Effect of Sodium Alkane Sulfonate Addition on Tribological Properties of Emulsion for Cold Rolling Strips: Experimental and Simulation Investigations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Emulsions
2.2. Tribology Tests and Characterizations
2.3. Quantum Chemical Calculations
2.4. Molecular Dynamics Simulation
3. Results and Discussion
3.1. Tribological Properties
3.2. Chemical Activity and Electrostatic Potential
3.3. Adsorption Energy of Molecules on the Surface
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meng, Y.; Xu, J.; Jin, Z.; Prakash, B.; Hu, Y. A Review of Recent Advances in Tribology. Friction 2020, 8, 221–300. [Google Scholar] [CrossRef]
- Yin, N.; Xing, Z.; He, K.; Zhang, Z. Tribo-Informatics Approaches in Tribology Research: A Review. Friction 2023, 11, 1–22. [Google Scholar] [CrossRef]
- Aymard, A.; Delplanque, E.; Dalmas, D.; Scheibert, J. Designing Metainterfaces with Specified Friction Laws. Science 2024, 383, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Yin, C.; Wu, Y.; Zhou, Q.; Liu, X. Atomic Insights into the Deformation Mechanism of an Amorphous Wrapped Nanolamellar Heterostructure and Its Effect on Self-Lubrication. J. Mater. Res. Technol. 2023, 26, 4206–4218. [Google Scholar] [CrossRef]
- Guo, J.; Ding, B.; Wang, Y.; Han, Y. Co-Optimization for Hydrodynamic Lubrication and Leakage of V-Shape Textured Bearings via Linear Weighting Summation. Phys. Scr. 2023, 98, 125218. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, L.; Qu, P.; Li, S.; Jiang, Z. Multiscale Interface Stress Characterisation in Cold Rolling. Met. Mater. Int. 2021, 27, 1997–2013. [Google Scholar] [CrossRef]
- Yan, X.; Sun, J. Pitting Corrosion Behavior and Surface Microstructure of Copper Strips When Rolled with Oil-in-Water Emulsions. Materials 2021, 14, 7911. [Google Scholar] [CrossRef]
- Tang, Z.; Li, S. A Review of Recent Developments of Friction Modifiers for Liquid Lubricants (2007–Present). Curr. Opin. Solid State Mater. Sci. 2014, 18, 119–139. [Google Scholar] [CrossRef]
- Spikes, H. Friction Modifier Additives. Tribol. Lett. 2015, 60, 5. [Google Scholar] [CrossRef]
- Doll, K.M.; Sharma, B.K. Emulsification of Chemically Modified Vegetable Oils for Lubricant Use. J. Surfactants Deterg. 2011, 14, 131–138. [Google Scholar] [CrossRef]
- Onodera, T.; Martin, J.M.; Minfray, C.; Dassenoy, F.; Miyamoto, A. Antiwear Chemistry of ZDDP: Coupling Classical MD and Tight-Binding Quantum Chemical MD Methods (TB-QCMD). Tribol. Lett. 2013, 50, 31–39. [Google Scholar] [CrossRef]
- Tan, Y.; Huang, W.; Wang, X. Molecular Orbital Indexes Criteria for Friction Modifiers in Boundary Lubrication. Tribol. Int. 2002, 35, 381–384. [Google Scholar] [CrossRef]
- Si, R.; Ren, Q.; He, Y.; Long, J. Molecular Self-Assembling Structure and Formation Mechanism of Lubricating Grease: A Computational Simulation Approach. Tribol. Int. 2023, 179, 108150. [Google Scholar] [CrossRef]
