Fumed Silica in Coconut Oil Based Nanofluids for Cooling and Lubrication in Drilling Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanofluid Preparation
2.3. Equipment
3. Results
3.1. Thermal Conductivity
3.2. DSC Assessment
3.2.1. Isobaric Specific Heat Capacity
3.2.2. Latent Melting Heat
- The interfacial liquid layering;
- Particle clustering;
3.3. Drilling Applications
4. Conclusions
- The thermal conductivity of VCO-A200 nanofluids increased with particle loading and reduced at higher temperatures. During the phase change the TC rose more than two times that of the base VCO. The specific capacity enhanced during the phase change and presented a maximum at 2 vol%.
- The effect of temperature (from 20 °C to 30 °C) and silica volume fraction (from 1 to 4 vol%) on the suspension viscosity were measured at two distinct shear rates, 0.1 s−1 (at rest) and 130 s−1 (drilling speed). It was proven that at 20 °C, the viscosity of the suspension 3 vol% was high enough to maintain the shape over the steel plate. At greater temperatures, the viscosity reduced and the nanofluid was able to act as lubricant by melting during the heat exchange of the drilling process.
- Combining flow and thermal properties, it was proposed that the nanofluid VCO-3A200 fulfilled the appropriate conditions for the application as the minimum quantity of cutting fluid (MQCF) in drilling processes. It was demonstrated that the VCO-3A200 nanofluid exhibited sufficient viscosity to gather the metal swarf and reduce the steel plate temperature by about 12 °C without spreading along the plate.
- The behavior of the TC and the specific heat capacity during the phase change was justified by the cluster formation. The aggregation of particles separated by thin liquid layers, named as “liquid-mediated clustering”, could also explain the reduction in the nanofluid latent melting heat under the mass loss prediction.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sankaranarayanan, R.; Rajesh Jesudoss Hynes, N.; Senthil Kumar, J.; Krolczyk, G.M. A comprehensive review on research developments of vegetable-oil based cutting fluids for sustainable machining challenges. J. Manuf. Process. 2021, 67, 286–313. [Google Scholar] [CrossRef]
- Gajrani, K.K.; Sankar, M.R. Role of eco-friendly cutting fluids and cooling techniques in machining. In Materials Forming, Machining and Post Processing. Materials Forming, Machining and Tribology; Gupta, K., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 159–181. [Google Scholar] [CrossRef]
- Song, M.; Du, J. Mechanisms for realizing the ecological products value: Green finance intervention and support. Int. J. Prod. Econ. 2024, 271, 109210. [Google Scholar] [CrossRef]
- Gimenez, C.; Sierra, V.; Rodon, J. Sustainable operations: Their impact on the triple bottom line. Int. J. Prod. Econ. 2012, 140, 149–159. [Google Scholar] [CrossRef]
- Galea, J.J. Diseño para la sostenibilidad en el coche eléctrico. Del Milburn Model 22 “Brougham” de 1916 al Renault Zoe de 2019. i+Diseño 2019, 14, 277–288. [Google Scholar] [CrossRef]
- Lawal, S.A.; Choudhury, I.A.; Nukman, Y. Application of vegetable oil-based metalworking fluids in machining ferrous metals—A review. Int. J. Mach. Tools Manuf. 2012, 52, 1–12. [Google Scholar] [CrossRef]
- Nagendramma, P.; Kaul, S. Development of ecofriendly/biodegradable lubricants: An overview. Renew. Sustain. Energy Rev. 2012, 16, 764–774. [Google Scholar] [CrossRef]
- Willing, A. Lubricants based on renewable resources–an environmentally compatible alternative to mineral oil products. Chemosphere 2001, 43, 89–98. [Google Scholar] [CrossRef]
- Goindi, G.S.; Sarkar, P. Dry machining: A step towards sustainable machining–Challenges and future directions. J. Clean. Prod. 2017, 165, 1557–1571. [Google Scholar] [CrossRef]
- Sharma, V.S.; Singh, G.; Sørby, K. A review on minimum quantity lubrication for machining processes. Mater. Manuf. Process. 2015, 30, 935–953. [Google Scholar] [CrossRef]
- Sharma, A.K.; Tiwari, A.K.; Dixit, A.R. Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review. J. Clean. Prod. 2016, 127, 1–18. [Google Scholar] [CrossRef]
