Hybrid h-BN/ZnO Nanolubricant Additives in 5W-30 Engine Oil for Enhanced Tribological Performance of Magnesium Alloys
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Friction
3.2. Wear
4. Conclusions
- The incorporation of solid nanoparticle additives into SAE 5W-30 motor oil consistently reduced the coefficient of friction (from 0.34 in the dry condition at 10 N to as low as 0.109 with the 75hBN/25ZnO hybrid at 60 N) and wear loss across all tested loads, demonstrating a strong correlation between friction reduction and enhanced wear resistance.
- The pure hBN formulation exhibited the highest wear resistance among all tested lubricants. In this condition, the worn surface displayed smooth morphology with shallow grooves and minimal debris accumulation, while a low average COF of about 0.114 was obtained, confirming the combined effects of lamellar sliding, debris scavenging, and tribofilm protection.
- The 75hBN/25ZnO hybrid formulation achieved the lowest COF of the study (0.116 at 10 N and 0.109 at 60 N) while maintaining wear resistance close to that of pure hBN, indicating a pronounced synergistic effect between the lamellar nanolubricant properties of hBN and the rolling and film-forming capabilities of ZnO.
- FE-SEM observations confirmed that nanoadditive conditions, particularly hBN-rich and optimized hybrid formulations, produced more uniform and continuous tribofilms, while EDX analyses revealed the presence of protective nanolubricant and oxide phases that contributed to improved load-bearing capacity and surface stability.
- A clear inverse relationship between friction and wear was observed, highlighting the critical role of friction control in extending component service life under high-load, repetitive sliding conditions.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Al | Aluminium |
COF | Coefficient of friction |
EDX | Energy-dispersive X-ray spectroscopy |
hBN | Hexagonal boron nitride |
HV | Vickers hardness |
Mg | Magnesium |
Mn | Manganese |
MWCNTs | Multi-walled carbon nanotubes |
SEM | Scanning electron microscopy |
SiO2 | Silicon dioxide |
SLIPS | Slippery liquid-infused porous surface |
SRO | Sulfur-modified rapeseed oil |
TiO2 | Titanium dioxide |
XRD | X-ray diffraction |
ZnO | Zinc oxide |
References
- Chen, D.; Wang, R.; Huang, Z.; Wu, Y.; Zhang, Y.; Wu, G.; Li, D.; Guo, C.; Jiang, G.; Yu, S. Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy. Appl. Surf. Sci. 2018, 434, 326–335. [Google Scholar] [CrossRef]
- Gurgenc, T.; Altay, O. Surface roughness prediction of wire electric discharge machining (WEDM)-machined AZ91D magnesium alloy using multilayer perceptron, ensemble neural network, and evolving product-unit neural network. Mater. Test. 2022, 64, 350–362. [Google Scholar] [CrossRef]
- Rakoch, A.; Monakhova, E.; Khabibullina, Z.; Serdechnova, M.; Blawert, C.; Zheludkevich, M.; Gladkova, A. Plasma electrolytic oxidation of AZ31 and AZ91 magnesium alloys: Comparison of coatings formation mechanism. J. Magnes. Alloys 2020, 8, 587–600. [Google Scholar] [CrossRef]
- Padhee, C.K.; Masanta, M.; Mondal, A. Feasibility of Al-TiC coating on AZ91 magnesium alloy by TIG alloying method for tribological application. Trans. Nonferrous Met. Soc. China 2020, 30, 1550–1559. [Google Scholar] [CrossRef]
- Gurgenc, T. Microstructure, mechanical properties and ELM based wear loss prediction of plasma sprayed ZrO2-MgO coatings on a magnesium alloy. Mater. Test. 2019, 61, 787–796. [Google Scholar] [CrossRef]
- Nam, D.; Lim, D.; Kim, S.-D.; Seo, D.; Shim, S.E.; Baeck, S.-H. The fabrication of a conversion film on AZ31 containing carbonate product and evaluation of its corrosion resistance. J. Alloys Compd. 2018, 737, 597–602. [Google Scholar] [CrossRef]
- Luo, X.-P.; Wang, X.; Li, Q.-S. Microstructure and mechanical properties of shear-extruded Mg-Sn-Y-Zr alloys. Emerg. Mater. Res. 2016, 5, 74–80. [Google Scholar]
- Srinivas, M.; Pandey, D.; Prasad, T.; Purushothaman, S.; Sankar, M. Comparative tribological studies of additive manufactured as-built and chemically polished AlSi10Mg alloy surfaces. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2025, 239, 789–806. [Google Scholar]
- Zhu, B.; Cui, Y.; Xu, K.; Liu, X.; Ye, F.; Liu, W.; Guo, P.; Wu, Y.; Li, X. Hard-soft-hard layered structure for enhanced mechanical properties in corrugated rolled AZ31 magnesium alloy sheets. J. Mater. Res. Technol. 2025, 35, 3205–3216. [Google Scholar] [CrossRef]
- Sun, X.; Xie, Y.; Meng, X.; Zhang, Z.; Tian, H.; Dong, W.; Dong, J.; Ma, X.; Wang, N.; Huang, Y. Wire-based friction stir additive manufacturing of AZ31B magnesium alloy: Precipitate behavior and mechanical properties. J. Magnes. Alloys 2025, in press. [CrossRef]
- Altay, O.; Gurgenc, T. GJO-MLP: A novel method for hybrid metaheuristics multi-layer perceptron and a new approach for prediction of wear loss of AZ91D magnesium alloy worn at dry, oil, and H-BN nanoadditive oil. Surf. Rev. Lett. 2024, 31, 2450048. [Google Scholar]