- Shi, J.; Zhou, Q.; Sun, K.; Liu, G.; Zhou, F. Understanding Adsorption Behaviors of Organic Friction Modifiers on Hydroxylated SiO2 (001) Surfaces: Effects of Molecular Polarity and Temperature. Langmuir 2020, 36, 8543–8553. [Google Scholar] [CrossRef] [PubMed]
- Cañellas, G.; Emeric, A.; Combarros, M.; Navarro, A.; Beltran, L.; Vilaseca, M.; Vives, J. Tribological Performance of Esters, Friction Modifier and Antiwear Additives for Electric Vehicle Applications. Lubricants 2023, 11, 109. [Google Scholar] [CrossRef]
- Acero, P.N.; Mohr, S.; Bernabei, M.; Fernández, C.; Domínguez, B.; Ewen, J.P. Molecular Simulations of Surfactant Adsorption on Iron Oxide from Hydrocarbon Solvents. Langmuir 2021, 37, 14582–14596. [Google Scholar] [CrossRef] [PubMed]
- Verma, C.; Olasunkanmi, L.O.; Ebenso, E.E.; Quraishi, M.A. Substituents Effect on Corrosion Inhibition Performance of Organic Compounds in Aggressive Ionic Solutions: A Review. J. Mol. Liq. 2018, 251, 100–118. [Google Scholar] [CrossRef]
- Shayesteh, H.; Raji, F.; Kelishami, A.R. Influence of the Alkyl Chain Length of Surfactant on Adsorption Process: A Case Study. Surf. Interfaces 2021, 22, 100806. [Google Scholar] [CrossRef]
- Gattinoni, C.; Ewen, J.P.; Dini, D. Adsorption of Surfactants on α-Fe2O3(0001): A Density Functional Theory Study. J. Phys. Chem. C 2018, 122, 20817–20826. [Google Scholar] [CrossRef]
- Verma, C.; Hussain, C.M.; Quraishi, M.A.; Alfantazi, A. Green Surfactants for Corrosion Control: Design, Performance and Applications. Adv. Colloid Interface Sci. 2023, 311, 102822. [Google Scholar] [CrossRef]
- Verma, C.; Goni, L.K.M.O.; Yaagoob, I.Y.; Vashisht, H.; Mazumder, M.A.J.; Alfantazi, A. Polymeric Surfactants as Ideal Substitutes for Sustainable Corrosion Protection: A Perspective on Colloidal and Interface Properties. Adv. Colloid Interface Sci. 2023, 318, 102966. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, H.; Zheng, Z.; Qiao, D.; Feng, D.; Gong, Z.; Dong, G. Effect of Functional Groups on Tribological Properties of Lubricants and Mechanism Investigation. Friction 2023, 11, 911–926. [Google Scholar] [CrossRef]
- Huang, G.; Fan, S.; Ba, Z.; Cai, M.; Qiao, D. Insight into the Lubricating Mechanism for Alkylimidazolium Phosphate Ionic Liquids with Different Alkyl Chain Length. Tribol. Int. 2019, 140, 105886. [Google Scholar] [CrossRef]
- Cyriac, F.; Yamashita, N.; Hirayama, T.; Yi, T.X.; Poornachary, S.K.; Chow, P.S. Mechanistic Insights into the Effect of Structural Factors on Film Formation and Tribological Performance of Organic Friction Modifiers. Tribol. Int. 2021, 164, 107243. [Google Scholar] [CrossRef]
- Hirayama, T.; Maeda, M.; Sasaki, Y.; Matsuoka, T.; Komiya, H.; Hino, M. Growth of Adsorbed Additive Layer for Further Friction Reduction. Lubr. Sci. 2019, 31, 171–178. [Google Scholar] [CrossRef]
- Liu, C.; Tian, Y.; Khan, Z.A.; Meng, Y. Mitigation of Tribocorrosion of Metals in Aqueous Solutions by Potential-Enhanced Adsorption of Surfactants. Friction 2023, 11, 801–819. [Google Scholar] [CrossRef]
