Effect of Low-Pressure Gas Oxynitriding on the Microstructural Evolution and Wear Resistance of Ti-6Al-4V Alloy
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructural Analysis
3.2. Effect of Oxidation Temperature on TiN Grain Size
3.3. Surface Roughness and Morphological Characteristics After Oxidation
3.4. Cross-Sectional Morphology of the Oxynitride Layer
3.5. Cross-Sectional Microhardness Distribution of the Oxynitride Layer
3.6. Wear Performance Analysis
4. Conclusions
- Low-pressure gas nitriding at 1000 °C followed by oxidation at 450–600 °C produced duplex nitride–oxide layers with distinct structural evolution;
- Moderate oxidation at 500–550 °C formed dense TiO2-rich scales on stable TiN/Ti2N layers, leading to smooth surfaces, high hardness, and the lowest wear volume;
- At low load (2 N), nitriding alone provided the best wear resistance, showing that the hardened nitride layer effectively confined wear to the modified surface;
- At higher load (4 N), the improvement from oxidation was only marginal, as excessive oxide growth led to brittleness, microcracking, and debris formation, thereby limiting long-term protection;
- These results indicate that the proposed duplex treatment is most suitable for practical applications involving low-to-moderate contact loads, such as biomedical implants, aerospace fasteners, and precision mechanical parts, where enhanced hardness and controlled friction are critical.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LPON | Low-Pressure Gas Oxynitriding |
ON | Oxynitriding |
WEDM | Wire-cut Electrical Discharge Machine |
WC | Tungsten Carbide |
FWHM | Full width at half maximum |
SEM | Scanning Electron Microscope |
References
- Weng, Z.; Gu, K.; Cui, C.; Cai, H.; Liu, X.; Wang, J. Microstructure evolution and wear behavior of titanium alloy under cryogenic dry sliding wear condition. Mater. Charact. 2020, 165, 110385. [Google Scholar] [CrossRef]
- Qu, J.; Blau, P.J.; Watkins, T.R.; Cavin, O.B.; Kulkarni, N.S. Friction and wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces. Wear 2005, 258, 1348–1356. [Google Scholar] [CrossRef]
- Revankar, G.D.; Shetty, R.; Rao, S.S.; Gaitonde, V.N. Wear resistance enhancement of titanium alloy (Ti-6Al-4V) by ball burnishing process. J. Mater. Res. Technol. 2017, 6, 13–32. [Google Scholar] [CrossRef]
- Wang, J.; Jing, Z.; Yin, C.; Wang, Z.; Zeng, S. Coatless modification of 3D-printed Ti-6Al-4V implants through tailored Cu ion implantation combined with UV photofunctionalization to enhance cell attachment, osteogenesis and angiogenesis. Colloids Surf. B Biointerfaces 2024, 238, 113891. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; He, H.; Lou, J.; Li, Y.; Li, D.; Chen, Y. Fabrication, structure and mechanical and ultrasonic properties of medical Ti-6Al-4V alloys. Part I: Microstructure and mechanical properties of Ti-6Al-4V alloys suitable for ultrasonic scalpel. Materials 2020, 13, 478. [Google Scholar] [CrossRef]
- Das, S.; Anand, S.; Vishwakarma, P.A.; Singh, R.; Mukherjee, S.K.; Sinha, S.K.; Gupta, M. Formation of TiN protective layer at 500 °C for enhanced oxidation resistance of IMI 834 titanium alloy in aerospace engine applications. Ceram. Int. 2025; in press. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Cheng, Q.; Guo, Z.; Zhang, J. Hierarchical MAO–diamond coating for titanium alloys: Enhancing tribological performance through experimental and atomistic insights. Appl. Surf. Sci. 2025, 714, 164393. [Google Scholar] [CrossRef]