- Senthilkumar, N. Characterization of Graphene and Titanium Carbide Reinforced Magnesium Alloy Composite for Transmission Housings in Automobile; Technical Paper; SAE: Warrendale, PA, USA, 2024. [Google Scholar]
- Kanaginahal, G.M.; Kiran, M.; Shahapurkar, K.; Mahale, R.S.; Kakkamari, P. Automobile Applications of Mechanically Alloyed Magnesium and Titanium Material. In Mechanically Alloyed Novel Materials: Processing, Applications, and Properties; Springer: Berlin/Heidelberg, Germany, 2024; pp. 379–406. [Google Scholar]
- Wang, G.G.; Weiler, J. Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications. J. Magnes. Alloys 2023, 11, 78–87. [Google Scholar] [CrossRef]
- Jouini, N.; Ruslan, M.S.M.; Ghani, J.A.; Che Haron, C.H. Sustainable high-speed milling of magnesium alloy AZ91D in dry and cryogenic conditions. Sustainability 2023, 15, 3760. [Google Scholar]
- Okoth, G.H.; Ndeda, R.; Raghupatruni, P.; Olakanmi, E.O. Trends in Lightweighting for Automotive Applications: A Case Study. J. Sustain. Res. Eng. 2024, 8, 50–67. [Google Scholar]
- Sevvel, P.; Gunasekaran, J.; Roy, J.V.; Sivaramakrishnan, A.; Choudri, V.; Murugan, M.A. Multi-Objective Optimization of Parameters during Friction Stir Welding of AM50A Mg Alloy Using Genetic Algorithm and Desirability Function Approach for Maximizing Tensile Strength and Hardness. J. Mater. Eng. Perform. 2025, 1–20. [Google Scholar] [CrossRef]
- Yue, X.; Sha, L. Corrosion resistance of AZ91D magnesium alloy modified by rare earths-laser surface treatment. J. Rare Earths 2007, 25, 201–203. [Google Scholar] [CrossRef]
- Vignesh, R.V.; Padmanaban, R. Forecasting tribological properties of wrought AZ91D magnesium alloy using soft computing model. Russ. J. Non-Ferr. Met. 2018, 59, 135–141. [Google Scholar] [CrossRef]
- Shah, R.; Chen, R.; Woydt, M.; Baumann, C.; Jurs, J.; Iaccarino, P. High temperature tribology under linear oscillation motion. Lubricants 2020, 9, 5. [Google Scholar] [CrossRef]
- Beake, B.D. Elevated temperature nanomechanics of coatings for high-temperature applications: A review. Emergent Mater. 2021, 4, 1531–1545. [Google Scholar] [CrossRef]
- Koly, F.A.; Bhattacharjee, A.; Murthy, N.; Gould, B.; Ajayi, O.; Walck, S.; Martin, C.L.; Berkebile, S.; Burris, D.L. Methods to observe tribological failures in self-mated steel contacts. Tribol. Lett. 2025, 73, 35. [Google Scholar] [CrossRef]
- Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Zhai, W.; Bai, L.; Zhou, R.; Fan, X.; Kang, G.; Liu, Y.; Zhou, K. Recent progress on wear-resistant materials: Designs, properties, and applications. Adv. Sci. 2021, 8, 2003739. [Google Scholar]
- Waqas, M.; Zahid, R.; Bhutta, M.U.; Khan, Z.A.; Saeed, A. A review of friction performance of lubricants with nano additives. Materials 2021, 14, 6310. [Google Scholar] [CrossRef]
- Orman, R.Ç. Effect of Adding Hexagonal Boron Nitride (hBN) Nano-Powder to Lubricant on Performance and Emissions in a Two-Stroke Gasoline Engine. Sustainability 2023, 15, 14605. [Google Scholar] [CrossRef]
- Alqahtani, B.; Hoziefa, W.; Abdel Moneam, H.M.; Hamoud, M.; Salunkhe, S.; Elshalakany, A.B.; Abdel-Mottaleb, M.; Davim, J.P. Tribological Performance and Rheological Properties of Engine Oil with Graphene Nano-Additives. Lubricants 2022, 10, 137. [Google Scholar] [CrossRef]
- Ranjbarzadeh, R.; Chaabane, R. Experimental study of thermal properties and dynamic viscosity of graphene oxide/oil nano-lubricant. Energies 2021, 14, 2886. [Google Scholar] [CrossRef]
- Lee, C.-G.; Hwang, Y.-J.; Choi, Y.-M.; Lee, J.-K.; Choi, C.; Oh, J.-M. A study on the tribological characteristics of graphite nano lubricants. Int. J. Precis. Eng. Manuf. 2009, 10, 85–90. [Google Scholar] [CrossRef]
- Dinesh, R.; Prasad, M.G.; Kumar, R.R.; Santharaj, N.J.; Santhip, J.; Raaj, A.A. Investigation of tribological and thermophysical properties of engine oil containing nano additives. Mater. Today Proc. 2016, 3, 45–53. [Google Scholar]
- Esfe, M.H.; Rostamian, H.; Sarlak, M.R.; Rejvani, M.; Alirezaie, A. Rheological behavior characteristics of TiO2-MWCNT/10w40 hybrid nano-oil affected by temperature, concentration and shear rate: An experimental study and a neural network simulating. Phys. E Low-Dimens. Syst. Nanostruct. 2017, 94, 231–240. [Google Scholar] [CrossRef]
- Saini, V.; Bijwe, J.; Seth, S.; Ramakumar, S. Role of base oils in developing extreme pressure lubricants by exploring nano-PTFE particles. Tribol. Int. 2020, 143, 106071. [Google Scholar] [CrossRef]
- Liu, J.; Xiang, S.; Zhou, X.; Lin, S.; Dong, K.; Liu, Y.; He, D.; Fan, Y.; Liu, Y.; Xiong, B. Lubrication performance promotion of GTL base oil by BN nanosheets via cascade centrifugation-assisted liquid-phase exfoliation. Lubricants 2025, 13, 281. [Google Scholar]
- Azman, N.F.; Samion, S.; Paiman, Z.; Hamid, M.K.A. Tribological performance and mechanism of graphite, hBN and MoS2 as nano-additives in palm kernel oil-based lubricants: A comparative study. J. Mol. Liq. 2024, 410, 125616. [Google Scholar]