- Correia, E.L.; Thakur, S.; Ervin, A.; Shields, E.; Razavi, S. Adsorption of Surfactant Molecules onto the Surface of Colloidal Particles: Case of like-Charged Species. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132142. [Google Scholar] [CrossRef]
- He, S.; Meng, Y.; Tian, Y. Correlation Between Adsorption/Desorption of Surfactant and Change in Friction of Stainless Steel in Aqueous Solutions Under Different Electrode Potentials. Tribol. Lett. 2011, 41, 485–494. [Google Scholar] [CrossRef]
- Yang, X.; Meng, Y.; Tian, Y. Potential-Controlled Boundary Lubrication of Stainless Steels in Non-Aqueous Sodium Dodecyl Sulfate Solutions. Tribol. Lett. 2014, 53, 17–26. [Google Scholar] [CrossRef]
- Lavanya, M.; Machado, A.A. Surfactants as Biodegradable Sustainable Inhibitors for Corrosion Control in Diverse Media and Conditions: A Comprehensive Review. Sci. Total Environ. 2024, 908, 168407. [Google Scholar] [CrossRef]
- Gao, T.; Li, J.; Wang, W.; Luo, J. Extremely Low Friction on Gold Surface with Surfactant Molecules Induced by Surface Potential. Friction 2023, 11, 513–523. [Google Scholar] [CrossRef]
- Zhang, S.; Peng, B.; Liu, Q.; Liu, Z. The Effect of Sodium Carbonate on Reducing the Interfacial Tension of Petroleum Sulfonate. J. Pet. Sci. Eng. 2021, 200, 108255. [Google Scholar] [CrossRef]
- Liu, C.; Fang, J.; Wen, X.; Tian, Y.; Meng, Y. Active Control of Boundary Lubrication of Ceramic Tribo-Pairs in Sodium Dodecyl Sulfate Aqueous Solutions. Tribol. Lett. 2021, 69, 144. [Google Scholar] [CrossRef]
- Saji, V.S. Temporary Rust Preventives—A Retrospective. Prog. Org. Coat. 2020, 140, 105511. [Google Scholar] [CrossRef]
- Migahed, M.A.; Al-Sabagh, A.M. Beneficial Role of Surfactants as Corrosion Inhibitors in Petroleum Industry: A Review Article. Chem. Eng. Commun. 2009, 196, 1054–1075. [Google Scholar] [CrossRef]
- Zhu, Y.; Free, M.L.; Yi, G. The Effects of Surfactant Concentration, Adsorption, Aggregation, and Solution Conditions on Steel Corrosion Inhibition and Associated Modeling in Aqueous Media. Corros. Sci. 2016, 102, 233–250. [Google Scholar] [CrossRef]
- ASTM D4172-21; Standard Test Method for Wear Preventive Characteristics of Lubricating Fluid (Four-Ball Method). ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- Singh, R.N.; Kumar, A.; Tiwari, R.K.; Rawat, P. A Combined Experimental and Theoretical (DFT and AIM) Studies on Synthesis, Molecular Structure, Spectroscopic Properties and Multiple Interactions Analysis in a Novel Ethyl-4-[2-(Thiocarbamoyl)Hydrazinylidene]-3,5-Dimethyl-1H-Pyrrole-2-Carboxylate and Its Dimer. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2013, 112, 182–190. [Google Scholar] [CrossRef]
- Montero, J.M.; Isaacs, M.A.; Lee, A.F.; Lynam, J.M.; Wilson, K. The Surface Chemistry of Nanocrystalline MgO Catalysts for FAME Production: An in Situ XPS Study of H2O, CH3OH and CH3OAc Adsorption. Surf. Sci. 2016, 646, 170–178. [Google Scholar] [CrossRef]
Component | Ingredient | Content (wt.%) |
---|---|---|
Emulsifier | Span 80 | 2.34 |
Emulsifier | Tween 80 | 2.36 |
Ester friction modifiers | PETO/BST/TMPTO | 4.00 |
Corrosion inhibitor | SAS | 2.00 |