- Afonso, I.S.; Nobrega, G.; Lima, R.; Gomes, J.R.; Ribeiro, J.E. Conventional and Recent Advances of Vegetable Oils as Metalworking Fluids (MWFs): A Review. Lubricants 2023, 11, 160. [Google Scholar] [CrossRef]
- Farade, R.A.; Wahab, N.I.A.; Mansour, D.E.A.; Soudagar, M.E.M. The Effect of Nanoadditives in Natural Ester Dielectric Liquids: A Comprehensive Review on Stability and Thermal Properties. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 1478–1492. [Google Scholar] [CrossRef]
- Perera, G.I.P.; Herath, H.M.; Perera, I.S.J.; Medagoda, M.M.P. Investigation on white coconut oil to use as a metal working fluid during turning. Proc. Inst. Mech. Eng. Part B 2015, 229, 38–44. [Google Scholar] [CrossRef]
- Wickramasinghe, K.C.; Perera, G.I.P.; Herath, H.M.C.M. Formulation and performance evaluation of a novel coconut oil–based metalworking fluid. Mater. Manuf. Process. 2017, 32, 1026–1033. [Google Scholar] [CrossRef]
- Suvin, P.S.; Gupta, P.; Horng, J.H.; Kailas, S.V. Evaluation of a comprehensive non-toxic, biodegradable and sustainable cutting fluid developed from coconut oil. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 1842–1850. [Google Scholar] [CrossRef]
- Ellerbrock, R.; Stein, M.; Schaller, J. Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Sci. Rep. 2022, 12, 11708. [Google Scholar] [CrossRef]
- Perera, G.I.P.; Wegala, T.S. Improving the novel white coconut oil-based metalworking fluid using nano particles for minimum surface roughness and tool tip temperature. Clean. Mat. 2024, 11, 100227. [Google Scholar] [CrossRef]
- Gómez-Merino, A.I.; Jiménez-Galea, J.J.; Rubio-Hernandez, F.J.; Santos-Ráez, I.M. Experimental assessment of thermal and rheological properties of coconut oil-silica as green additives in drilling performance based on minimum quantity of cutting fluids. J. Clean. Prod. 2022, 368, 133104. [Google Scholar] [CrossRef]
- Chatterjee, R.; Sharma, V.; Mukherjee, S. The environmental impacts and allocation methods used in LCA studies of vegetable oil-based bio-diesels. Waste Biomass Valori. 2015, 6, 579–603. [Google Scholar] [CrossRef]
- Deen, A.; Visvanathan, R.; Wickramarachchi, D.; Marikkar, N.; Nammi, S.; Jayawardana, B.C.; Liyanage, R. Chemical composition and health benefits of coconut oil: An overview. J. Sci. Food Agric. 2021, 101, 2182–2193. [Google Scholar] [CrossRef]
- Mulderig, A.; Beaucage, G.; Vogtt, K.; Jiang, H.; Kuppa, V. Quantification of branching in fumed silica. J. Aerosol Sci. 2017, 109, 28–37. [Google Scholar] [CrossRef]
- Gómez-Merino, A.I.; Jiménez-Galea, J.J.; Rubio-Hernández, F.J.; Arjona-Escudero, J.L.; Santos-Ráez, I.M. Heat transfer and rheological behavior of fumed silica nanofluids. Processes 2020, 8, 1535. [Google Scholar] [CrossRef]
- Di Nicola, G.; Ciarrocchi, E.; Pierantozzi, M.; Stryjek, R. A new equation for the thermal conductivity of organic compounds. J. Therm. Anal. Calorim. 2014, 116, 135–140. [Google Scholar] [CrossRef]
- Hoffmann, J.F.; Henry, J.F.; Vaitilingom, G.; Olivès, R.; Chirtoc, M.; Caron, D.; Py, X. Temperature dependence of thermal conductivity of vegetable oils for use in concentrated solar power plants, measured by 3omega hot wire method. Int. J. Therm. Sci. 2016, 107, 105–110. [Google Scholar] [CrossRef]
- Silalahi, A.O.; Sutjahja, I.M.; Kurnia, D.; Wonorahardjo, S. Measurement studies of thermal conductivity of water and coconut oil with nanoparticles dopant for thermal energy storage. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1772, p. 012022. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Routbort, J.L.; Singh, D. Particle shape effects on thermophysical properties of alumina nanofluids. J. Appl. Phys. 2009, 106, 014304. [Google Scholar] [CrossRef]
- Barbés, B.; Páramo, R.; Blanco, E.; Pastoriza-Gallego, M.J.; Piñeiro, M.M.; Legido, J.L.; Casanova, C. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J. Therm. Anal. Calorim. 2013, 111, 1615–1625. [Google Scholar] [CrossRef]