- Nagarajan, T.; Sridewi, N.; Wong, W.P.; Walvekar, R.; Khanna, V.; Khalid, M. Synergistic performance evaluation of MoS2–hBN hybrid nanoparticles as a tribological additive in diesel-based engine oil. Sci. Rep. 2023, 13, 12559. [Google Scholar] [CrossRef]
- Mobarhan, G.; Zolriasatein, A.; Ghahari, M.; Jalili, M.; Rostami, M. The enhancement of wear properties of compressor oil using MoS2 nano-additives. Adv. Powder Technol. 2022, 33, 103648. [Google Scholar] [CrossRef]
- Thottackkad, M.V.; Perikinalil, R.K.; Kumarapillai, P.N. Experimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticles. Int. J. Precis. Eng. Manuf. 2012, 13, 111–116. [Google Scholar] [CrossRef]
- Farbod, M. Morphology dependence of thermal and rheological properties of oil-based nanofluids of CuO nanostructures. Colloids Surf. A Physicochem. Eng. Asp. 2015, 474, 71–75. [Google Scholar] [CrossRef]
- Sepyani, K.; Afrand, M.; Esfe, M.H. An experimental evaluation of the effect of ZnO nanoparticles on the rheological behavior of engine oil. J. Mol. Liq. 2017, 236, 198–204. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, Y.; Wang, J.; Gao, C.; Zhang, S.; Zhang, P.; Zhang, Z. Interactions of Cu nanoparticles with conventional lubricant additives on tribological performance and some physicochemical properties of an ester base oil. Tribol. Int. 2020, 141, 105941. [Google Scholar] [CrossRef]
- Chen, Y.; Renner, P.; Liang, H. Dispersion of nanoparticles in lubricating oil: A critical review. Lubricants 2019, 7, 7. [Google Scholar] [CrossRef]
- Thachnatharen, N.; Khalid, M.; Arulraj, A.; Sridewi, N. Tribological performance of hexagonal boron nitride (hBN) as nano-additives in military grade diesel engine oil. Mater. Today Proc. 2022, 50, 70–73. [Google Scholar] [CrossRef]
- Bu, H.; Zheng, H.; Zhou, H.; Zhang, H.; Yang, Z.; Liu, Z.; Wang, H.; Xu, Q. The role of sp 2 and sp 3 hybridized bonds on the structural, mechanical, and electronic properties in a hard BN framework. RSC Adv. 2019, 9, 2657–2665. [Google Scholar]
- Vats, P.; Khanna, N.; Kumar, A.; Gajrani, K.K. Tribological performance of hBN and graphene-enriched hybrid nanofluids on tool wear and hole surface quality in drilling: A comparative study on WAAM and wrought Inconel 625. Wear 2025, 574–575, 206090. [Google Scholar] [CrossRef]
- Honglin, M.; Haichao, Z.; Honggang, T.; Guozheng, M.; Ming, L.; Haidou, W.; Fengkuan, X.; Zhihai, C. Effects of hBN content and particle size on microstructure, mechanical and tribological properties of NiCr-Cr3C2-hBN coatings. Surf. Coat. Technol. 2024, 478, 130330. [Google Scholar]
- Senyk, S.; Chodkiewicz, A.; Gocman, K.; Szczęśniak, B.; Kałdoński, T. Hexagonal nano and micro boron nitride: Properties and lubrication applications. Materials 2022, 15, 955. [Google Scholar] [CrossRef]
- Abdullah, M.I.H.C.; Abdollah, M.F.B.; Amiruddin, H.; Tamaldin, N.; Nuri, N.R.M. Optimization of tribological performance of hBN/AL2O3Nanoparticles as engine oil additives. Procedia Eng. 2013, 68, 313–319. [Google Scholar] [CrossRef]
- Gara, L.; Zou, Q. Friction and wear characteristics of oil-based ZnO nanofluids. Tribol. Trans. 2013, 56, 236–244. [Google Scholar] [CrossRef]
- Alghani, W.; Karim, M.; Bagheri, S.; Zaharinie, T.; Gulzar, M. Formulation, tribological performance, and characterization of base oil with ZnO, graphene, and ZnO/graphene nanoparticles additives. Mater. Werkst. 2020, 51, 1515–1532. [Google Scholar]
- Bhaumik, S.; Maggirwar, R.; Datta, S.; Pathak, S. Analyses of anti-wear and extreme pressure properties of castor oil with zinc oxide nano friction modifiers. Appl. Surf. Sci. 2018, 449, 277–286. [Google Scholar] [CrossRef]
- Esfe, M.H.; Arani, A.A.A.; Esfandeh, S. Improving engine oil lubrication in light-duty vehicles by using of dispersing MWCNT and ZnO nanoparticles in 5W50 as viscosity index improvers (VII). Appl. Therm. Eng. 2018, 143, 493–506. [Google Scholar]
- Jiang, W.; Ling, D. Friction and wear performances of magnesium alloy against steel under lubrication of rapeseed oil with S-containing additive. Trans. Nonferrous Met. Soc. China 2011, 21, 2649–2653. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Liu, A.; Wu, C.; Li, W. Tribological performance of silicone oil based Al2O3 nano lubricant for an Mg alloy subjected to sliding at elevated temperatures. Tribol. Int. 2022, 175, 107779. [Google Scholar] [CrossRef]
- Yin, Y.; Yu, H.; Wang, H.; Ji, X.; Song, Z.; Zhou, X.; Wei, M.; Shi, P.; Zhang, W.; Zhao, C. Tribological behaviors of AZ91D magnesium alloy under the lubrication of oil suspended synthetic magnesium silicate hydroxide nanotubes. J. Magnes. Alloys 2025, 13, 379–397. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Wu, C. Experimental evaluation of a silicone oil as an oxidation inhibitor for magnesium alloy under contact sliding at elevated temperatures. Wear 2022, 506, 204451. [Google Scholar] [CrossRef]
- Zhou, X.; Li, L.; Wen, D.; Liu, X.; Wu, C. Effect of hybrid ratio on friction and wear behavior of AZ91D matrix nanocomposites under oil lubricated conditions. Trans. Nonferrous Met. Soc. China 2018, 28, 440–450. [Google Scholar] [CrossRef]