Extreme pressure agent | Dibutyl Phosphite | 3.00 |
Antioxidants, pH regulators and bactericides, etc. | - | 6.00 |
Base oil | Palm oil | Remainder |
Molecule | PETO | BST | TMPTO | SAS |
---|---|---|---|---|
EHOMO (eV) | −6.361 | −7.619 | −6.457 | −7.676 |
ELUMO (eV) | −0.363 | −0.101 | −0.308 | −0.315 |
ΔE (eV) | 5.998 | 7.518 | 6.149 | 7.991 |
I (eV) | 6.361 | 7.619 | 6.457 | 7.676 |
A (eV) | 0.363 | 0.101 | 0.308 | −0.315 |
χ (eV) | 3.362 | 3.860 | 3.383 | 3.680 |
η (eV) | 2.999 | 3.759 | 3.074 | 3.995 |
σ (eV−1) | 0.333 | 0.266 | 0.325 | 0.250 |
ω (eV) | 1.885 | 1.982 | 1.861 | 1.695 |
Molecule | Atom | ƒk+ | ƒk− | Atom | ƒk+ | ƒk− |
---|---|---|---|---|---|---|
PETO | O65 | 0.018 | −0.001 | O121 | 0.001 | 0.002 |
C64 | 0.085 | −0.001 | C120 | 0.013 | 0.000 | |
O67 | 0.082 | −0.002 | O123 | 0.020 | 0.008 | |
C83 | −0.002 | 0.021 | C139 | 0.001 | 0.001 | |
C84 | −0.003 | 0.019 | C140 | 0.006 | 0.002 | |
O177 | 0.026 | −0.002 | O9 | 0.006 | 0.001 | |
C176 | 0.131 | 0.000 | C8 | 0.027 | 0.000 | |
O179 | 0.123 | 0.003 | O11 | 0.025 | −0.001 | |
C195 | 0.003 | 0.153 | C27 | 0.001 | 0.016 | |
C196 | −0.001 | 0.114 | C28 | 0.011 | 0.011 | |
BST | O1 | 0.062 | 0.033 | C | 0.317 | 0.054 |
O2 | 0.238 | 0.207 | ||||
TMPTO | O108 | 0.042 | 0.000 | O55 | 0.002 | 0.002 |
C109 | 0.165 | −0.001 | C56 | 0.012 | 0.001 | |
O125 | 0.131 | 0.001 | O72 | 0.013 | −0.002 | |
C158 | 0.000 | 0.064 | C105 | 0.000 | 0.036 | |
C117 | 0.001 | 0.093 | C64 | −0.001 | 0.038 | |
O2 | 0.026 | 0.000 | C3 | 0.090 | 0.000 | |
O19 | 0.099 | 0.001 | C52 | 0.002 | 0.005 | |
C11 | −0.002 | 0.042 | ||||
SAS | S | 0.011 | 0.067 | O1 | −0.015 | 0.255 |
O2 | −0.016 | 0.253 | O3 | 0.005 | 0.229 | |
Na | 0.973 | 0.056 |
Data Sources | PETO (g/cm3) | BST (g/cm3) | TMPTO (g/cm3) | SAS (g/cm3) |
---|---|---|---|---|
Calculation | 0.913 | 0.855 | 0.905 | 1.046 |
Experiment | 0.926 | 0.861 | 0.918 | 1.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, D.; Sun, J.; Meng, E.; Xu, Y.; Zhang, M. Effect of Sodium Alkane Sulfonate Addition on Tribological Properties of Emulsion for Cold Rolling Strips: Experimental and Simulation Investigations. Lubricants 2024, 12, 135. https://doi.org/10.3390/lubricants12040135
Su D, Sun J, Meng E, Xu Y, Zhang M. Effect of Sodium Alkane Sulfonate Addition on Tribological Properties of Emulsion for Cold Rolling Strips: Experimental and Simulation Investigations. Lubricants. 2024; 12(4):135. https://doi.org/10.3390/lubricants12040135
Chicago/Turabian StyleSu, Daoxin, Jianlin Sun, Erchao Meng, Yueting Xu, and Mengxiao Zhang. 2024. "Effect of Sodium Alkane Sulfonate Addition on Tribological Properties of Emulsion for Cold Rolling Strips: Experimental and Simulation Investigations" Lubricants 12, no. 4: 135. https://doi.org/10.3390/lubricants12040135
APA StyleSu, D., Sun, J., Meng, E., Xu, Y., & Zhang, M. (2024). Effect of Sodium Alkane Sulfonate Addition on Tribological Properties of Emulsion for Cold Rolling Strips: Experimental and Simulation Investigations. Lubricants, 12(4), 135. https://doi.org/10.3390/lubricants12040135