Environmentally Acceptable Lubricants for Stern Tube Application: Shear Stability and Friction Factor
Abstract
:1. Introduction
1.1. Background of Stern Tube Lubrication
1.2. Importance of Biolubricants in Marine Applications
1.3. Shear Stability
1.4. Friction Factor
1.4.1. Measuring and Controlling Friction Factor
1.4.2. Experimental Methods for Measuring the Friction Factor
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Oil Characterization by FTIR
3.2. Oil Characterization by HPLC-MS
3.3. Kinematic Viscosity and Viscosity Index
3.4. Temperature Dependence of Viscosity
3.5. Shear Stability
3.6. Friction Factor
3.7. Wear
4. Discussion
4.1. Oil Characterization by FTIR and HPLC-MS
4.2. Oil Characterization by HPLC-MS
4.3. Kinematic Viscosity and Viscosity Index
4.4. Temperature Dependence of Viscosity
4.5. Shear Stability
4.6. Friction Factor
4.7. Wear
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frost, J.; Frycz, M.; Kowalski, J.; Wodtke, M.; Litwin, W. Environmentally acceptable lubricants (EAL) compared with a reference mineral oil as marine stern tube bearing lubricant—Experimental and theoretical investigations. Tribol. Int. 2023, 189, 109001. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Vessel General Permit for Discharges Incidental to the Normal Operation of Vessels (VGP). Fed. Regist. 2013. Available online: https://www.epa.gov/vessels-marinas-and-ports/vessels-vgp (accessed on 26 June 2024).
- Pichler, J.; Eder, M.R.; Besser, C.; Pisarova, L.; Dörr, N.; Marchetti-Deschmann, M.; Frauscher, M. A comprehensive review of sustainable approaches for synthetic lubricant components. Green Chem. Lett. Rev. 2023, 16, 2185547. [Google Scholar] [CrossRef]
- Mang, T.; Dresel, W. Lubricants and Lubrication, 3rd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; ISBN 978-3-527-32670-9. [Google Scholar]
- Rudnick, L.R. Lubricant Additives: Chemistry and Applications; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-4987-3172-0. [Google Scholar]
- Večeř, M.; Krčková, S. Shear stability of base fluids for environmentally acceptable lubricants for stern tube application. AIP Conf. Proc. 2023, 2997, 040007. [Google Scholar] [CrossRef]
- Chiong, M.-C.; Kang, H.-S.; Shaharuddin, N.M.R.; Mat, S.; Quen, L.K.; Ten, K.-H.; Ong, M.C. Challenges and opportunities of marine propulsion with alternative fuels. Renew. Sustain. Energy Rev. 2021, 149, 111397. [Google Scholar] [CrossRef]
- Kang, D.C.; Kock, F. The EAL-Mystery: Facts and findings from the perspective of a classification society. In Proceedings of the SNAME 14th Propeller and Shafting Symposium, PSS 2015, Norfolk, VA, USA, 15–16 September 2015; p. 172236. [Google Scholar]
- Ma, C.; Cai, H.-P.; Qian, Z.-F.; Chen, K. The design of propeller and propeller boss cap fins (PBCF) by an integrative method. J. Hydrodyn. 2014, 26, 586–593. [Google Scholar] [CrossRef]
- Borras, F.X.; van den Nieuwendijk, R.; Ramesh, V.; de Rooij, M.B.; Schipper, D.J. Stern tube seals operation: A practical approach. Adv. Mech. Eng. 2021, 13, 1687814021994404. [Google Scholar] [CrossRef]
- Saettone, S.; Regener, P.B.; Andersen, P. Pre-swirl stator and propeller design for varying operating conditions. In Proceedings of the 13th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS2016), Copenhagen, Denmark, 4–8 September 2016; Technical University of Denmark: Kongens Lyngby, Denmark, 2016. [Google Scholar]
- Middlebrook, A.M.; Murphy, D.M.; Ahmadov, R.; Atlas, E.L.; Bahreini, R.; Blake, D.R.; Brioude, J.; de Gouw, J.A.; Fehsenfeld, F.C.; Frost, G.J.; et al. Air quality implications of the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. USA 2011, 109, 20280–20285. [Google Scholar] [CrossRef]
- Norse, E.A.; Amos, J. Impacts, perception, and policy implications of the BP/deepwater horizon oil and gas disaster. Environ. Law Rep. 2010, 40, 11058–11073. [Google Scholar]
- Asif, Z.; Chen, Z.; An, C.; Dong, J. Environmental impacts and challenges associated with oil spills on shorelines. J. Mar. Sci. Eng. 2022, 10, 762. [Google Scholar] [CrossRef]
- Sumaila, U.R.; Cisneros-Montemayor, A.M.; Dyck, A.; Huang, L.; Cheung, W.; Jacquet, J.; Kleisner, K.; Lam, V.; McCrea-Strub, A.; Swartz, W.; et al. Impact of the Deepwater Horizon well blowout on the economics of U.S. Gulf fisheries. Can. J. Fish. Aquat. Sci. 2012, 69, 499–510. [Google Scholar] [CrossRef]
- HEALTH EFFECTS. In Toxicological Profile for Hydraulic Fluids; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2 September 1997. Available online: https://www.ncbi.nlm.nih.gov/books/NBK595479/ (accessed on 26 June 2024).