- Huang, W.; Du, C.; Li, Z.; Liu, M.; Liu, W. Tribological characteristics of magnesium alloy using N-containing compounds as lubricating additives during sliding. Wear 2006, 260, 140–148. [Google Scholar] [CrossRef]
- Xie, H.; Jiang, B.; Liu, B.; Wang, Q.; Xu, J.; Pan, F. An investigation on the tribological performances of the SiO2/MoS2 hybrid nanofluids for magnesium alloy-steel contacts. Nanoscale Res. Lett. 2016, 11, 329. [Google Scholar] [CrossRef]
- Kharb, S.S.; Khatkar, S.K.; Charak, A.; Thakur, A. Tribological investigation of AZ91/SiC magnesium hybrid composite under dry, oil and nanofluids lubricating conditions. Silicon 2021, 13, 1313–1323. [Google Scholar] [CrossRef]
- Yao, W.; Qin, J.; Chen, Y.; Wu, L.; Jiang, B.; Pan, F. SiO2 nanoparticles-containing slippery-liquid infused porous surface for corrosion and wear resistance of AZ31 Mg alloy. Mater. Des. 2023, 227, 111721. [Google Scholar] [CrossRef]
- Xie, H.; Jiang, B.; Dai, J.; Peng, C.; Li, C.; Li, Q.; Pan, F. Tribological behaviors of graphene and graphene oxide as water-based lubricant additives for magnesium alloy/steel contacts. Materials 2018, 11, 206. [Google Scholar] [CrossRef]
- Gkagkas, K.; Ponnuchamy, V.; Dašić, M.; Stanković, I. Molecular dynamics investigation of a model ionic liquid lubricant for automotive applications. Tribol. Int. 2017, 113, 83–91. [Google Scholar] [CrossRef]
- Dašić, M.; Ponomarev, I.; Polcar, T.; Nicolini, P. Tribological properties of vanadium oxides investigated with reactive molecular dynamics. Tribol. Int. 2022, 175, 107795. [Google Scholar] [CrossRef]
- Dasic, M.; Almog, R.; Agmon, L.; Yehezkel, S.; Halfin, T.; Jopp, J.; Ya’akobovitz, A.; Berkovich, R.; Stankovic, I. Role of Trapped Molecules at Sliding Contacts in Lattice-Resolved Friction. ACS Appl. Mater. Interfaces 2024, 16, 44249–44260. [Google Scholar] [CrossRef]
- Gupta, M.K.; Bijwe, J.; Padhan, M. Role of size of hexagonal boron nitride particles on tribo-performance of nano and micro oils. Lubr. Sci. 2018, 30, 441–456. [Google Scholar]
- Türkez, H.; Arslan, M.E.; Sönmez, E.; Açikyildiz, M.; Tatar, A.; Geyikoğlu, F. Synthesis, characterization and cytotoxicity of boron nitride nanoparticles: Emphasis on toxicogenomics. Cytotechnology 2019, 71, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Matović, B.; Luković, J.; Nikolić, M.; Babić, B.; Stanković, N.; Jokić, B.; Jelenković, B. Synthesis and characterization of nanocrystaline hexagonal boron nitride powders: XRD and luminescence properties. Ceram. Int. 2016, 42, 16655–16658. [Google Scholar] [CrossRef]
- Jayswal, S.; Moirangthem, R.S. Thermal decomposition route to synthesize ZnO nanoparticles for photocatalytic application. In AIP Conference Proceedings, Proceedings of the National Conference on Advanced Materials and Nanotechnology—2018: AMN-2018, Noida, India, 15–17 March 2018; AIP Publishing: Melville, NY, USA, 2018; p. 020023. [Google Scholar]
- Naqvi, S.M.A.; Soleimani, H.; Yahya, N.; Irshad, K. Structural and optical properties of chromium doped zinc oxide nanoparticles synthesized by sol-gel method. In AIP Conference Proceedings, Proceedings of the 3rd International Conference on Fundamental and Applied Sciences (ICFAS 2014): Innovative Research in Applied Sciences for a Sustainable Future, Kuala Lumpur, Malaysia, 3–5 June 2014; AIP Publishing: Melville, NY, USA, 2014; pp. 530–537. [Google Scholar]
- Rabaso, P.; Ville, F.; Dassenoy, F.; Diaby, M.; Afanasiev, P.; Cavoret, J.; Vacher, B.; Le Mogne, T. Boundary lubrication: Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 2014, 320, 161–178. [Google Scholar]
- Yi, X.; Xu, H.; Jin, G.; Lu, Y.; Chen, B.; Xu, S.; Shi, J.; Fan, X. Boundary slip and lubrication mechanisms of organic friction modifiers with effect of surface moisture. Friction 2024, 12, 1483–1498. [Google Scholar] [CrossRef]
- Popov, V.L.; Li, Q.; Lyashenko, I.A.; Pohrt, R. Adhesion and friction in hard and soft contacts: Theory and experiment. Friction 2021, 9, 1688–1706. [Google Scholar] [CrossRef]
- Chen, T.; Ma, Y.; Li, B.; Li, Y.; Hao, Y. Friction and wear properties of permanent mould cast AZ91D magnesium alloy. Mater. Sci. Technol. 2007, 23, 937–944. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Yoon, S.-C.; Jin, B.-K.; Jeon, J.-H.; Hyun, J.-S.; Lee, M.-G. Friction characteristics of low and high strength steels with galvanized and galvannealed zinc coatings. Materials 2024, 17, 5031. [Google Scholar] [CrossRef]
- Karuppusamy, P.; Lingadurai, K.; Sivananth, V. To study the role of WC reinforcement and deep cryogenic treatment on AZ91 MMNC wear behavior using multilevel factorial design. J. Tribol. 2019, 141, 041608. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, Y.; Sun, J.; Jing, C.; Zhao, Y.; Wang, J. Investigation of the wear behavior of surface welding AZ91 and AZ91+ Gd alloys under variable loading conditions. Crystals 2021, 11, 554. [Google Scholar] [CrossRef]
