The Effect of Geometrical Shape of Surface Texture on the Rheology and Tribology of Confined Lubricants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Model
2.2. Bulk Simulations
2.3. Confining Surfaces Model
2.4. Confined Simulations
2.5. Structural Characterization
3. Results and Discussions
3.1. Equilibrium Stage
3.2. Shearing Stage
3.2.1. Contours and Streamlines
3.2.2. Density and Velocity Profiles and Structural Properties
3.2.3. The Effect of Normal Load on Structural Formations
3.2.4. The Effect of Surface Pattern on Transitory Response to Shear
3.2.5. Viscosity and Film Thickness
3.2.6. Structural Evolution Under Shear: Order Parameter, (stack) and (stack)
3.2.7. First Normal Stress Difference
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Bhushan, B. Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM. Ultramicroscopy 2003, 97, 321–340. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.K.; Bhushan, B.; Hansford, D. Nanotribological characterization of fluoropolymer thin films for biomedical micro/nanoelectromechanical system applications. J. Vac. Sci. Technol. A 2005, 23, 804–810. [Google Scholar] [CrossRef]
- Charitidis, C.A.; Koumoulos, E.P.; Dragatogiannis, D.A. Nanotribological behavior of carbon based thin films: Friction and lubricity mechanisms at the nanoscale. Lubricants 2013, 1, 22–47. [Google Scholar] [CrossRef]
- Arab, A.; Feng, Q. Reliability research on micro-and nanoelectromechanical systems: A review. Int. J. Adv. Manuf. Technol. 2014, 74, 1679–1690. [Google Scholar] [CrossRef]
- Gundarneeya, T.P.; Vakharia, D.P. Performance analysis of journal bearing operating on nanolubricants with TiO2, CuO and Al2O3 nanoparticles as lubricant additives. Mater. Today Proc. 2021, 45, 5624–5630. [Google Scholar] [CrossRef]
- Ramin, L.; Jabbarzadeh, A. Effect of water on structural and frictional properties of self assembled monolayers. Langmuir 2013, 29, 13367–13378. [Google Scholar] [CrossRef]
- Jabbarzadeh, A. Friction anisotropy in confined alkanes: Linear and branched molecules. Tribol. Int. 2016, 97, 108–115. [Google Scholar] [CrossRef]
- Moshfegh, A.; Jabbarzadeh, A. Dissipative particle dynamics: Effects of parameterization and thermostating schemes on rheology. Soft Mater. 2015, 13, 106–117. [Google Scholar] [CrossRef]
- Chhowalla, M.; Amaratunga, G.A. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 2000, 407, 164–167. [Google Scholar] [CrossRef]
- Kogovšek, J.; Kalin, M. Various MoS 2-, WS 2-and C-based micro-and nanoparticles in boundary lubrication. Tribol. Lett. 2014, 53, 585–597. [Google Scholar] [CrossRef]
- Du, R.; Zhang, A.; Du, Z.; Zhang, X. Molecular dynamics simulation on thin-film lubrication of a mixture of three alkanes. Materials 2020, 13, 3689. [Google Scholar] [CrossRef] [PubMed]
- Ghaednia, H.; Babaei, H.; Jackson, R.L.; Bozack, M.J.; Khodadadi, J.M. The effect of nanoparticles on thin film elasto-hydrodynamic lubrication. Appl. Phys. Lett. 2013, 103, 263111. [Google Scholar] [CrossRef]
- Rabaso, P.; Ville, F.; Dassenoy, F.; Diaby, M.; Afanasiev, P.; Cavoret, J.; Vacher, B.; Le Mogne, T. Boundary lubrication: Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 2014, 320, 161–178. [Google Scholar] [CrossRef]