- Saliba, M.; Azzopardi, F.; Muscat, R.; Grima, M.; Smyth, A.; Jalkanen, J.-P.; Johansson, L.; Deidun, A.; Gauci, A.; Galdies, C.; et al. Trends in vessel atmospheric emissions in the central mediterranean over the last 10 years and during the COVID-19 outbreak. J. Mar. Sci. Eng. 2021, 9, 762. [Google Scholar] [CrossRef]
- Murphy, B.N.; Sonntag, D.; Seltzer, K.M.; Pye, H.O.T.; Allen, C.; Murray, E.; Toro, C.; Gentner, D.R.; Huang, C.; Jathar, S.; et al. Reactive organic carbon air emissions from mobile sources in the United States. Atmos. Chem. Phys. 2023, 23, 13469–13483. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Wang, X.; Wei, Z.; Wang, L.; Wang, C.; Chen, Z. A review of NOx and SOx emission reduction technologies for marine diesel engines and the potential evaluation of liquefied natural gas fuelled vessels. Sci. Total Environ. 2021, 766, 144319. [Google Scholar] [CrossRef]
- Liang, X.; Wang, L.; Du, W.; Chen, Y.; Yun, X.; Chen, Y.; Shen, G.; Shen, H.; Yang, X.; Tao, S. Emission factors of oxygenated polycyclic aromatic hydrocarbons from ships in China. Environ. Pollut. 2023, 337, 122483. [Google Scholar] [CrossRef] [PubMed]
- Directive 2005/35/EC of the European Parliament and of the Council of 7 September 2005 on Ship-Source Pollution and on the Introduction of Penalties, Including Criminal Penalties, for Pollution Offences. Available online: http://data.europa.eu/eli/dir/2005/35/2009-11-16 (accessed on 26 June 2024).
- Hughes, E. FuelEU Maritime—Avoiding Unintended Consequences. European Community Shipowners’ Associations (ECSA) 2021. Available online: https://www.ics-shipping.org/wp-content/uploads/2021/05/FuelEU-Maritime-Avoiding-Unintended-Consequences-1.pdf (accessed on 4 July 2024).
- Hwang, D.J. The IMO Action Plan to Address Marine Plastic Litter from Ships and Its Follow-Up Timeline. J. Int. Marit. Saf. Environ. Aff. Shipp. 2020, 4, 32–39. [Google Scholar] [CrossRef]
- McMillan, M.L.; Murphy, C.K. Temporary viscosity loss and its relationship to journal bearing performance. SAE Spec. Publ. 1978, 429, 63–77. [Google Scholar]
- Duda, J.L.; Klaus, E.E.; Lin, S.C.; Lee, F.L. High-shear viscosity studies of polymer-containing lubricants. Tribol. Ser. 1987, 11, 325–332. [Google Scholar] [CrossRef]
- Boyle, W.P. High pressure, high shear rate capillary viscometer. S. Afr. Mech. Eng. 1976, 26, 78–86. [Google Scholar]
- Cho, Y.I.; Choi, E.; Kirkland, W.H. The rheology and hydrodynamic analysis of grease flows in a circular pipe. Tribol. Trans. 1993, 36, 545–554. [Google Scholar] [CrossRef]
- Wong, P.L.; Lingard, S.; Cameron, A. High Pressure Viscosity and Shear Response of Oil using the Rotating Optical Micro-Viscometer. Tribol. Ser. 1995, 30, 199–205. [Google Scholar] [CrossRef]
- Shah, R.; Chen, R.; Bala, V. Viscosity Measurement at High Temperature and Varying Shear Rates for Engine Lubricants. Petro Industry News. 2020. Available online: https://www.petro-online.com/article/analytical-instrumentation/11/koehler-instrument-company/viscosity-measurement-at-high-temperature-and-varying-shear-rates-for-engine-lubricants/2774 (accessed on 4 July 2024).