- Zhou, Y.; Peng, J.; Wang, M.; Mo, J.; Deng, C.; Zhu, M. Tribochemical behavior of pure magnesium during sliding friction. Metals 2019, 9, 311. [Google Scholar] [CrossRef]
- Gnanavelbabu, A.; Vinothkumar, E.; Ross, N.S.; Prahadeeswaran, M. Investigating the wear performance of AZ91D magnesium composites with ZnO, MnO, and TiO2 nanoparticles. Int. J. Adv. Manuf. Technol. 2023, 129, 4217–4237. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, B.; Dong, R.; Wen, P.; Fan, M. Covalent-organic framework nanomaterials: Energy band engineering generating ultrathin lubrication films for excellent lubrication. ACS Appl. Mater. Interfaces 2024, 16, 49993–50003. [Google Scholar] [CrossRef]
- Ronkainen, H.; Varjus, S.; Holmberg, K. Friction and wear properties in dry, water-and oil-lubricated DLC against alumina and DLC against steel contacts. Wear 1998, 222, 120–128. [Google Scholar] [CrossRef]
- Dubey, M.K.; Chaudhary, R.; Emmandi, R.; Seth, S.; Mahapatra, R.; Harinarain, A.; Ramakumar, S. Tribological evaluation of passenger car engine oil: Effect of friction modifiers. Results Eng. 2022, 16, 100727. [Google Scholar] [CrossRef]
- Kumar, V.B.; Sahu, A.K.; Rao, K.B.S. Development of doped carbon quantum dot-based nanomaterials for lubricant additive applications. Lubricants 2022, 10, 144. [Google Scholar] [CrossRef]
- Morshed, A.; Wu, H.; Ren, M.; Xing, Z.; Jiao, S.; Jiang, Z. A Study of Water-Based Nanolubricants Using Hexagonal Boron Nitride (hBN)-Based Nanocomposites as Lubricant Additives. Lubricants 2024, 12, 123. [Google Scholar] [CrossRef]
- Bondarev, A.V.; Fraile, A.; Polcar, T.; Shtansky, D. Mechanisms of friction and wear reduction by h-BN nanosheet and spherical W nanoparticle additives to base oil: Experimental study and molecular dynamics simulation. Tribol. Int. 2020, 151, 106493. [Google Scholar] [CrossRef]
- Han, X.; Thrush, S.J.; Zhang, Z.; Barber, G.C.; Qu, H. Tribological characterization of ZnO nanofluids as fastener lubricants. Wear 2021, 468, 203592. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, Y.; Liu, B.; Yu, L.; Tong, Y.; Yan, M.; Yang, Z.; Hao, Y.; Shangguan, L.; Zhang, S. Research progresses of nanomaterials as lubricant additives. Friction 2024, 12, 1347–1391. [Google Scholar] [CrossRef]
- Zhou, D.; Li, C.; You, K.; Bi, K. Superlubricity transition from ball bearing to nanocoating in the third-body lubrication. Tribol. Int. 2023, 181, 108320. [Google Scholar] [CrossRef]
- Kulkarni, T.; Toksha, B.; Autee, A. Optimizing nanoparticle attributes for enhanced anti-wear performance in nano-lubricants. J. Eng. Appl. Sci. 2024, 71, 30. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, X.; Huang, G.; Chen, H.; Yu, H.; Feng, D.; Qiao, D. Macroscale superlubricity achieved via hydroxylated hexagonal boron nitride nanosheets with ionic liquid at steel/steel interface. Friction 2022, 10, 1365–1381. [Google Scholar]
- Wu, C.; Li, S.; Chen, Y.; Yao, L.; Li, X.; Ni, J. Tribological properties of chemical composite and physical mixture of ZnO and SiO2 nanoparticles as grease additives. Appl. Surf. Sci. 2023, 612, 155932. [Google Scholar] [CrossRef]
- Wu, C.; Hong, Y.; Ni, J.; Teal, P.D.; Yao, L.; Li, X. Investigation of mixed hBN/Al2O3 nanoparticles as additives on grease performance in rolling bearing under limited lubricant supply. Colloids Surf. Physicochem. Eng. Asp. 2023, 659, 130811. [Google Scholar] [CrossRef]
- Tóth, Á.D.; Hargitai, H.; Szabó, Á.I. Tribological Investigation of the Effect of Nanosized Transition Metal Oxides on a Base Oil Containing Overbased Calcium Sulfonate. Lubricants 2023, 11, 337. [Google Scholar] [CrossRef]
- Ponnusamy, M.; Rajendran, A.R.; Dhanaraj, A.P.; Karuppiah, P.S. Experimental study of scandium addition and precipitate formation on the mechanical and tribological properties of Ultrasonic-assisted stir-cast AA7075 hybrid metal matrix composites. Matéria 2025, 30, e20240694. [Google Scholar] [CrossRef]
- Mandava, R.K.; Reddy, V.V.; Rao, V.R.K.; Reddy, K.S. Wear and frictional behaviour of Al 7075/FA/SiC hybrid MMC’s using response surface methodology. Silicon 2022, 14, 5319–5331. [Google Scholar] [CrossRef]
- Mao, Y.; Hu, Q.; Yu, Y.; Shi, S.; Pei, J.; Li, Z.; Wang, L. A Mechanics Model for Contact with Rough Surface Considering the Interaction of Micro-Asperity Bodies. Lubricants 2025, 13, 96. [Google Scholar] [CrossRef]
- Nagpal, P.K.; Kumar, S.; Sharma, J.D.; Mahla, S.K.; Salunkhe, S.; Hussein, H.M.A. Correlation between the mechanical and tribological properties of rutile reinforced LM27 alloy composite. Lubricants 2022, 10, 251. [Google Scholar] [CrossRef]
- Kumaravelu, P.; Kandasamy, J. Effect of load and sliding velocity on wear behaviour of magnesium AZ91D composites reinforced with Ca2SiO4 at ambient temperature. Tribol. Int. 2024, 192, 109314. [Google Scholar]
- Kumar, A.; Rana, R.S.; Purohit, R.; Saxena, K.K.; Xu, J.; Malik, V. Metallographic study and sliding wear optimization of nano Si3N4 reinforced high-strength Al metal matrix composites. Lubricants 2022, 10, 202. [Google Scholar] [CrossRef]