- Zhao, P.; Zhou, X.; Yang, Y.; Wang, C.; Wang, C.; Liang, H.; Li, C.; Ren, H. Molecular dynamics simulation study of the effect of molecular structure of warm mix additive on lubricating properties. Constr. Build. Mater. 2023, 407, 133529. [Google Scholar] [CrossRef]
- Koplik, J.; Banavar, J.R.; Willemsen, J.F. Molecular dynamics of fluid flow at solid surfaces. Phys. Fluids A Fluid Dyn. 1989, 1, 781–794. [Google Scholar] [CrossRef]
- Hu, H.W.; Carson, G.A.; Granick, S. Relaxation time of confined liquids under shear. Phys. Rev. Lett. 1991, 66, 2758. [Google Scholar] [CrossRef]
- Jabbarzadeh, A.; Atkinson, J.D.; Tanner, R.I. The effect of branching on slip and rheological properties of lubricants in molecular dynamics simulation of Couette shear flow. Tribol. Int. 2002, 35, 35–46. [Google Scholar] [CrossRef]
- Jabbarzadeh, A.; Harrowell, P.; Tanner, R.I. Very low friction state of a dodecane film confined between mica surfaces. Phys. Rev. Lett. 2005, 94, 126103. [Google Scholar] [CrossRef]
- Jabbarzadeh, A.; Harrowell, P.; Tanner, R.I. Crystal bridge formation marks the transition to rigidity in a thin lubrication film. Phys. Rev. Lett. 2006, 96, 206102. [Google Scholar] [CrossRef]
- Jabbarzadeh, A.; Harrowell, P.; Tanner, R.I. Crystalline bridges, tetratic order, and elusive equilibria: The role of structure in lubrication films. J. Phys. Chem. B 2007, 111, 11354–11365. [Google Scholar] [CrossRef]
- Yasuda, I.; Kobayashi, Y.; Endo, K.; Hayakawa, Y.; Fujiwara, K.; Yajima, K.; Arai, N.; Yasuoka, K. Combining Molecular Dynamics and Machine Learning to Analyze Shear Thinning for Alkane and Globular Lubricants in the Low Shear Regime. ACS Appl. Mater. Interfaces 2023, 15, 8567–8578. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, H.; Huo, L.; Wang, K.; Sun, K.; Wei, J.; Chen, F. Molecular dynamics simulation of the lubricant conformation changes and energy transfer of the confined thin lubricant film. Chem. Eng. Sci. 2023, 270, 118541. [Google Scholar] [CrossRef]
- Krim, J.; Solina, D.H.; Chiarello, R. Nanotribology of a Kr monolayer: A quartz-crystal microbalance study of atomic-scale friction. Phys. Rev. Lett. 1991, 66, 181. [Google Scholar] [CrossRef] [PubMed]
- Jabbarzadeh, A.; Atkinson, J.D.; Tanner, R.I. Wall slip in the molecular dynamics simulation of thin films of hexadecane. J. Chem. Phys. 1999, 110, 2612–2620. [Google Scholar] [CrossRef]
- Ta, T.D.; Tieu, A.K.; Zhu, H.; Kosasih, B.; Zhu, Q.; Phan, H.T. The structural, tribological, and rheological dependency of thin hexadecane film confined between iron and iron oxide surfaces under sliding conditions. Tribol. Int. 2017, 113, 26–35. [Google Scholar] [CrossRef]
- Ta, T.D.; Tieu, A.K.; Tran, B.H. Influences of iron and iron oxides on ultra-thin carbon-based tribofilm lubrication. Tribol. Int. 2022, 173, 107665. [Google Scholar] [CrossRef]
- Bernardino, K.; Ribeiro, M.C. Confined ionic liquids films under shear: The importance of the chemical nature of the solid surface. J. Chem. Phys. 2023, 158, 094712. [Google Scholar] [CrossRef]
- Richardson, S. On the no-slip boundary condition. J. Fluid Mech. 1973, 59, 707–719. [Google Scholar] [CrossRef]