- Wolak, A.; Zając, G.; Fijorek, K.; Janocha, P.; Matwijczuk, A. Experimental investigation of the viscosity parameters ranges—Case study of engine oils in the selected viscosity grade. Energies 2020, 13, 3152. [Google Scholar] [CrossRef]
- Alnes, Ø.Å.; Sethumadhavan, A. Environmentally Acceptable Stern Tube Lubricants—How to Avoid Costly Failures DNV-GL. 2019. Available online: https://www.dnv.com/maritime/webinars-and-videos/on-demand-webinars/access/eal/ (accessed on 16 September 2024).
- Khonsari, M.M.; Booser, E.R. Applied Tribology: Bearing Design and Lubrication, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2017; ISBN 978-1118700280. [Google Scholar]
- Lugt, P.M. Grease Lubrication in Rolling Bearings; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-1118353912. [Google Scholar] [CrossRef]
- Spikes, H.A.; Olver, A.V. Basics of mixed lubrication. Lub. Sci. 2003, 16, 1–28. [Google Scholar] [CrossRef]
- Stachowiak, G.W.; Batchelor, A.W. Engineering Tribology, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2014; ISBN 978-012-397047-3. [Google Scholar]
- Dowson, D. A generalized Reynolds equation for fluid-film lubrication. Int. J. Mech. Sci. 1962, 4, 9–170. [Google Scholar] [CrossRef]
- Barszczewska, A.; Piątkowska, E.; Litwin, W. Selected problems of experimental testing marine stern tube bearings. Pol. Mar. Res. 2019, 26, 142–154. [Google Scholar] [CrossRef]
- Litwin, W. Experimental research on marine oil-lubricated stern tube bearing. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2019, 233, 1773–1781. [Google Scholar] [CrossRef]
- Zhang, Z.; Ouyang, W.; Liang, X.; Yan, X.; Yuan, C.; Zhou, X.; Guo, Z.; Dong, C.; Liu, Z.; Jin, Y.; et al. Review of the evolution and prevention of friction, wear, and noise for water-lubricated bearings used in ships. Friction 2024, 12, 1–38. [Google Scholar] [CrossRef]
- Qin, H.; Yang, C.; Zhu, H.; Li, X.; Li, Z.; Xu, X. Experimental analysis on friction-induced vibration of water-lubricated bearings in a submarine propulsion system. Ocean Eng. 2020, 203, 107239. [Google Scholar] [CrossRef]
- Yuan, C.; Guo, Z.; Tao, W.; Dong, C.; Bai, X. Effects of different grain sized sands on wear behaviours of NBR/casting copper alloys. Wear 2017, 384–385, 185–191. [Google Scholar] [CrossRef]
- Jia, Z.; Guo, Z.; Yuan, C. Effect of Material Hardness on Water Lubrication Performance of Thermoplastic Polyurethane under Sediment Environment. J. Mat. Eng. Perform. 2021, 30, 7532–7541. [Google Scholar] [CrossRef]
- Verma, J.; Nagdeve, L.; Kumar, H. Tribological investigations into pin-on-disc tribometer under dry sliding conditions at various temperature ranges. J. Proc. Mech. Eng. 2022, 236, 178–186. [Google Scholar] [CrossRef]
- Al-Samarai, R.A.; Haftirman, K.R.A.; Al-Douri, Y. The Influence of Roughness on the Wear and Friction Coefficient under dry and lubricated sliding. Int. J. Sci. Eng. Res. 2012, 3, 1–6. [Google Scholar]