- Mahale, V.; Bijwe, J.; Sinha, S. Influence of nano-potassium titanate particles on the performance of NAO brake-pads. Wear 2017, 376, 727–737. [Google Scholar] [CrossRef]
- Zakerin, N.; Morshed-Behbahani, K.; Bishop, D.P.; Nasiri, A. Review of Tribological and Wear Behavior of Alloys Fabricated via Directed Energy Deposition Additive Manufacturing. J. Manuf. Mater. Process. 2025, 9, 194. [Google Scholar] [CrossRef]
- Al-Samarai, R.A.; Al-Douri, Y. Friction and Wear in Metals; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Sagar, P.; Khanna, S.K.; Vignjevic, R.; Handa, A. Synergistic effect of hybrid reinforcement on magnesium-based composites for enriching mechanical and tribological characteristics. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2024, 239, 09544089231221683. [Google Scholar] [CrossRef]
- Ayyanar, S.; Gnanavelbabu, A.; Rajkumar, K.; Loganathan, P.; Vishal, K. Investigation on microstructure and tribological performance of zirconium boride reinforced AZ91D magnesium alloy: Effect of processing routes. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2023, 237, 692–707. [Google Scholar] [CrossRef]
- Guo, Y.; Warren, A. The impact of surface integrity by hard turning vs. grinding on fatigue damage mechanisms in rolling contact. Surf. Coat. Technol. 2008, 203, 291–299. [Google Scholar] [CrossRef]
- Ayyagari, A.; Hasannaeimi, V.; Grewal, H.S.; Arora, H.; Mukherjee, S. Corrosion, erosion and wear behavior of complex concentrated alloys: A review. Metals 2018, 8, 603. [Google Scholar] [CrossRef]
- Rivadeneira, F.R.; Patel, P.; Wusatowska-Sarnek, A.; Makowiec, M.; Stoyanov, P. Insights on the tribological characteristics of titanium alloys in demanding environments. J. Tribol. 2025, 147, 081701. [Google Scholar] [CrossRef]
- Kaba, M.; Filiz, H.; Cui, Z.; Baydogan, M.; Cimenoglu, H.; Alpas, A. Microstructural effects on impact-sliding wear mechanisms in D2 steels: The roles of matrix hardness and carbide characteristics. Wear 2024, 538, 205224. [Google Scholar] [CrossRef]
- Kundu, S.; Thakur, L. A comparative study on wear behavior of AZ91D Mg alloy in dry and simulated body fluid for bio-implant materials. J. Tribol. 2021, 31, 115–129. [Google Scholar]
- Holmberg, K.; Ronkainen, H.; Laukkanen, A.; Wallin, K. Friction and wear of coated surfaces—Scales, modelling and simulation of tribomechanisms. Surf. Coat. Technol. 2007, 202, 1034–1049. [Google Scholar] [CrossRef]
- Zsidai, L.; De Baets, P.; Samyn, P.; Kalacska, G.; Van Peteghem, A.; Van Parys, F. The tribological behaviour of engineering plastics during sliding friction investigated with small-scale specimens. Wear 2002, 253, 673–688. [Google Scholar] [CrossRef]
- Li, S.; Yang, X.; Kang, Y.; Li, Z.; Li, H. Progress on current-carry friction and wear: An overview from measurements to mechanism. Coatings 2022, 12, 1345. [Google Scholar] [CrossRef]
- Szabó, Á.I.; Tóth, Á.D.; Abdallah, H.; Hargitai, H. Experimental wear analysis of nano-sized titania particles as additives in automotive lubricants. Micro 2023, 3, 715–727. [Google Scholar] [CrossRef]
- Konicek, A.R.; Jacobs, P.W.; Webster, M.N.; Schilowitz, A.M. Role of tribofilms in wear protection. Tribol. Int. 2016, 94, 14–19. [Google Scholar] [CrossRef]
- Birleanu, C.; Pustan, M.; Cioaza, M.; Molea, A.; Popa, F.; Contiu, G. Effect of TiO2 nanoparticles on the tribological properties of lubricating oil: An experimental investigation. Sci. Rep. 2022, 12, 5201. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, Y.; Ma, G.; Sun, X.; Lu, L. Dry Sliding Wear Behavior and Mild–Severe Wear Transition of the AA2195-T6 Alloy under Different Loads. Crystals 2023, 13, 698. [Google Scholar] [CrossRef]
- Liu, H.; Cha, Y.; Olofsson, U.; Jonsson, L.T.I.; Jönsson, P.G. Effect of the sliding velocity on the size and amount of airborne wear particles generated from dry sliding wheel–rail contacts. Tribol. Lett. 2016, 63, 30. [Google Scholar] [CrossRef]
- Torkashvand, K.; Selpol, V.K.; Gupta, M.; Joshi, S. Influence of test conditions on sliding wear performance of high velocity air fuel-sprayed WC–CoCr coatings. Materials 2021, 14, 3074. [Google Scholar] [CrossRef]
- An, J.; Li, R.; Lu, Y.; Chen, C.; Xu, Y.-C.; Chen, X.; Wang, L. Dry sliding wear behavior of magnesium alloys. Wear 2008, 265, 97–104. [Google Scholar] [CrossRef]
- Podgornik, B. Adhesive wear failures. J. Fail. Anal. Prev. 2022, 22, 113–138. [Google Scholar] [CrossRef]
- Neville, A.; Morina, A.; Haque, T.; Voong, M. Compatibility between tribological surfaces and lubricant additives—How friction and wear reduction can be controlled by surface/lube synergies. Tribol. Int. 2007, 40, 1680–1695. [Google Scholar] [CrossRef]
- Chen, K.; Yang, X.; Lv, G.; Zhang, Y.; Yang, H.; Gao, Y. Research progress of surface modification and solid–liquid lubrication synergistic friction reduction and wear resistance. Int. J. Adv. Manuf. Technol. 2022, 122, 1115–1141. [Google Scholar] [CrossRef]