- Pan, T.; Li, X.; Zhang, Z.; Yang, Y.; Liu, C.; Qiao, G.; Huang, H.; Dong, H. A novel surface engineering technique for improving tribological performance of low-cost beta titanium alloy. Wear 2025, 572, 206076. [Google Scholar] [CrossRef]
- Yang, C.; Liu, J. Intermittent vacuum gas nitriding of TB8 titanium alloy. Vacuum 2019, 163, 52–58. [Google Scholar] [CrossRef]
- Zhecheva, A.; Sha, W.; Malinov, S.; Long, A. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf. Coat. Technol. 2005, 200, 2192–2207. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, S.; Wang, Z.; Zhou, H. Microstructure and tribological performance of a dimpled gradient nanoscale TiN layer. Mater. Lett. 2016, 169, 214–217. [Google Scholar] [CrossRef]
- Turu, I.C.; Cansever, N. Anodization of Ti-6Al-4V in water–ethylene glycol solution containing NH4F and its corrosion behavior in Ringer’s solution. Int. J. Electrochem. Sci. 2022, 17, 220624. [Google Scholar] [CrossRef]
- Graciani, J.; Márquez, A.M.; Plata, J.J.; Ortega, Y.; Hernández, N.C.; Meyer, B.; Sanz, J.F. Comparative study on the band gap of transition metal oxides: Trends and mechanisms. J. Chem. Phys. 2009, 131, 244713. [Google Scholar] [CrossRef]
- Odusanya, A.I.; Maphanga, R.R.; Shongwe, M.B. Structural, electronic, and optical properties of titanium oxynitrides: First-principles calculations. Phys. B Condens. Matter 2024, 671, 415079. [Google Scholar] [CrossRef]
- Mucha, J.; Zakrzewska, K.; Wierzbicka, M.; Socha, R.P.; Kusior, A.; Michalow-Mauke, K.; Graule, T. Optical and electronic properties of titanium oxynitride thin films: Influence of oxygen/nitrogen ratio. Thin Solid Films 2020, 693, 137688. [Google Scholar] [CrossRef]
- Enríquez-Pérez, E.A.; Olivares-Maldonado, Y.; López-Cartes, C.; Galindo, H.; Zambrano-Robledo, P.; Ramírez-Morales, E. Synthesis and characterization of titanium oxynitride thin films deposited by reactive magnetron sputtering. Ceram. Int. 2021, 47, 26546–26554. [Google Scholar] [CrossRef]
- Wittmer, M.; Baglin, J.E.E.; Spitz, J. Oxidation of titanium nitride films: Mechanism and kinetics. J. Appl. Phys. 1985, 58, 1029–1035. [Google Scholar] [CrossRef]
- Furlan, A.; Högberg, H.; Hultman, L.; Jansson, U. Ti–O–N thin films: Phase stability, microstructure, and mechanical properties. Surf. Coat. Technol. 2015, 266, 154–163. [Google Scholar] [CrossRef]
- Erdemir, A.; Donnet, C. Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D Appl. Phys. 2006, 39, R311–R327. [Google Scholar] [CrossRef]
- Graciani, J.; Hamad, S.; Sanz, J.F. Changing the physical and chemical properties of titanium oxynitrides TiN1−xOx by changing the composition. Phys. Rev. B 2009, 80, 184112. [Google Scholar] [CrossRef]
- Vlček, P.; Černý, F.; Drahokoupil, J.; Sepitka, J. The microstructure and surface hardness of Ti-6Al-4V alloy implanted with nitrogen ions at an elevated temperature. J. Alloys Compd. 2015, 620, 48–54. [Google Scholar] [CrossRef]
- Jokanović, V.; Bundaleski, N.; Petrović, B.; Ferarra, M.; Jokanović, B.; Živković, S.; Nasov, I. Detailed physico-chemical characterization of multilayered thin films based on titanium oxynitride and copper-doped titanium nitride obtained by different PVD techniques. Vacuum 2022, 195, 110708. [Google Scholar] [CrossRef]