- Archard, J.F. Contact and rubbing of flat surfaces. J. App. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Soundararajan, S.; Muthukutti, G.P.; Kumarasamy, S.P.; Vijayananth, K.; Barik, D.; Sharma, P.; Paramasivam, P. Investigating the tribological characteristics of copper surface composites reinforced with high entropy alloy (AlCoCrCuFe) through friction stir processing. Sci Rep. 2023, 13, 22652. [Google Scholar] [CrossRef]
- Goti, E.; Mazza, L.; Mura, A.; Zhang, B. An early method for the technical diagnosis of pin-on-disk tribometers by reference friction measurements in EHL conditions. Measurement 2020, 166, 108169. [Google Scholar] [CrossRef]
- Scharf, T.W.; Prasad, S.V. Solid lubricants: A review. J. Mat. Sci. 2013, 48, 511–531. [Google Scholar] [CrossRef]
- Tohyama, M.; Ohmiya, Y.; Hirose, M.; Matsuyama, H.; Toda, T.; Hasegawa, K.; Onizuka, T.; Sato, H.; Yokoi, M.; Sato, N. Measurement of Oil-Film Thickness and Observation of Oil Distribution in High-Speed Deep-Groove Ball Bearings. Tribol. Online 2024, 19, 149–156. [Google Scholar] [CrossRef]
- Mahto, N.K.; Shafali, K.; Tyagi, R.; Sharma, O.P.; Khatri, O.P.; Sinha, S.K. Friction and wear of Ni3Al-based composites containing Ag and Cu modified hBN at elevated temperatures. Wear 2023, 530, 205065. [Google Scholar] [CrossRef]
- Trivedi, H.K.; Bhatt, D.V. Effect of Lubricating Oil on Tribological behaviour in Pin on Disc Test Rig. Tribol. Ind. 2017, 39, 90–99. [Google Scholar] [CrossRef]
- Elagouz, A.; Ali, M.K.; Hou, X.; Abdelkareem, M.A.; Hassan, M.A. Frictional performance evaluation of sliding surfaces lubricated by zinc-oxide nano-additives. Surf. Eng. 2019, 36, 144–157. [Google Scholar] [CrossRef]
- Narayanasarma, S.; Mohan, M.S.; Kuzhiveli, B.T. Comparative evaluation of physiochemical, rheological, tribological and thermal properties of nanoparticle loaded and bio-lube-blended polyolester lubricant. J. Therm. Anal. Calorim. 2023, 148, 2905–2919. [Google Scholar] [CrossRef]
- Fayaz, S.D.; Wani, M.F. Evaluating Scuffing Failure in Dry Sliding Conditions of Monolayer Chromium Piston Ring/Bulk Grey Cast Iron Liner Interface. Tribol. Online 2020, 15, 9–17. [Google Scholar] [CrossRef]
- Biberger, J.; Füßer, H.J. Development of a test method for a realistic, single parameter-dependent analysis of piston ring versus cylinder liner contacts with a rotational tribometer. Trib. Int. 2017, 113, 111–124. [Google Scholar] [CrossRef]
- de Castro Neves, M.G.; de Arruda, M.A.; Freitas, J.C.S.; Batista, E.A.; Prado, T.A.; Naka, M.H. Construction of a tribometer for tests with biolubricants. In Proceedings of the 10th IEEE/IAS International Conference on Industry Applications, Fortaleza, Brazil, 5–7 November 2012; pp. 1–7. [Google Scholar] [CrossRef]
- Singhal, S.; Ritwik, A.; Rajan, K.; Dwivedi, R.K. Critical Review on Tribometers and Their Contact Mechanism. In Optimization of Industrial Systems; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar] [CrossRef]
- ASTM D5481-19; Standard Test Method for Measuring Apparent Viscosity at High-Temperature and High-Shear Rate by Multicell Capillary Viscometer. ASTM International: West Conshohocken, PA, USA, 2019. Available online: https://www.astm.org/d5481-20.html (accessed on 16 September 2024).