- Thompson, P.A.; Robbins, M.O. Shear flow near solids: Epitaxial order and flow boundary conditions. Phys. Rev. A 1990, 41, 6830. [Google Scholar] [CrossRef]
- Jabbarzadeh, A.; Atkinson, J.D.; Tanner, R.I. Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls. Phys. Rev. E 2000, 61, 690. [Google Scholar] [CrossRef]
- Hu, C.; Tang, D.; Lv, J.; Bai, M.; Zhang, X. Molecular dynamics simulation of frictional properties of Couette flow with striped superhydrophobic surfaces under different loads. Phys. Chem. Chem. Phys. 2019, 21, 17786–17791. [Google Scholar] [CrossRef]
- Jabbarzadeh, A. Effect of nano-patterning on oleophobic properties of a surface. Soft Matter 2013, 9, 11598–11608. [Google Scholar] [CrossRef]
- Jabbarzadeh, A.; Chen, X. Surface induced crystallization of polymeric nano-particles: Effect of surface roughness. Faraday Discuss. 2017, 204, 307–330. [Google Scholar] [CrossRef] [PubMed]
- Kanti, P.K.; Maiya, M.P. Rheology and thermal conductivity of graphene oxide and coal fly ash hybrid nanofluids for various particle mixture ratios for heat transfer applications: Experimental study. Int. Commun. Heat Mass Transf. 2022, 138, 106408. [Google Scholar] [CrossRef]
- Pettas, D.; Karapetsas, G.; Dimakopoulos, Y.; Tsamopoulos, J. Viscoelastic film flows over an inclined substrate with sinusoidal topography. I. Steady state. Phys. Rev. Fluids 2019, 4, 083303. [Google Scholar] [CrossRef]
- Tlili, I. Impact of thermal conductivity on the thermophysical properties and rheological behavior of nanofluid and hybrid nanofluid. Math. Sci. 2021, 18, 493–501. [Google Scholar] [CrossRef]
- Türkmen, İ.; Yalamaç, E.; Keddam, M. Investigation of tribological behaviour and diffusion model of Fe2B layer formed by pack-boriding on SAE 1020 steel. Surf. Coat. Technol. 2019, 377, 124888. [Google Scholar] [CrossRef]
- Huang, Q.; Shi, X.; Xue, Y.; Zhang, K.; Wu, C. Recent progress on surface texturing and solid lubricants in tribology: Designs, properties, and mechanisms. Mater. Today Commun. 2023, 35, 105854. [Google Scholar] [CrossRef]
- Leong, J.Y.; Reddyhoff, T.; Sinha, S.K.; Holmes, A.S.; Spikes, H.A. Hydrodynamic friction reduction in a MAC–hexadecane lubricated MEMS contact. Tribol. Lett. 2013, 49, 217–225. [Google Scholar] [CrossRef]
- Lapuerta, M.; Sánchez-Valdepeñas, J.; Sukjit, E. Effect of ambient humidity and hygroscopy on the lubricity of diesel fuels. Wear 2014, 309, 200–207. [Google Scholar] [CrossRef]
- Cafolla, C.; Voïtchovsky, K. Impact of water on the lubricating properties of hexadecane at the nanoscale. Nanoscale 2020, 12, 14504–14513. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, J.; Li, J.; Wu, C.; Yi, S.; Liu, Y.; Luo, J. Hexadecane-containing sandwich structure based triboelectric nanogenerator with remarkable performance enhancement. Nano Energy 2021, 87, 106198. [Google Scholar] [CrossRef]
- Iizuka, M.; Mizukami, M.; Kurihara, K. A Macro and Nanoconfined Tribological Study of Linear and Branched Molecules. Tribol. Lett. 2023, 71, 71. [Google Scholar] [CrossRef]
- Ryckaert, J.P.; Bellemans, A. Molecular dynamics of liquid n-butane near its boiling point. Chem. Phys. Lett. 1975, 30, 123–125. [Google Scholar] [CrossRef]