- Torrent, F.; Lavisse, L.; Berger, P.; Pillon, G.; Lopes, C.; Vaz, F.; de Lucas, M.M. Influence of the composition of titanium oxynitride layers on the fretting behavior of functionalized titanium substrates: PVD films versus surface laser treatments. Surf. Coat. Technol. 2014, 255, 146–152. [Google Scholar] [CrossRef]
- Subramanian, B.; Muraleedharan, C.V.; Ananthakumar, R.; Jayachandran, M. A comparative study of titanium nitride (TiN), titanium oxynitride (TiON) and titanium aluminum nitride (TiAlN) as surface coatings for bioimplants. Surf. Coat. Technol. 2011, 205, 5014–5020. [Google Scholar] [CrossRef]
- Bhatia, H.; Nagay, B.E.; Nasution, H.; Barão, V.A.; Sukotjo, C.; Takoudis, C. Progress in titanium oxynitride (TiOxNy) synthesis for corrosion protection, biocompatibility, and visible light photocatalysis targeting implant applications. Surf. Coat. Technol. 2025, 513, 132490. [Google Scholar] [CrossRef]
- Salamat, A.; Hyett, G.; Cabrera, R.Q.; McMillan, P.F.; Parkin, I.P. High-pressure behavior and polymorphism of titanium oxynitride phase Ti2.85O4N. J. Phys. Chem. C 2010, 114, 8546–8551. [Google Scholar] [CrossRef]
- Hosseini, S.R. Evaluation of the effects of plasma nitriding temperature and time on the characterization of Ti-6Al-4V alloy. Vacuum 2013, 87, 30–39. [Google Scholar] [CrossRef]
- Gong, Y.; Lamichhane, P.; Walker, M.; Hessel, V.; Rebrov, E. Enhanced ammonia production through non-thermal plasma-assisted synthesis: Tailoring titanium oxynitride photocatalysts for optimal performance. Chem. Eng. J. 2025, 165118, in press. [Google Scholar] [CrossRef]
- Teodorescu, V.S.; Maraloiu, A.V.; Negrea, R.F.; Ghica, D.; Scarisoreanu, N.D.; Dinescu, M.; Gartner, M.; Blanchin, M.G. High atomic diffusivity during pulsed laser irradiation of TiON quasi-amorphous films. Appl. Surf. Sci. 2016, 374, 248–251. [Google Scholar] [CrossRef]
- Antończak, A.J.; Trzcinski, M.; Hiller, T.; Bukaluk, A.; Wronkowska, A.A. Optical properties of laser-induced oxynitride films on titanium. Appl. Surf. Sci. 2014, 304, 107–114. [Google Scholar] [CrossRef]
- Tișov, O.; Pohrelyuk, I.; Yurchuk, A.; Lavrys, S. Effect of combination of gas oxynitriding and selective laser treatment on structure, phase composition and wear resistance of high-strength titanium alloy. Appl. Surf. Sci. 2025, 708, 163568. [Google Scholar] [CrossRef]
- Yang, C.; Liu, W.; Yang, X.; Meng, Z. Preparation of TiN compound layer by intermittent vacuum diffusion nitriding on Ti-6Al-4V titanium alloy. Vacuum 2024, 229, 113531. [Google Scholar] [CrossRef]
- Liu, J.; Suslov, S.; Vellore, A.; Ren, Z.; Amanov, A.; Pyun, Y.S.; Ye, C. Surface nanocrystallization by ultrasonic nano-crystal surface modification and its effect on gas nitriding of Ti-6Al-4V alloy. Mater. Sci. Eng. A 2018, 736, 335–343. [Google Scholar] [CrossRef]
- Xu, X.; Li, Z.; Wang, B.; Lai, W.; Cao, S.; You, D.; Wang, X. Formation of a protective oxides-nitrides compound layer with enhanced wear properties, corrosion resistance, and cytocompatibility on novel Ti-Zr-Nb-Ta-Mo multi-principal element alloy. Tribol. Int. 2024, 199, 109947. [Google Scholar] [CrossRef]
- Yilbas, B.S.; Shuja, S.Z. Laser treatment and PVD TiN coating of Ti-6Al-4V alloy. Surf. Coat. Technol. 2000, 130, 152–157. [Google Scholar] [CrossRef]
- Lee, D.B.; Yaskiv, O.; Lee, K.S. Gas nitriding and subsequent oxidation of Ti-6Al-4V alloys. Nanoscale Res. Lett. 2012, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- ASTM G99-17; Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM International: West Conshohocken, PA, USA, 2017.