- Wolak, A. Statistical Analysis of HTHS Viscosity Rating of Present-Day Engine Oils. Tribol. Trans. 2019, 62, 34–41. [Google Scholar] [CrossRef]
- Macián, V.; Tormos, B.; Ruiz, S.; Miró, G. Low viscosity engine oils: Study of wear effects and oil key parameters in a heavy duty engine fleet test. Tribol. Int. 2016, 94, 240–248. [Google Scholar] [CrossRef]
- Bair, S. A more complete description of the shear rheology of high-temperature high-shear journal bearing lubrication. Tribol. Trans. 2006, 49, 39–45. [Google Scholar] [CrossRef]
- Zewdie, H.; Tibba, G.S.; Zeleke, D.S.; Perumal, V.; Castaneiras, P.D.R. A Review on the Impact of Bio-Additives on Tribological Behavior of Diesel Fuels. Adv. Tribol. 2024, 2024, 5530337. [Google Scholar] [CrossRef]
- Hu, J.B.; Du, Z.X.; Li, C.X.; Min, E. Study on the lubrication properties of biodiesel as fuel lubricity enhancers. Fuel 2005, 84, 1601–1606. [Google Scholar] [CrossRef]
- Drown, D.C.; Harper, K.; Frame, E. Screening vegetable oil alcohol esters as fuel lubricity enhancers. J. Am. Oil Chem. Soc. 2001, 78, 579–584. [Google Scholar] [CrossRef]
- Wadumesthrige, K.; Ara, M.; Salley, S.O.; Ng, K.Y.S. Investigation of Lubricity Characteristics of Biodiesel in Petroleum and Synthetic Fuel. Energy Fuels 2009, 23, 2229–2234. [Google Scholar] [CrossRef]
- Xu, Y.F.; Wang, Q.J.; Hu, X.G.; Li, C.; Zhu, X.F. Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig. Energy 2010, 35, 283–287. [Google Scholar] [CrossRef]
- ASTM D6079-20; Standard Test Method for Evaluating Lubricity of Diesel Fuels by the High-Frequency Reciprocating Rig (HFRR). ASTM International: West Conshohocken, PA, USA, 2023. Available online: https://www.astm.org/d6079-22.html (accessed on 16 September 2024).
- ASTM D2266-16; Standard Test Method for Wear Preventive Characteristics of Lubricating Grease (Four-Ball Method). ASTM International: West Conshohocken, PA, USA, 2016. Available online: https://www.astm.org/d2266-91r96.html (accessed on 16 September 2024).
- Zulkifli, N.W.M.; Kalam, M.A.; Masjuki, H.H.; Shahabuddin, M.; Yunus, R. Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant. Energy 2013, 54, 167–173. [Google Scholar] [CrossRef]
- Singh, Y.; Sharma, A.; Singh, N.K.; Chen, W.H. Development of bio-based lubricant from modified desert date oil (balanites aegyptiaca) with copper nanoparticles addition and their tribological analysis. Fuel 2020, 259, 116259. [Google Scholar] [CrossRef]
- Kumar, N.; Varun Chauhan, S. Analysis of tribological performance of biodiesel. J. Eng. Tribol. 2014, 228, 797–807. [Google Scholar] [CrossRef]
- Ribeiro, P.R.C.F.; do Nascimento, M.R.; Cavalcante, C.L.; de Luna, F.M.T. Synthesis and tribological properties of bio-based lubricants from soybean oil. Biomass Convers. Biorefinery 2024, 14, 20509–20521. [Google Scholar] [CrossRef]
- Sadiq, I.O.; Suhaimi, M.A.; Sharif, S.; Yusof, N.M.; Hisam, M.J. Enhanced performance of bio-lubricant properties with nano-additives for sustainable lubrication. Indust. Lub. Trib 2022, 74, 995–1006. [Google Scholar] [CrossRef]
- Bachchhav, B.; Bagchi, H. Effect of surface roughness on friction and lubrication regimes. Mater. Today Proc. 2021, 38, 169–173. [Google Scholar] [CrossRef]