- Abdullah, M.I.H.C.; Abdollah, M.F.B.; Amiruddin, H.; Tamaldin, N.; Nuri, N.R.M. The potential of hBN nanoparticles as friction modifier and antiwear additive in engine oil. Mech. Ind. 2016, 17, 104. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, S.; Hou, K.; Li, Z.; Wang, J. Graphene-based nanomaterials as lubricant additives: A review. Lubricants 2022, 10, 273. [Google Scholar] [CrossRef]
- Chen, B.; Dong, Z.; Li, J.; Zhang, M.; Zhang, K. ZnO nanowires-decorated h-BN hybrid for enhancing the tribological properties of epoxy resin. Prog. Org. Coat. 2021, 161, 106493. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, G.; Chen, Z.; Yi, M.; Zhang, J.; Li, Z.; Xu, C. Hexagonal boron nitride (h-BN) nanosheets as lubricant additive to 5CB liquid crystal for friction and wear reduction. Mater. Lett. 2022, 307, 131007. [Google Scholar] [CrossRef]
- Chua Abdullah, M.I.H.; Abdollah, M.F.; Amiruddin, H.; Tamaldin, N.; Mat Nuri, N.R.; Saleman, A.R. The hBN nanoparticles as an effective engine oil additive to enhance the durability and performance of a small diesel engine. J. Mech. Eng. 2017, 1, 103–112. [Google Scholar]
- Korkmaz, M.E.; Rai, R.; Demirsöz, R.; Picak, S.; Vashishtha, G.; Günay, M. Studies on newly developed hBN/graphene-based nano-fluids supported by cryogenic cooling conditions in improving the tribological performance of Ti6Al4V alloy. J. Mol. Liq. 2024, 400, 124551. [Google Scholar] [CrossRef]
- Han, X.; Barber, G.C.; Zhang, Z.; Thrush, S.; Schall, J.D.; Li, Z.; Wang, B. Tribological performance of oil-based ZnO and diamond nanofluids. Lubr. Sci. 2019, 31, 73–84. [Google Scholar] [CrossRef]
- Rawat, S.S.; Harsha, A.; Das, S.; Deepak, A.P. Effect of CuO and ZnO nano-additives on the tribological performance of paraffin oil–based lithium grease. Tribol. Trans. 2020, 63, 90–100. [Google Scholar] [CrossRef]
- Tsai, A.E.; Komvopoulos, K. Wear Mechanisms, Composition and Thickness of Antiwear Tribofilms Formed from Multi-Component Lubricants. Materials 2024, 17, 2324. [Google Scholar] [CrossRef]
- Çelik, O.; Ay, N.; Göncü, Y. Effect of nano hexagonal boron nitride lubricant additives on the friction and wear properties of AISI 4140 steel. Part. Sci. Technol. 2013, 31, 501–506. [Google Scholar] [CrossRef]
- Teller, M.; Prünte, S.; Ross, I.; Küpper, M.; Poprawe, R.; Häfner, C.; Schneider, J.M.; Hirt, G. Lubricant-free tribology concepts for cold extrusion by interaction-reduced surfaces. Dry Met. Form. Open Access J. 2020, 6, 166–191. [Google Scholar]
- Rigas, N.; Merklein, M. Characterization of the Tribological Behavior of Different Tool Coatings and Dry Lubricant for High-Strength Aluminum Alloys at Elevated Temperatures. Adv. Eng. Mater. 2023, 25, 2201650. [Google Scholar] [CrossRef]
- Ma, L.; Ding, S.; Zhang, C.; Huang, Y.; Zhang, X. Study on the wear performance of high-speed railway brake materials at low temperatures under continuous braking conditions. Wear 2023, 512, 204556. [Google Scholar] [CrossRef]
- Sabri, A.M.; Talib, N.; Sani, A.S.A.; Kamdani, K. Evaluation of physicochemical and tribological performances of hBN/WS2 and hBN/TiO2 hybrid nanoparticles-MJO-based oil. J. Tribol. 2023, 37, 84–97. [Google Scholar]
- Şirin, Ş.; Akıncıoğlu, S.; Gupta, M.K.; Kıvak, T.; Khanna, N. A tribological performance of vegetable-based oil combined with GNPs and hBN nanoparticles on the friction-wear tests of titanium grade 2. Tribol. Int. 2023, 181, 108314. [Google Scholar] [CrossRef]
- Singh, D.; Bhan, U.; Painuly, P.K. Effect of ZnO nanoparticles concentration on the friction and wear behaviour of Mahua oil. Mater. Today Proc. 2021, 46, 10117–10120. [Google Scholar] [CrossRef]
- Uğur, A.; Avan, İ. Anti-wear behavior of 1-octanethiol and tween-80 capped ZnO nanoparticles as lubricating oil additives. Surf. Interfaces 2024, 46, 104018. [Google Scholar] [CrossRef]
- Elsoudy, S.; Akl, S.; Abdel-Rehim, A.A.; Salem, S. Study on Tribological Behaviour of ZnO Nano Additives Suspended in SAE 20W-50 Engine Oil. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Virtual, 1–5 November 2021; p. V003T003A061. [Google Scholar]
- Li, Z.; Gain, A.K.; Cui, Y.; Zhang, L. Wear mechanism and subsurface microstructure of high entropy alloy reinforced with TiC nano-particles fabricated by additive manufacturing. Wear 2025, 570, 205934. [Google Scholar] [CrossRef]
- Tian, Y.; Khan, M.; Yuan, H.; Zheng, B. Wear modeling and friction-induced noise: A review. Friction 2025. [Google Scholar] [CrossRef]
- Totten, G.E. Friction, Lubrication, and Wear Technology; ASM International: Materials Park, OH, USA, 2017. [Google Scholar]
- Sikdar, S.; Rahman, M.H.; Menezes, P.L. Synergistic study of solid lubricant nano-additives incorporated in canola oil for enhancing energy efficiency and sustainability. Sustainability 2021, 14, 290. [Google Scholar] [CrossRef]
- Marian, M.; Berman, D.; Rota, A.; Jackson, R.L.; Rosenkranz, A. Layered 2D nanomaterials to tailor friction and wear in machine elements—A review. Adv. Mater. Interfaces 2022, 9, 2101622. [Google Scholar] [CrossRef]