- Jabbarzadeh, A. Effect of molecular branching and surface wettability on solid-liquid surface tension and line-tension of liquid alkane surface nanodroplets. J. Colloid Interface Sci. 2024, 666, 355–370. [Google Scholar] [CrossRef]
- Chynoweth, S.; Michopoulos, Y. An improved potential model for n-hexadecane molecular dynamics simulations under extreme conditions. Mol. Phys. 1994, 81, 133–141. [Google Scholar] [CrossRef]
- Van der Ploeg, P.; Berendsen, H.J. Molecular dynamics simulation of a bilayer membrane. J. Chem. Phys. 1982, 76, 3271–3276. [Google Scholar] [CrossRef]
- Lees, A.W.; Edwards, S.F. The computer study of transport processes under extreme conditions. J. Phys. C Solid State Phys. 1972, 5, 1921. [Google Scholar] [CrossRef]
- Evans, D.; Morris, G.P. Statistical mechanics of nonequilibrium fluids ANU press Canberra. 2007. Available online: https://library.oapen.org/handle/20.500.12657/33616 (accessed on 30 December 2024). [CrossRef]
- Daivis, P.J.; Evans, D.J.; Morriss, G.P. Computer simulation study of the comparative rheology of branched and linear alkanes. J. Chem. Phys. 1992, 97, 616–627. [Google Scholar] [CrossRef]
- Evans, D.J.; Morriss, O.P. Non-Newtonian molecular dynamics. Comput. Phys. Rep. 1984, 1, 297–343. [Google Scholar] [CrossRef]
- Georges, J.M.; Millot, S.; Loubet, J.L.; Tonck, A.; Mazuyer, D. Surface roughness and squeezed films at molecular level. In Tribology Series; Elsevier: Amsterdam, The Netherlands, 1993; Volume 25, pp. 443–452. [Google Scholar]
- Jabbarzadeh, A.; Atkinson, J.D.; Tanner, R.I. A parallel algorithm for molecular dynamics simulation of branched molecules. Comput. Phys. Commun. 2003, 150, 65–84. [Google Scholar] [CrossRef]
- Klein, T.; Yan, S.; Cui, J.; Magee, J.W.; Kroenlein, K.; Rausch, M.H.; Koller, T.M.; Fröba, A.P. Liquid viscosity and surface tension of n-hexane, n-octane, n-decane, and n-hexadecane up to 573 K by surface light scattering. J. Chem. Eng. Data 2019, 64, 4116–4131. [Google Scholar] [CrossRef] [PubMed]
Stretching potential [46] | ; |
Bond bending potential [47] | ; |
Torsional potential [24] | ; ; ; ; ; |
Wall Types | Normal Loads (MPa) | Shear Rate () | Time (ns) |
---|---|---|---|
Sinusoidal Sawtooth Squaretooth | 10 and 300 | 18.8 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, F.; Jabbarzadeh, A. The Effect of Geometrical Shape of Surface Texture on the Rheology and Tribology of Confined Lubricants. Lubricants 2025, 13, 13. https://doi.org/10.3390/lubricants13010013
Peng F, Jabbarzadeh A. The Effect of Geometrical Shape of Surface Texture on the Rheology and Tribology of Confined Lubricants. Lubricants. 2025; 13(1):13. https://doi.org/10.3390/lubricants13010013
Chicago/Turabian StylePeng, Fankai, and Ahmad Jabbarzadeh. 2025. "The Effect of Geometrical Shape of Surface Texture on the Rheology and Tribology of Confined Lubricants" Lubricants 13, no. 1: 13. https://doi.org/10.3390/lubricants13010013
APA StylePeng, F., & Jabbarzadeh, A. (2025). The Effect of Geometrical Shape of Surface Texture on the Rheology and Tribology of Confined Lubricants. Lubricants, 13(1), 13. https://doi.org/10.3390/lubricants13010013