- Simpson, M.; Rahmani, R.; Dolatabadi, N.; Morris, N.; Jones, D.; Craig, C. An analytical friction model for point contacts subject to boundary and mixed elastohydrodynamic lubrication. Tribol. Int. 2024, 196, 109699. [Google Scholar] [CrossRef]
- Pogodina, N.V.; Amann, T.; Dold, C.; Metwalli, E.; Müller-Buschbaum, P.; Kailer, A.; Friedrich, C. Triborheology and orientational dynamics of ionic liquid crystals. J. Mol. Liq. 2014, 192, 118–126. [Google Scholar] [CrossRef]
- Duque-Ossa, L.C.; Ruiz-Pulido, G.; Medina, D.I. Triborheological Study under Physiological Conditions of PVA Hydrogel/HA Lubricant as Synthetic System for Soft Tissue Replacement. Polymers 2021, 13, 746. [Google Scholar] [CrossRef]
- Avilés-Castrillo, J.I.; Quintanar-Guerrero, D.; Aguilar-Pérez, K.M.; Medina, D.I. Biotriborheology of Shea Butter Solid Lipid Nanoparticles in a topical cream. Tribol. Int. 2021, 156, 106836. [Google Scholar] [CrossRef]
- Andablo-Reyes, E.; Vicente, J.D.; Hidalgo-Alvarez, R. On the nonparallelism effect in thin film plate-plate rheometry. J. Rheol. 2011, 55, 981–986. [Google Scholar] [CrossRef]
- Briscoe, W.H. Aqueous boundary lubrication: Molecular mechanisms, design strategy, and terra incognita. Curr. Opin. Colloid Interface Sci. 2017, 27, 1–8. [Google Scholar] [CrossRef]
- Bi, Z.M.; Mueller, D.W.; Zhang, C.W.J. State of the art of friction modelling at interfaces subjected to elastohydrodynamic lubrication (EHL). Friction 2021, 9, 207–227. [Google Scholar] [CrossRef]
- Wagh, V.P.; Saboo, N.; Gupta, A. Tribology as emerging science for warm mix technology: A review. Constr. Build. Mater. 2022, 359, 129445. [Google Scholar] [CrossRef]
- ISO 3448; Petroleum Products—Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity. International Organization for Standardization: Geneva, Switzerland, 2013.
- Hamrock, B.J.; Schmid, S.R.; Jacobson, B.O. Fundamentals of Fluid Film Lubrication, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Totten, G.E. Handbook of Lubrication and Tribology: Volume I Application and Maintenance, 2nd ed.; Taylor & Francis: Abingdon, UK, 2006; ISBN 9780849320958. [Google Scholar]
- Stolarski, T.A. Tribology in Machine Design; Butterworth-Heinemann: Oxford, UK, 2000; ISBN 0-7506-3623-8. [Google Scholar]
- Pirro, D.M.; Webster, M.; Daschner, E. Lubrication Fundamentals: Revised and Expanded, 3rd ed.; Taylor & Francis: Abingdon, UK, 2016; ISBN 9781498752909. [Google Scholar] [CrossRef]
- van de Voort, F.R.; Sedman, J.; Pinchuk, D. An Overview of Progress and New Developments in FTIR Lubricant Condition Monitoring Methodology. In-Service Lubricant and Machine Analysis, Diagnostics, and Prognostics. J. ASTM Int. 2011, 1536, 55–73. [Google Scholar] [CrossRef]
- van De Voort, F.R.; Sedman, J. FTIR condition monitoring of in-service lubricants: Ongoing developments and future perspectives. Tribol. Trans. 2006, 49, 410–418. [Google Scholar] [CrossRef]
- van de Voort, F.R. FTIR Condition Monitoring of In-Service Lubricants: Analytical Role and Quantitative Evolution. Tribol. Online 2022, 17, 144–161. [Google Scholar] [CrossRef]
- Anton Paar GmbH, Graz, Austria. Anton Paar 3001 Viscometer. Available online: https://www.anton-paar.com/corp-en/products/details/svm-series/?sku=105001 (accessed on 26 June 2024).