- Torres, H.; Podgornik, B.; Jovičević-Klug, M.; Ripoll, M.R. Compatibility of graphite, hBN and graphene with self-lubricating coatings and tool steel for high temperature aluminium forming. Wear 2022, 490, 204187. [Google Scholar] [CrossRef]
- Aranganathan, N.; Bijwe, J.; Khatri, D. Role of combination of hexagonal boron nitride and graphite in NAO friction material. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2016, 230, 1107–1112. [Google Scholar] [CrossRef]
- Szabó, Á.I.; Hasan, R. Synergistic Effects of CuO and ZnO Nanoadditives on Friction and Wear in Automotive Base Oil. Appl. Sci. 2025, 15, 6810. [Google Scholar]
- Gautier di Confiengo, G.; Malusà, E.; Guaita, M.; Motta, S.; Di Maro, M.; Faga, M.G. Tribological Performance of ZnO Green Particles as Lubricating Oil Additives. Sustainability 2024, 16, 6810. [Google Scholar] [CrossRef]
- Mousavi, S.B.; Heris, S.Z.; Estellé, P. Experimental comparison between ZnO and MoS2 nanoparticles as additives on performance of diesel oil-based nano lubricant. Sci. Rep. 2020, 10, 5813. [Google Scholar] [CrossRef]
- Elagouz, A.; Ali, M.K.A.; Xianjun, H.; Abdelkareem, M.A.; Hassan, M.A. Frictional performance evaluation of sliding surfaces lubricated by zinc-oxide nano-additives. Surf. Eng. 2020, 36, 144–157. [Google Scholar] [CrossRef]
- Chandross, M.; Argibay, N. Friction of metals: A review of microstructural evolution and nanoscale phenomena in shearing contacts. Tribol. Lett. 2021, 69, 119. [Google Scholar] [CrossRef]
- Vasava, A.; Singh, D. Comparative analysis of reinforcement addition techniques on fabricated hybrid surface composite of AA7075-T651/WC/BN through friction stir processing. J. Adhes. Sci. Technol. 2024, 38, 2874–2896. [Google Scholar] [CrossRef]
- Wan, J.; Van Aken, D.C.; Qing, J.; Xu, M. A comparison of adhesive wear with three-body abrasive wear characteristics of graphitic white irons designed for metal-to-metal wear systems. Int. J. Met. 2021, 15, 447–458. [Google Scholar] [CrossRef]
- Morshed, A.; Lin, F.; Wu, H.; Xing, Z.; Jiao, S.; Hasan, M.M.; Jiang, Z. hBN/TiO2 water-based nanolubricants: A solution for stick–slip mitigation in tribological applications. Nanoscale Adv. 2025, 7, 1972–1988. [Google Scholar] [CrossRef]
- Bai, C.; Lai, Z.; Yu, Y.; Zhang, X.; Gao, K.; Yang, Z.; Zhang, J. Rich activated edges of hexagonal boron nitride flakes in-situ triggered by nickel nanoparticles to achieve efficient reduction of friction and wear. Compos. Part B Eng. 2022, 234, 109710. [Google Scholar] [CrossRef]
- Huynh, K.K.; Pham, S.T.; Tieu, K.A.; Wan, S. Tribocatalysis induced carbon-based tribofilms—An emerging tribological approach for sustainable lubrications. Lubricants 2023, 11, 327. [Google Scholar] [CrossRef]
- Khan, A.M.; Ahmed, J.; Liu, S.; Martin, T.; Berkebile, S.; Chung, Y.-W.; Wang, Q.J. Formation of wear-protective tribofilms on different steel surfaces during lubricated sliding. Tribol. Lett. 2023, 71, 63. [Google Scholar] [CrossRef]
- Ingemarsson, L.; Halvarsson, M. SEM/EDX Analysis of Boron; High Temperature Corrosion Centre (HTC), Chalmers University of Technology: Göteborg, Sweden, 2011; pp. 1–15. [Google Scholar]
- Jia, M.S.; Hash, S.; Reynoso, W.; Elsaadany, M.; Ibrahim, H. Characterization and Biocompatibility Assessment of Boron Nitride Magnesium Nanocomposites for Orthopedic Applications. Bioengineering 2023, 10, 757. [Google Scholar] [CrossRef]
- Alarifi, I.M. Investigation into the structural, chemical and high mechanical reforms in B4C with graphene composite material substitution for potential shielding frame applications. Molecules 2021, 26, 1921. [Google Scholar] [CrossRef]
- Chen, C.Y.; Sun, Z.; Torsi, R.; Wang, K.; Kachian, J.; Liu, B.; Rayner, G.B., Jr.; Chen, Z.; Appenzeller, J.; Lin, Y.-C. Tailoring amorphous boron nitride for high-performance two-dimensional electronics. Nat. Commun. 2024, 15, 4016. [Google Scholar] [CrossRef] [PubMed]
Material | Viscosity (mm·s−1) | Density (g·cm−3) | Particle Size | Purity |
---|---|---|---|---|
5W-30 Oil | 73.95 at 40 °C 12.02 at 100 °C | 0.848 | - | - |
hBN nanoparticle | - | 2.3 | 65–75 nm | 99.85+% |
ZnO nanoparticle | - | 5.5 | 30–50 nm | 99.5+% |
AZ91D | - | 1.81 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gürgenç, T. Hybrid h-BN/ZnO Nanolubricant Additives in 5W-30 Engine Oil for Enhanced Tribological Performance of Magnesium Alloys. Lubricants 2025, 13, 443. https://doi.org/10.3390/lubricants13100443
Gürgenç T. Hybrid h-BN/ZnO Nanolubricant Additives in 5W-30 Engine Oil for Enhanced Tribological Performance of Magnesium Alloys. Lubricants. 2025; 13(10):443. https://doi.org/10.3390/lubricants13100443
Chicago/Turabian StyleGürgenç, Turan. 2025. "Hybrid h-BN/ZnO Nanolubricant Additives in 5W-30 Engine Oil for Enhanced Tribological Performance of Magnesium Alloys" Lubricants 13, no. 10: 443. https://doi.org/10.3390/lubricants13100443
APA StyleGürgenç, T. (2025). Hybrid h-BN/ZnO Nanolubricant Additives in 5W-30 Engine Oil for Enhanced Tribological Performance of Magnesium Alloys. Lubricants, 13(10), 443. https://doi.org/10.3390/lubricants13100443