Hard Coatings by a Hybrid PVD Method" Lubricants 13, no. 9: 390. https://doi.org/10.3390/lubricants13090390
APA StyleZhang, R., Wang, Q., Xu, Y., Li, L., & Kim, K. H. (2025). Fabrication and Properties of Hard Coatings by a Hybrid PVD Method. Lubricants, 13(9), 390. https://doi.org/10.3390/lubricants13090390