- Bird, R.B.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1987; ISBN 978-0-471-80245-7. [Google Scholar]
- Barnes, H.A.; Hutton, J.F.; Walters, K. An Introduction to Rheology; Elsevier: Amsterdam, The Netherlands, 1989; ISBN 9780444871404. [Google Scholar]
- Wichterle, K.; Večeř, M. Transport and Surface Phenomena; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128189948. [Google Scholar]
- Srivastava, S.P. Advances in Lubricant Additives and Tribology; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9788188305940. [Google Scholar]
- Hong, S.H. Tribology in Marine Diesel Engines. In Tribology of Machine Elements—Fundamentals and Applications; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Shah, R.; Woydt, M.; Zhang, S. The Economic and Environmental Significance of Sustainable Lubricants. Lubricants 2021, 9, 21. [Google Scholar] [CrossRef]
- Draffin, N. An Introduction to Marine Lubricants; Petrospot Ltd.: Banbury, UK, 2017; ISBN 978-1-908663-27-6. [Google Scholar]
- Tanner, R.I. Engineering Rheology; Oxford University Press: Oxford, UK, 2000; ISBN 9780198564737. [Google Scholar] [CrossRef]
- Wein, O.; Vecer, M.; Havlica, J. End effects in rotational viscometry I. No-slip shear-thinning samples in the Z40 DIN sensor. Rheol. Acta 2007, 46, 765–772. [Google Scholar] [CrossRef]
- Ferry, J.D. Viscoelastic Properties of Polymers, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1980; ISBN 0-471-04894-1. [Google Scholar]
- Rao, T.V.V.L.N.; Kasolang, S.B.; Xie, G.; Katiyar, J.K.; Rani, A.M.A. (Eds.) Green Tribology: Emerging Technologies and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Dowson, D.; Higginson, G.R.; Whitaker, A.V.E. Elastohydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication; Pergamon Press: Oxford, UK, 1966; ISBN 0080114725. [Google Scholar]
Rotational Tribometers | |||
Type | Description | Applications | References |
Pin-on-Disc | A stationary pin is pressed against a rotating disc under a controlled load. The friction force is measured as the disc rotates. | Studying friction and wear behavior of materials under sliding contact. | [43,44,45,46,47] |
Ball-on-Disc | Similar to PoD but uses a ball instead of a pin. The ball rotates or slides against the disc, and friction forces are recorded. | Testing lubricants and coatings to evaluate friction properties. | [48,49,50,51] |
Ring-on-Liner | A ring is rotated against a liner or flat surface to simulate contact conditions in bearings and seals. | Automotive and marine applications for studying frictional properties of lubricants and materials. | [52,53,54,55] |
Linear Tribometers | |||
Type | Description | Applications | References |
Pin-on-Plate | A pin or ball slides linearly against a flat plate. The friction force is measured as the pin moves back and forth. | Studying reciprocating motion, such as in piston–cylinder assemblies. | [56,57] |
Capillary Viscometers ASTM D5481 | Oil is forced through a capillary tube at high temperature; pressure drop and flow rate determine viscosity. Friction factor derived from these measures under high-shear conditions. | Measuring high-temperature high-shear (HTHS) viscosity of lubricants, relevant to friction factors in high-shear environments. | [58,59,60,61] |
Other Tribological Instruments | |||
Type | Description | Applications | References |
High-Frequency Reciprocating Rig (HFRR) | A small ball oscillates against a flat surface under controlled conditions. Friction force and wear scar are measured. | Evaluating the impact of fuels and lubricants on friction and wear. | [62,63,64,65,66,67] |
Four-Ball Wear Tester | Three stationary balls form a triangle; a fourth ball rotates against them. Friction force and wear scars are analyzed. | Assessing extreme pressure and anti-wear properties of lubricants. | [68,69,70,71,72,73] |