- Suvorova, E.I.; Uvarov, O.V.; Chizh, K.V.; Klimenko, A.A.; Buffat, P.A. Structure, oxygen content and electric properties of titanium nitride electrodes in TiNx/La:HfO2/TiNx stacks grown by PEALD on SiO2/Si. Nanomaterials 2022, 12, 3608. [Google Scholar] [CrossRef]
- Chen, H.Y.; Lu, F.H. Oxidation behavior of titanium nitride films. J. Vac. Sci. Technol. A 2005, 23, 1006–1009. [Google Scholar] [CrossRef]
- Zhang, Z.; Chai, J.; Jin, H.; Pan, J.; Wong, L.M.; Lim, S.H.; Wang, S.J. Oxidation of single crystalline Ti2AlN thin films between 300 and 900 °C: A perspective from surface analysis. J. Phys. Chem. C 2016, 120, 18520–18528. [Google Scholar] [CrossRef]
- Ortega-Portilla, C.; Giraldo, A.; Cardona, J.A.; Ruden, A.; Mondragón, G.C.; Trujillo, J.P.; Ortega, A.G.; González-Carmona, J.M.; Franco Urquiza, E.A. Effect of temperature on the structure and tribological properties of Ti, TiN and Ti/TiN coatings deposited by cathodic arc PVD. Coatings 2024, 14, 823. [Google Scholar] [CrossRef]
- Tang, Y.-Y.; Chang, Y.-L.; Luo, W.; Tang, D.-W. High-temperature oxidation behavior of TiN-, Cr-, and TiN–Cr PVD-coated Zircaloy-4 alloy at 1200 °C. Materials 2025, 18, 1692. [Google Scholar] [CrossRef]
- Ahmed, F.S.; El-Zomor, M.A.; Ghazala, M.S.A.; Elshaer, R.N. Effect of oxide layers formed by thermal oxidation on mechanical properties and NaCl-induced hot corrosion behavior of TC21 Ti-alloy. Sci. Rep. 2022, 12, 19265. [Google Scholar] [CrossRef] [PubMed]
- Khandaker, M.; Riahinezhad, S.; Li, Y.; Vaughan, M.B.; Sultana, F.; Morris, T.L.; Phinney, L.; Hossain, K. Plasma nitriding of titanium alloy: Effect of roughness, hardness, biocompatibility, and bonding with bone cement. Bio-Med. Mater. Eng. 2016, 27, 461–474. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, Y.; Xie, J.; Xu, Q.; Fei, H.; Lu, Y.; Gong, J. Effect of temperature, vacuum condition and surface roughness on oxygen boost diffusion of Ti-6Al-4V alloy. Coatings 2024, 14, 314. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, M.; Zhang, Z.; Yi, X.; Yan, J.; Zhou, Z.; He, Y.; Li, Y. Corrosion behavior of nitrided layer of Ti-6Al-4V titanium alloy by hollow cathodic plasma source nitriding. Materials 2023, 16, 2961. [Google Scholar] [CrossRef]
- Körkel, A.F.; Jellesen, M.S.; Foss, M.; Ceccato, M.; Somers, M.A.; Christiansen, T.L. Thermochemical oxidation of commercially pure titanium: Controlled formation of robust white titanium oxide layers for biomedical applications. Surf. Coat. Technol. 2023, 467, 129716. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, R.; Sun, J.; Liu, C. Oxidation mechanism of biomedical titanium alloy surface: Experiment and mechanism. Int. J. Corros. 2020, 2020, 1678615. [Google Scholar] [CrossRef]
- Pérez, P. Influence of nitriding on the oxidation behaviour of titanium alloys at 700 °C. Surf. Coat. Technol. 2005, 191, 293–302. [Google Scholar] [CrossRef]
- Lee, D.B.; Abro, W.A.; Lee, K.S.; Abro, M.A.; Pohrelyuk, I.; Yaskiv, O. Gas nitriding and oxidation of Ti-6Al-4V alloy. Defect Diffus. Forum 2018, 382, 155–159. [Google Scholar] [CrossRef]
- Casadebaigt, A.; Hugues, J.; Monceau, D. High-temperature oxidation and embrittlement at 500–600 °C of Ti-6Al-4V alloy fabricated by laser and electron beam melting. Corros. Sci. 2020, 175, 108875. [Google Scholar] [CrossRef]
- Estupinán-López, F.; Orquiz-Muela, C.; Gaona-Tiburcio, C.; Cabral-Miramontes, J.; Bautista-Margulis, R.G.; Nieves-Mendoza, D.; Lopes, A.J. Oxidation Kinetics of Ti-6Al-4V Alloys by Conventional and Electron Beam Additive Manufacturing. Materials 2023, 16, 1187. [Google Scholar] [CrossRef]
- Leyens, C.; Peters, M. (Eds.) Titanium and Titanium Alloys: Fundamentals and Applications; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar] [CrossRef]