- Ho, C.J.; Gao, J.Y. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int. Commun. Heat Mass Transf. 2009, 36, 467–470. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, D.; Zhang, X.; Huang, J. Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM). Energ. Fuel. 2010, 24, 1894–1898. [Google Scholar] [CrossRef]
- Zeng, J.L.; Zhu, F.R.; Yu, S.B.; Zhu, L.; Cao, Z.; Sun, L.X.; Zhang, L. Effects of copper nanowires on the properties of an organic phase change material. Sol. Energy Mater. Sol. Cells 2012, 105, 174–178. [Google Scholar] [CrossRef]
- Zabalegui, A.; Lokapur, D.; Lee, H. Nanofluid PCMs for thermal energy storage: Latent heat reduction mechanisms and a numerical study of effective thermal storage performance. Int. J. Heat Mass Transf. 2014, 78, 1145–1154. [Google Scholar] [CrossRef]
- Yu, C.J.; Richter, A.G.; Kmetko, J.; Dugan, S.W.; Datta, A.; Dutta, P. Structure of interfacial liquids: X-Ray scattering studies. Phys. Rev. E 2001, 63, 021205. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Keblinski, P.; Phillpot, S.R.; Choi, S.S.; Eastman, J.A. Effect of liquid layering at the liquid–solid interface on thermal transport. Int. J. Heat Mass Transf. 2004, 47, 4277–4284. [Google Scholar] [CrossRef]
- Keblinski, P.; Phillpot, S.R.; Choi SU, S.; Eastman, J.A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 2002, 45, 855–863. [Google Scholar] [CrossRef]
- Prasher, R.; Phelan, P.E.; Bhattacharya, P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 2006, 6, 1529–1534. [Google Scholar] [CrossRef]
- Hunter, R.J. Foundations of Colloid, 2nd ed.; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Potanin, A.A.; Russel, W.B. Fractal model of consolidation of weakly aggregated colloidal dispersions. Phys. Rev. E 1996, 53, 3702. [Google Scholar] [CrossRef]
- Tiznobaik, H.; Shin, D. Experimental validation of enhanced heat capacity of ionic liquid-based nanomaterial. Appl. Phys. Lett. 2013, 102, 173906. [Google Scholar] [CrossRef]
- Oster, K.; Hardacre, C.; Jacquemin, J.; Ribeiro, A.P.C.; Elsinawi, A. Understanding the heat capacity enhancement in ionic liquid-based nanofluids (ionanofluids). J. Mol. Liq. 2018, 253, 326–339. [Google Scholar] [CrossRef]
- Rizvi, S.M.M.; Shin, D. Mechanism of heat capacity enhancement in molten salt nanofluids. Int. J. Heat Mass Transf. 2020, 161, 120260. [Google Scholar] [CrossRef]
T/°C | 20 | 21 | 22 | 23 | 24 | 25 | 35 | 45 |
---|---|---|---|---|---|---|---|---|
Dp/nm | 600 ± 70 | 580 ± 60 | 550 ± 50 | 440 ± 90 | 360 ±30 | 270 ± 30 | 260 ± 40 | 270 ± 50 |
T/°C | 5 | 10 | 15 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
---|---|---|---|---|---|---|---|---|---|---|
Cₖ | 8.9 ± 0.2 | 7.5 ± 0.3 | 3.4 ± 0.3 | 2.8 ± 0.5 | 2.8 ± 0.4 | 2.6 ± 0.1 | 2.6 ± 0.1 | 2.6 ± 0.1 | 2.6 ± 0.1 | 2.6 ± 0.1 |
R | 0.99863 | 0.99397 | 0.96048 | 0.91501 | 0.98715 | 0.99357 | 0.98947 | 0.99788 | 0.99694 | 0.98414 |
Liquid Layering | Particle Clustering | |||
---|---|---|---|---|
nf | w’/nm | int | Ra/nm | int |
0.01 | 4.42 | 0.0044 | 436.5 | 0.00998 |
0.02 | 5.58 | 0.0088 | 247.26 | 0.01997 |
0.03 | 7.29 | 0.0132 | 177.3 | 0.02997 |
0.04 | 7.73 | 0.0176 | 140.0 | 0.03997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Galea, J.J.; Gómez-Merino, A.I. Fumed Silica in Coconut Oil Based Nanofluids for Cooling and Lubrication in Drilling Applications. Lubricants 2024, 12, 436. https://doi.org/10.3390/lubricants12120436
Jiménez-Galea JJ, Gómez-Merino AI. Fumed Silica in Coconut Oil Based Nanofluids for Cooling and Lubrication in Drilling Applications. Lubricants. 2024; 12(12):436. https://doi.org/10.3390/lubricants12120436
Chicago/Turabian StyleJiménez-Galea, Jesús J., and Ana Isabel Gómez-Merino. 2024. "Fumed Silica in Coconut Oil Based Nanofluids for Cooling and Lubrication in Drilling Applications" Lubricants 12, no. 12: 436. https://doi.org/10.3390/lubricants12120436
APA StyleJiménez-Galea, J. J., & Gómez-Merino, A. I. (2024). Fumed Silica in Coconut Oil Based Nanofluids for Cooling and Lubrication in Drilling Applications. Lubricants, 12(12), 436. https://doi.org/10.3390/lubricants12120436