Tribo-rheology | Rotational rheometer with axial lift mechanism and measuring cell for normal forces. Stationary plates and rotating balls allow for adjustment of speed and load parameters. | Analyzing tribological properties under controlled rotational conditions. Measurement of friction coefficients at varying speeds, loads, and lubrication conditions. Stribeck curve analysis | [74,75,76,77,78,79,80,81,82] |
Sample | Specification | Additives | ISO VG | ||
---|---|---|---|---|---|
Phosphorus | Sulfur | Antioxidant | |||
C-MIN | Commercial mineral stern tube oil | - | ✔ | - | 75 |
C-EAL | Commercial synthetic ester EAL | - | - | - | 100 |
N-EAL-A1X | Newly formulated EAL | ✔ | ✔ | ✔ | 100 |
Wavelengths (cm−1) | Functional Group | Resonance Mode of Vibrations | Presence in Sample |
---|---|---|---|
3010 | =C-H (cis-) | Stretching | none |
2924 | -C-H (CH2) | Asymmetrical stretching | all |
2853 | -C-H (CH2) | Symmetrical stretching | all |
1743 | -C=O (ester) | Stretching | N-EAL-A1X, C-EAL |
1650 | -C=C- (cis-) | Stretching | none |
1465 | -C-H (CH2) | Bending | all |
1420 | =C-H (cis-) | Bending | none |
1375 | -C-H (CH3) | Symmetrical bending | all |
1240 | -C-O | Stretching | N-EAL-A1X, C-EAL |
1160 | -C-O | Stretching | N-EAL-A1X, C-EAL |
1120 | -C-O | Stretching | N-EAL-A1X, C-EAL |
1110 | -C-O | Stretching | N-EAL-A1X, C-EAL |
966 | -HC=CH- (trans-) | Bending out of plane | none |
721 | -CH2 | Rocking | all |
690 | -HC=CH- (cis) | Bending out of plane | none |
RT (min) | Max. m/z [M + H] | Mass Fraction (Peak Area %) | ||
---|---|---|---|---|
N-EAL-A1X | C-EAL | |||
1 | 7.9 | 369.3055 | 1.29 | 7.2 |
2 | 10.6 | 397.3385 | 1.95 | 8.89 |
3 | 13.5 | 341.2742 | 2.15 | - |
3 | 14.0 | 425.3924 | - | 1.38 |
4 | 17.2 | 369.3066 | 25.20 | 23.66 |
5 | 22.1 | 397.3383 | 36.16 | 32.69 |
6 | 28.0 | 397.3374 | 24.49 | 21.04 |
7 | 34.5 | 425.3689 | 8.77 | 5.13 |
Sample | Kinematic Viscosity (mm2/s) | Viscosity Index | Density (g/cm3) | Dynamic Viscosity (mPa·s) | |
---|---|---|---|---|---|
40 °C | 100 °C | - | 40 °C | 40 °C | |
C-MIN | 71.46 | 9.50 | 111 | 0.8648 | 61.80 |
C-EAL | 98.20 | 13.69 | 140 | 0.9240 | 90.74 |
N-EAL-A1X | 108.84 | 16.87 | 169 | 0.9424 | 102.57 |
Sample | A | B |
---|---|---|
CMIN | 6.4124 × 109 | 3.684 |
C-EAL | 4.6427 × 108 | 3.210 |
N-EAL-A1X | 1.0408 × 108 | 2.946 |
Sample | Temperature T (°C) | Shear Rate γ (s−1) | Shear Stress τ (Pa) | Dynamic Viscosity η (mPa.s) |
C-MIN | 10 | 2600 | 896 | 345 |
20 | 3840 | 677 | 176 | |
40 | 8890 | 523 | 59 | |
C-EAL | 10 | 2420 | 1167 | 482 |
20 | 3320 | 840 | 253 | |
40 | 7580 | 668 | 88 | |
N-EAL-A1X | 10 | 2360 | 1134 | 481 |
20 | 3540 | 928 | 262 | |
40 | 7610 | 742 | 98 |
Sample | Shear Stress | Shear Rate | ||
---|---|---|---|---|
Power-Law Model | Exponential Model | |||
A | B | A | B | |
C-MIN | 2187.1 | −0.389 | 1708.8 | 0.0411 |
C-EAL | 2895.5 | −0.402 | 1609.6 | 0.0389 |
N-EAL-A1X | 2300.6 | −0.306 | 1601.6 | 0.0385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Večeř, M.; Stavárek, P.; Krčková, S.; Zelenka, L.; Armada, S. Environmentally Acceptable Lubricants for Stern Tube Application: Shear Stability and Friction Factor. Lubricants 2024, 12, 323. https://doi.org/10.3390/lubricants12090323
Večeř M, Stavárek P, Krčková S, Zelenka L, Armada S. Environmentally Acceptable Lubricants for Stern Tube Application: Shear Stability and Friction Factor. Lubricants. 2024; 12(9):323. https://doi.org/10.3390/lubricants12090323
Chicago/Turabian StyleVečeř, Marek, Petr Stavárek, Simona Krčková, Ladislav Zelenka, and Sergio Armada. 2024. "Environmentally Acceptable Lubricants for Stern Tube Application: Shear Stability and Friction Factor" Lubricants 12, no. 9: 323. https://doi.org/10.3390/lubricants12090323
APA StyleVečeř, M., Stavárek, P., Krčková, S., Zelenka, L., & Armada, S. (2024). Environmentally Acceptable Lubricants for Stern Tube Application: Shear Stability and Friction Factor. Lubricants, 12(9), 323. https://doi.org/10.3390/lubricants12090323