- Whittle, D.P.; Stringer, J. Improvements in High-Temperature Oxidation Resistance by Additions of Reactive Elements or Oxide Dispersions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1980, 295, 309–329. [Google Scholar] [CrossRef]
- Kang, J.; Wang, M.; Yue, W.; Fu, Z.; Zhu, L.; She, D.; Wang, C. Tribological Behavior of Titanium Alloy Treated by Nitriding: Effects of Surface Textures on Wear Mechanisms. Coatings 2019, 9, 37. [Google Scholar] [CrossRef]
- Pohrelyuk, I.; Tkachuk, O.; Proskurnyak, R. Effect of oxidation of nitride coatings on corrosion properties of Ti-6Al-4V alloy in 0.9% NaCl at 40 °C. Cent. Eur. J. Chem. 2014, 12, 260–265. [Google Scholar] [CrossRef]
- Fu, L.; Makówka, M.; Januszewicz, B.; Kaczmarek, Ł.; Gu, Y. Improvement of Ti-6Al-4V Alloy in Terms of Mechanical and Tribological Properties by Oxidation and Nitriding. Appl. Surf. Sci. Adv. 2023, 14, 100396. [Google Scholar] [CrossRef]
- Ongtrakulkij, G.; Kajornchaiyakul, J.; Kondoh, K.; Khantachawana, A. Investigation of Microstructure, Residual Stress, and Hardness of Ti-6Al-4V after Plasma Nitriding with Different Times and Temperatures. Coatings 2022, 12, 1932. [Google Scholar] [CrossRef]
- Shen, H.; Wang, L. Enhancement of Wear and Corrosion Resistance of Ti6Al4V Alloy through Hollow Cathode Discharge-Assisted Plasma Nitriding. Materials 2024, 17, 4386. [Google Scholar] [CrossRef]
- García-Rueda, A.K.; Guzmán-Castillo, D.; García-González, L.; Zamora-Peredo, L.; Hernández-Torres, J. Surface Modification of a Ti-6Al-4V Alloy by Thermal Oxidation to Improve Its Tribological Properties. Mater. Lett. 2022, 317, 132082. [Google Scholar] [CrossRef]
- Dong, H.; Bell, T. Enhanced Wear Resistance of Titanium Surfaces by a New Thermal Oxidation Treatment. Wear 2000, 238, 131–137. [Google Scholar] [CrossRef]
- Güleryüz, H.; Çimenoğlu, H. Effect of Thermal Oxidation on Corrosion and Corrosion–Wear Behaviour of a Ti-6Al-4V Alloy. Biomaterials 2004, 25, 3325–3333. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Sun, S.; Pang, Z.; Wei, X. Study on High-Temperature, Ultra-Low Wear Behaviors of Ti6Al4V Alloy with Thermal Oxidation Treatment. Coatings 2024, 14, 416. [Google Scholar] [CrossRef]
- Lin, N.; Xie, R.; Zou, J.; Qin, J.; Wang, Y.; Yuan, S.; Li, D.; Zhao, L.; Zhang, L.; Wang, Z.; et al. Surface Damage Mitigation of Titanium and Its Alloys via Thermal Oxidation: A Brief Review. Rev. Adv. Mater. Sci. 2019, 58, 132–146. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, X.; Zou, Z. Study on Wear Resistance of Ti-6Al-4V Alloy Composite Coating Prepared by Laser Alloying. Appl. Sci. 2021, 11, 446. [Google Scholar] [CrossRef]
Element | Ti | Al | V | Cu | Fe | Cr |
---|---|---|---|---|---|---|
% | Bal. | 6.00 | 4.00 | 0.03 | 0.32 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.-H.; Li, C.-Y.; Chan, C.-C.; Chi, P.-C.; Shih, J.-H.; Liao, F.-Y.; Chang, S.-H. Effect of Low-Pressure Gas Oxynitriding on the Microstructural Evolution and Wear Resistance of Ti-6Al-4V Alloy. Lubricants 2025, 13, 449. https://doi.org/10.3390/lubricants13100449
Yang C-H, Li C-Y, Chan C-C, Chi P-C, Shih J-H, Liao F-Y, Chang S-H. Effect of Low-Pressure Gas Oxynitriding on the Microstructural Evolution and Wear Resistance of Ti-6Al-4V Alloy. Lubricants. 2025; 13(10):449. https://doi.org/10.3390/lubricants13100449
Chicago/Turabian StyleYang, Chih-Hao, Chang-Yu Li, Ching-Cheng Chan, Po-Cheng Chi, Jing-Han Shih, Fang-Yu Liao, and Shih-Hsien Chang. 2025. "Effect of Low-Pressure Gas Oxynitriding on the Microstructural Evolution and Wear Resistance of Ti-6Al-4V Alloy" Lubricants 13, no. 10: 449. https://doi.org/10.3390/lubricants13100449
APA StyleYang, C.-H., Li, C.-Y., Chan, C.-C., Chi, P.-C., Shih, J.-H., Liao, F.-Y., & Chang, S.-H. (2025). Effect of Low-Pressure Gas Oxynitriding on the Microstructural Evolution and Wear Resistance of Ti-6Al-4V Alloy. Lubricants, 13(10), 449. https://doi.org/10.3390/lubricants13100449